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Abstract

In many computer vision applications, such as face
recognition and hand pose estimation, we need systems that
can recognize a very large number of classes. Large margin
classification methods, such as AdaBoost and SVMs, often
provide competitive accuracy rates, but at the cost of eval-
uating a large number of binary classifiers. We propose
an embedding-based method for efficient multiclass recog-
nition. In our method, patterns and classes are mapped to
vectors in such a way that patterns and their associated
classes tend to get mapped close to each other. This way,
given a test pattern, a small set of candidate classes can
be identified efficiently using simple vector comparisons. In
experiments with 3D hand pose recognition (2430 classes)
and face recognition (535 classes), our method is between 3
and 28 times faster compared to evaluating all binary clas-
sifiers, with negligible or no loss in classification accuracy.

1. Introduction
A fundamental computer vision and pattern recognition

problem is efficient and accurate recognition of a very large
number of classes. Real-world vision systems should even-
tually be able to recognize thousands of different objects,
thousands of different signs of a sign language, thousands
or millions of human body or hand poses, and faces of thou-
sands or millions of individuals. Training an individual one-
vs.-all (OVA) classifier for each class is becoming a com-
mon approach, and is a natural way to apply theoretically
and empirically sound large margin methods, such as Ad-
aBoost [20] and SVMs [24], to a multiclass setting [2]. The
question we address in this paper is the following: assum-
ing that we have trained all these individual classifiers, how
can we use them efficiently?

The standard way such individual OVA classifiers are
used today is essentially brute-force search: given a pat-
tern to classify, all classifiers are applied so as to find the
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Figure 1. Example recognition tasks with a large number of
classes. Top: recognizing hand shape and 3D orientation, out of
a large number of shape/orientation combinations. Bottom: rec-
ognizing person identity, out of a large number of classes. In this
paper we propose a method for quickly identifying, given a query,
a small number of candidate classes, so as to speed up recognition.

classifier producing the strongest response. This strategy
can quickly become impractical as the number of classes
becomes large. To achieve a scalable solution, we propose
a novel paradigm, whereby efficient and accurate recogni-
tion is framed as a database search problem: given a pattern
to classify, the goal is to quickly identify, in a database of
classes, a small set of candidate classes for that pattern. The
winning candidate can then be selected by applying the in-
dividual classifiers available for the candidate classes.

Designing an efficient search mechanism for a database
of classes is a non-trivial problem. First, classes are ab-
stract entities with no explicit representation given a priori.
Second, no distance measure is defined a priori for compar-
ing database objects (classes) to each other and to queries.
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ClassMap, the method proposed in this paper, constructs an
explicit representation for classes, that can be used to 1).
“store” such classes in an actual database, 2). define a dis-
tance measure between classes and from patterns to classes,
and 3). accommodate efficient search.

In general, the proposed method is designed for use in
domains where the task of multiclass recognition is decom-
posed into multiple binary classification problems. In ad-
dition to the one-vs.-all (OVA) scheme, where a classifier
is trained for each class, our method can also be used with
the all-pairs scheme, where a classifier is trained for each
pair of classes, or with more general error-correcting out-
put codes [2, 8]. Our method is not concerned with how
the classifiers are trained, e.g., using AdaBoost or support
vector machines. The only assumptions we make are that:

1. all binary classifiers have already been trained, and

2. a set of labeled training patterns has been provided.

The key idea in ClassMap is that we can embed both pat-
terns and classes into a common vector space, in a way that
patterns tend to get mapped close to their correct classes.
Finding the nearest classes of a pattern in this vector space
can be done efficiently, using computationally light vector
comparisons. This way, a small number of candidate classes
can be quickly identified for each query. Then, only the
binary classifiers associated with those classes need to be
applied to the query.

We evaluate our method on two datasets, illustrated in
Fig. 1: a dataset of hand images for which we want to
recognize the hand shape and 3D orientation (out of 2430
classes), and a dataset of face images where we want to rec-
ognize the individual (out of 535 classes). In both cases,
one-vs.-all (OVA) classifiers are trained. Compared to the
brute-force method, where all OVA classifiers are applied
on each pattern, our method is between 3 and 28 times
faster, with negligible or no loss in classification accuracy.

2. Related Work
Nearest neighbor classification [9] is a simple method for

multiclass recognition, and has been successfully applied in
large multiclass problems, such as face recognition (e.g.,
[16]) and articulated pose estimation (e.g., [21]). Theoret-
ically, k-nearest neighbor classification accuracy becomes
optimal as the number of training data approaches infinity
[9]. However, for amounts of training data available in real
applications, nearest neighbor classifiers often fall short of
the theoretically optimal behavior.

An alternative approach for multiclass recognition is to
use large margin classifiers, trained for example via boost-
ing [10, 15, 20] or support vector machines (SVMs) [24].
Compared to nearest neighbor methods, large margin meth-
ods can be appealing because of their generalization prop-

erties and good empirical performance in terms of classifi-
cation accuracy. The standard strategy for applying large
margin methods to a multiclass problem is to decompose
the multiclass problem into a set of binary problems [2].

Different types of multiclass-to-binary decompositions
can be defined using error-correcting output codes [2, 8].
The most commonly used decompositions are into all-pairs
problems, where a classifier is trained to discriminate be-
tween each pair of classes, or into one-vs.-all (OVA) prob-
lems, where, for each class, an OVA classifier is trained to
discriminate between that class and all other classes. To
classify a query, all binary classifiers are applied. An ex-
ception is the DAGSVM method [19], that uses the all-
pairs scheme but requires a number of classifier evaluations
that is only linear to the number of classes, as in the OVA
scheme. Feature sharing for boosted classifiers [23] can sig-
nificantly reduce the feature extraction cost, but does not
reduce the number of required classifier evaluations.

A variety of indexing methods can be used to speed up
nearest neighbor retrieval and classification [3, 4, 12, 13, 14,
21], often achieving significant speedups over brute-force
search [3, 21]. However, for large margin methods, brute-
force evaluation of a large number of classifiers is the cur-
rent state of the art. ClassMap, the method proposed in this
paper, is designed to provide an efficient alternative to the
brute-force method for large margin multiclass recognition.

Our method performs, given a pattern, a quick search
in a database of classes to identify candidate classes. This
search task has many conceptual similarities with the classi-
cal task of searching for nearest neighbors. However, clas-
sical nearest neighbor indexing methods [3, 4, 12, 13, 14]
are inapplicable to our setting, because of two issues: 1).
In our problem, database objects are classes, thus living in
a different space than patterns. 2). No distance measure
is defined a priori for comparing database objects (classes)
to each other and to queries, whereas nearest neighbor in-
dexing methods require such a distance measure to exist.
The main contribution of this paper lies in describing how
to overcome these two issues, and thereby obtain a method
for efficient search in a database of classes.

We should also mention some additional methods that
have been proposed for specific large multiclass problems.
Efficient hand pose estimation is achieved in [17] by com-
bining hierarchical classifiers into a tree structure. Hierar-
chical template matching has been used for pedestrian de-
tection [11] and hand pose estimation [22]. Articulated pose
can be treated as a multidimensional regression problem,
and estimators can be trained that map observations into a
continuous pose space [1, 7]. However, many domains (e.g.,
face recognition) do not lend themselves readily either to hi-
erarchical decomposition or to regression-based estimation.
Our method, on the other hand, is readily applicable in such
domains, as long as a finite set of classes can be defined.
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3. Problem Definition and Overview
Let X be a space of patterns, and Y be a finite set of class

labels. Every pattern X ∈ X has a class label L(X) ∈ Y.
We use the term database as a synonym for Y, the terms
class and database object as synonyms for class label, and
the term query as a synonym for query pattern.

We assume that we have chosen a decomposition of the
multiclass recognition problem into a family of binary prob-
lems. While our method can be applied with more general
decompositions, for brevity we only consider one-vs.-all
(OVA) and all-pairs decompositions. In the OVA scheme,
for each class Y ∈ Y a large margin classifier CY : X → R

is trained to discriminate between patterns of class Y and
all other patterns. Higher (more positive) responses CY (Q)
indicate higher confidence that L(Q) = Y . To classify
a query Q ∈ X, the standard approach (which we want
to speed up using ClassMap) is to evaluate CY (Q) for all
Y ∈ Y, and classify Q as belonging to the class Y for which
CY (Q) is maximized.

In the all-pairs scheme, for each pair of classes (Y1, Y2)
a classifier CY1,Y2

: X → R is trained to discriminate be-
tween class Y1 and class Y2. To classify a query Q ∈ X,
the standard approach (which, again, we want to speed up
using ClassMap) is to: 1). compute CY1,Y2

(Q) for all pairs
(Y1, Y2), and 2). determine the final classification output us-
ing a voting scheme, where each CY1,Y2

votes for Y1 and/or
Y2, with a weight that depends on the response CY1,Y2

(Q).
Different voting schemes can be used [2].

Let C be the set of all binary classifiers corresponding to
the decomposition scheme we have chosen. For example,
C can be a set of all-pairs or OVA classifiers. We assume
that all these binary classifiers have already been trained
using an existing method, such as boosting or SVMs. We
use the term brute-force classification for a classification
process that, as described above, in order to classify a query
Q needs to compute C(Q) for all C ∈ C.

Given the above definitions, the problem we want to
solve can be stated as follows: we want a classification pro-
cess that, using the large margin classifiers in C, classifies
query patterns Q as accurately as possible and as fast as
possible. Ideally, we want the classification process to be
significantly faster compared to brute-force classification,
but not significantly less accurate.

The key idea in our method is to define an embedding
F : X ∪ Y → Rd that maps both patterns and classes into a
common d-dimensional vector space, and that tends to map
queries Q and their corresponding classes L(Q) close to
each other. Using such an F , we can efficiently identify
for each Q a set of candidate classes, by finding classes
Y whose embeddings F (Y ) are close to F (Q). It is as-
sumed that measuring the distance between vectors F (Q)
and F (Y ) is much faster than computing the output of a bi-
nary classifier C ∈ C on a query Q. Once we obtain a set

of candidate classes for Q, we only need to evaluate those
binary classifiers C that are related to the candidate classes.

4. Jointly Embedding Queries and Classes
In order to keep our formulation general, the only as-

sumptions that we make are that we are given a set C of
already trained binary classifiers, a set Xtr ⊂ X of labeled
training examples, and a matrix M storing precomputed
outputs C(X) for all C ∈ C and X ∈ Xtr.

Under these assumptions, the only way to obtain infor-
mation about a query Q ∈ X is to evaluate C(Q) for some
classifiers C ∈ C. Our goal is to classify Q while evaluat-
ing C(Q) for as few classifiers C as possible. The question
then becomes: if we only compute C(Q) for a relatively
small number of classifiers, how can we use that informa-
tion to quickly generate a short list of candidate classes for
Q? Alternatively, given a class Y ∈ Y, how can we ob-
tain a quick evaluation of whether Y is a candidate class
for Q? The answer is that we can compare how well each
computed output C(Q) matches a typical output of C on
training examples from class Y .

More formally, we define an embedding F : X ∪ Y →
Rd that jointly maps patterns and classes into a common
d-dimensional real vector space Rd. We start by defining
a simple 1D embedding F R of both patterns Q ∈ X and
classes Y ∈ Y based on the responses of a single classifier
R ∈ C, which we call a reference classifier:

F R(Q) = R(Q) . (1)
F R(Y ) = median{R(X) : X ∈ Xtr, L(X) = Y } . (2)

We should note that reference classifiers play a role anal-
ogous to that of reference objects in Lipschitz embeddings
[13]. Note that, for the embedding F R(Y ) of a class Y ,
we use the median of outputs of R on training examples
belonging to class Y . We treat this median as a typical out-
put of R on patterns from class Y . An alternative approach
would be to use the mean instead of the median; we chose
the median as a statistic that is more robust to outliers.

Using 1D embeddings F R as building blocks, we can
define a multidimensional embedding F : X ∪ Y → Rd:

F (Q) = (F R1(Q), . . . , F Rd(Q)) . (3)
F (Y ) = (F R1(Y ), . . . , F Rd(Y )) . (4)

We use the term ClassMap embeddings for embeddings F

defined this way. Note that any OVA or all-pairs classifier
in C can be used as a reference classifier in the above equa-
tions. A simple way to construct such an embedding F in
practice is to choose d classifiers randomly from C.

An example of a simple ClassMap embedding, com-
puted with real data (faces from the 535-class FRGC2
dataset [18]) is shown on Fig. 2. We illustrate a 2D em-
bedding F defined using two OVA classifiers CY3

and CY4
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Figure 2. A 2D embedding F = (F R1 , F R2), defined using Eqs.
3 and 4 with two reference classifiers R1 and R2, and mapping
both patterns and classes into R

2. We show the mappings of pat-
terns belonging to classes Y1 and Y2, and the mappings of classes
Y1 and Y2 themselves. Note that the mapping of each class is ob-
tained by computing, along each dimension, the median mapping
of patterns from that class along that dimension. Using the L1 dis-
tance, 28 of the 32 patterns are mapped closer to the embedding of
their own class than to the embedding of the other class.

as reference classifiers. The figure shows the embeddings of
training examples from two other classes Y1 and Y2, differ-
ent from the classes Y3 and Y4 that the reference classifiers
CY3

and CY4
were trained to recognize. We see in the figure

that, in most cases, F maps patterns closer to the embed-
ding of their own class than to the embedding of the other
class. That is exactly the behavior that we want to exploit to
achieve efficient search in the database of classes: given a
query Q, we expect the embedding F of its true class L(Q)
to be a relatively close neighbor of F (Q).

Using a ClassMap embedding we can drastically reduce
the number of required classifier evaluations, by simply
finding the classes whose embeddings are close to the em-
bedding of the query. Essentially we substitute vector com-
parisons for classifier evaluations. This scheme leads to ef-
ficiency gains in two ways: first, we assume that measuring
the distance between two vectors is much faster than apply-
ing a classifier on a pattern. Second, since the query and all
database classes are mapped to a common vector space, ef-
ficient vector indexing methods, e.g., LSH [12], can be used
to speed up nearest neighbor search in that space.

5. A Simple ClassMap Implementation
In this section we sketch a simple end-to-end implemen-

tation that specifies both the off-line steps of preprocessing
and embedding construction, and the online process of mul-
ticlass recognition using ClassMap.

Our method takes as input the following data:
• A set C of large margin classifiers C : X → R, corre-

sponding to some multiclass-to-binary decomposition.

• A set Xtr ⊂ X of training examples, with class labels.

• A matrix M of classifier outputs C(X) for each pair
(C, X) : C ∈ C, X ∈ Xtr.

The first objective is to construct a ClassMap embedding
F . A simple approach is to first choose d, i.e., the dimen-
sionality of the embedding, and then simply choose ran-
domly d reference classifiers R1, . . . , Rd from C and apply
Equations 3 and 4. The last preprocessing step is to com-
pute and store F (Y ) for each class Y ∈ Y.

Once preprocessing is done, we can proceed to the run-
time phase of our method, i.e., classification of previously
unseen query patterns. For the runtime phase we adapt the
filter-and-refine framework [13]. Given a query Q ∈ X, we
perform the following steps:

• Embedding step: compute F (Q).

• Filter step: rank all classes Y by the distance of their
embeddings F (Y ) from F (Q).

• Refine step, version 1 (all-pairs): for some user-
specified number p, compute all responses CY1,Y2

(Q)
such that classes Y1 and Y2 were ranked in the top p

classes by the filter step. Determine the class label for
Q by voting according to those responses [2].

• Refine step, version 2 (simple OVA): for some user-
specified number p, compute all responses CY (Q)
such that class Y was ranked in the top p classes by
the filter step. Assign Q to the class Y of the classifier
CY producing the highest response.

• Refine step, version 3 (OVA + threshold): given user-
specified p and t: start computing CY (Q), according
to the order in which Y was ranked at the filter step.
If, for some Y , CY (Q) ≥ t, then assign Q to class Y

and finish. If p classes have already been considered,
classify Q as in the simple OVA case.

We note that there is a large amount of flexibility in de-
signing the refine step. In addition to the three versions
provided above, several other versions may be reasonable
choices for specific domains. Our focus in this paper is not
the specific implementation of the refine step, but the design
of appropriate embeddings F to be used for the filter step,
within the general filter-and-refine framework.

The rationale of the OVA + threshold version of the re-
fine step is that higher responses CY (Q) indicate higher
confidence that Q indeed belongs to class Y . Responses
CY (Q) higher than some threshold t may be so conclusive
that we can safely classify Q, without performing any more
classifier evaluations. The threshold t can be learned from
training examples, so as to rarely lead to incorrect decisions.

Regardless of the particular implementation of the refine
step, the key idea in filter-and-refine classification is that the
filter step, using efficient vector comparisons, can quickly
identify a relatively small set of candidate classes. Then,
the refine step uses more expensive computations (classifier
evaluations) to choose one among those candidates.
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6. Optimizing Embedding Quality
In order for F to be useful for filter-and-refine classifica-

tion, F should tend to map queries closer to their own class
than to other classes. In other words, if Q ∈ X is a random
query of class L(Q), and Y 6= L(Q) is a random class in the
database, we want it to hold as often as possible that F (Q)
be closer to F (L(Q)) than to F (Y ). Instead of choosing
random reference classifiers, as suggested in Section 5, we
can optimize embeddings according to this criterion.

In particular, let ∆ be the distance measure used in Rd,
and let Q ∈ X, Y1 = L(Q), Y2 6= L(Q). For every embed-
ding F : X ∪ Y → R

d we define a corresponding classifier
F̃ : X × Y × Y → R, as follows:

F̃ (Q, Y1, Y2) = ∆(F (Q), F (Y2)) − ∆(F (Q), F (Y1)) .

(5)
In words, the task of F̃ is to decide whether L(Q) = Y1

or L(Q) = Y2. The decision simply depends on whether
F (Q) is closer to F (Y1) or to F (Y2). Positive and nega-
tive outputs of F̃ correspond respectively to decisions that
L(Q) = Y1 and L(Q) = Y2. We want to construct an F

so that the error rate of F̃ on triples (Q, Y1, Y2) : Y1 =
L(Q), Y2 6= L(Q) is minimized.

For the sake of clarity we should emphasize that two en-
tirely different types of classifiers appear in our formulation:
The first type is large margin classifiers C : X → R. The
second type is classifiers F̃ associated with embeddings F ,
where F̃ : X × Y × Y → R maps a triple (Q, Y1, Y2) to a
real number. In the remainder of the paper we will refer to
classifiers of type F̃ using the term triple-classifiers.

Every R ∈ C can be used to define a 1D embedding F R.
Triple-classifier F̃ R is expected to act as a weak classifier,
with possibly high error rate, but better performance than a
random guess (see, for example, Fig. 2). We will now dis-
cuss how to combine many such weak triple-classifiers into
an optimized strong triple-classifier, and a corresponding
optimized multidimensional embedding, using AdaBoost.
This idea comes from [3], where AdaBoost is used to opti-
mize embeddings for nearest neighbor retrieval.

The inputs we give to the embedding construction algo-
rithm are the same as in Section 5: a set C of large mar-
gin classifiers, a set Xtr ⊂ X of labeled training examples,
and a matrix M of classifier outputs C(X) for each pair
(C, X) : C ∈ C, X ∈ Xtr.

Embedding construction is performed as follows:

1. We define for each R ∈ C a 1D embedding F R.

2. For each F R we also define the corresponding weak
triple-classifier F̃ R.

3. We construct a set T of training triples (X, L(X), Y )
such that X ∈ Xtr, Y ∈ Y − {L(X)}.

4. We run AdaBoost [20] using T as training data, so as to
combine many weak triple-classifiers of type F̃ R into
a strong triple-classifier H :

H =

d∑

i=1

(αiF̃
Ri) , (6)

where each Ri is an element of C and each weight αi is
a positive real number. Essentially, AdaBoost is used
to choose Ri and αi.

5. Based on strong classifier H we define a d-
dimensional embedding Fout and a distance measure
∆ : Rd × Rd → R as follows:

Fout(Q) = (F R1(Q), ..., F Rd(Q)) . (7)

Fout(Y ) = (F R1(Y ), ..., F Rd(Y )) . (8)

∆((u1, ..., ud), (v1, ..., vd)) =

d∑

i=1

(αi|ui − vi|) . (9)

Eqs. 7 and 8 use the definition of F R given in Eqs. 1 and
2. In Eq. 9, (u1, ..., ud) and (v1, ..., vd) are d-dimensional
vectors that Fout maps patterns and classes to.

Following the proof in [3] for AdaBoost-trained em-
beddings, it holds that H = F̃out. In other words, the
classifier H trained via AdaBoost misclassifies a triple
(Q, L(Q), Y 6= L(Q)) iff, under distance ∆, Fout maps
Q closer to Y than to L(Q). Therefore, AdaBoost directly
optimizes the error rate of F̃out, which is exactly the mea-
sure we wanted to optimize for the purposes of using Fout

for filter-and-refine classification.

7. Experiments
We evaluate our method on two datasets, shown in Fig.

1: a dataset of hand images, where we want to estimate the
handshape and the 3D orientation, and the Face Recognition
Grand Challenge (FRGC) Version 2 dataset [18].

7.1. Datasets
7.1.1 The Hand Dataset

This dataset contains hand images of 81 basic hand shapes
defined in American Sign Language (ASL). There are 30
different 3D orientations for each shape, for a total of 81 ×
30 = 2430 hand pose classes.

Using Poser 5 [5], we generated 200 synthetic images
for each class: 150 for training OVA classifiers, 25 for use
as training during embedding construction via AdaBoost,
and 25 for testing. For each synthetic hand image, clut-
tered background from random real images was added to
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the regions outside the hand silhouette. 2430 OVA classi-
fiers were trained using SVMs with a linear kernel. His-
togram of Oriented Gradient features [6] were used. All
histogram bins were stored as a 2025-dimensional vector.

For evaluation, in addition to the synthetic hand images,
we also used a second test set of 992 real hand images, col-
lected from 7 subjects and with cluttered background. The
real test images cover 13 out of the 2430 classes. We col-
lected real images from only a few classes in order to fa-
cilitate the extremely laborious process of manually anno-
tating the ground truth for those images. Furthermore, be-
cause of the difficulties in visually estimating the 3D hand
orientation on an image, we assigned to each hand image
four different class labels (out of the possible 2430 class la-
bels). Each of those four class labels corresponded to the
same handshape and a 3D orientation within 30 degrees of
the manually labeled orientation. The classification result is
considered correct iff it is equal to one of those four labels.

7.1.2 The Face Dataset

The face set contains all 2D face images in the Face Recog-
nition Grand Challenge Version 2 (FRGC2) dataset [18].
There are 36817 face images from 535 subjects (i.e., 535
classes). These face images were partitioned into three dis-
joint sets: for each subject, half of the face images were
used for training OVA classifiers, 1/4 were used for embed-
ding construction, and 1/4 were used for testing. The fea-
tures of face images were their projections on the top 2509
PCA components, which accounts for 99.9% of the vari-
ance. The 535 one-vs-all face classifiers were trained using
SVMs with an RBF kernel.

We also created an alternative, smaller test set, which we
call the faces-25 test set. In faces-25 we included all test
images from classes for which at least 25 training examples
were available for the embedding construction algorithm.
The faces-25 set is useful for illustrating how performance
of our method is affected when the number of training ex-
amples per class becomes too small. Images in the faces-25
test set were still classified against all 535 classes.

7.2. Methods and Parameters
In our experiments we evaluate five different methods:

brute-force classification, and four different variations of
ClassMap, as follows:

• Brute force: evaluate all OVA classifiers; select the
class whose classifier produced the highest response.

• CM-RRC: use filter-and-refine classification, with
version 2 of the refine step (see Section 5), and use
a randomly generated ClassMap embedding.

• CM-RRC-Thr: use filter-and-refine classification,
with version 3 (OVA+threshold) of the refine step, and
use a randomly generated ClassMap embedding.

• CM-Boosted: use filter-and-refine classification, with
version 2 of the refine step, and a ClassMap embedding
constructed using AdaBoost.

• CM-Boosted-Thr: use filter-and-refine classification,
with version 3 (OVA+threshold) of the refine step, and
a ClassMap embedding constructed using AdaBoost.

The number of training triples used to train CM-Boosted
embeddings, using the algorithm of Section 6, was 3 million
for both the hand dataset and the face dataset. The CM-
Boosted embeddings had 45 dimensions (d = 45) for the
hand dataset, and 84 dimensions for the face dataset. The
number of dimensions is simply the number of reference
classifiers to which AdaBoost assigned non-zero weights.
The same embedding was used for both real and synthetic
test images of hands, and the same embedding was used for
both the faces and the faces-25 test sets. To make compar-
isons fair, the same dimensions (45 for hands and 84 for
faces) were also used for the CM-RRC embeddings.

For the face dataset, for version 3 of the refine step of
Section 5, the threshold t was set to −0.38. This value was
chosen by considering the training examples: −0.38 was
the smallest value that would increase classification error
on the training examples by no more than 0.05%.

7.3. Results
Performance is measured based on classification accu-

racy and efficiency. Fig. 3 displays the results obtained for
the four test sets (real hand images, synthetic hand images,
faces, and faces-25) using brute force, CM-Boosted, and
(for the faces and faces-25 sets) CM-Boosted-Thr. To pro-
duce different accuracy-vs.-efficiency trade-offs, we vary
parameter p of the refine step (Section 5), which speci-
fies the maximum number of candidate classes to consider.
One measure of efficiency is the number of OVA classifier
evaluations per query. OVA classifiers are evaluated at the
embedding step, in order to produce the embedding of the
query, and at the refine step, where the OVA classifiers cor-
responding to the candidate classes are evaluated.

On the hand images, brute-force classification accuracy
is 22.5% for the real images and 95.3% for the synthetic
images. At the cost of 85 classifier evaluations per query
(d = 45, p = 40), CM-Boosted produces 23.9% classifi-
cation accuracy for the real images and 95.3% for the syn-
thetic images. Interestingly, for the real hand images, CM-
Boosted is both faster and more accurate than brute force.
A pattern misclassified via brute force can be classified cor-
rectly via the filter-and-refine method, if the OVA classi-
fier(s) producing false alarms are not associated with candi-
date classes considered during the refine step.
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Figure 3. Results on the real and synthetic test sets of hand images, and on the faces and faces-25 test sets. For methods CM-Boosted and
CM-Boosted-Thr we plot accuracy vs. number of OVA classifier evaluations per query. We also show as a solid horizontal line the brute
force classification accuracy, attained at a cost of 2430 and 535 classifier evaluations per query respectively for hands and for faces.
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Figure 4. Comparing AdaBoost-based embedding construction to
random embedding construction. For the real hand test set and the
faces test set, we compare the single embedding constructed via
AdaBoost vs. results from 100 randomly constructed embeddings.

In terms of running time for the hand dataset, the speed
of brute force classification is 28 images/second, and the
speed of CM-Boosted (at d = 45, p = 40) is 781 im-
ages/second, which is 28 times faster than brute force. In
a detection setting, where hundreds or thousands of im-
age windows are classified separately in order to determine
where the hand is located, the speed-up factor of 28 pro-
duced by our method can make a big difference in practice.

For the face dataset our method again provides a more ef-
ficient alternative to brute-force classification. Brute-force
classification achieves an accuracy of 92.0%, and it takes
2.17 seconds to classify a face image. At a cost of 178 clas-
sifier evaluations per query, the CM-Boosted-Thr method
yields an accuracy of 91.6%, and it takes 0.73 seconds to
classify a face image, which is 3.0 times faster than brute
force. We also note that the CM-Boosted-Thr method gives
better results than the CM-Boosted method.

The results on the faces-25 dataset illustrate that our
method achieves better accuracy/efficiency trade-offs for
classes with 25 or more training examples. At a cost of
128 classifier evaluations per query, the CM-Boosted-Thr
method yields an accuracy of 94.9%, equal to the accu-
racy of brute force, at the speed of 0.53 seconds per image,
which is 4.1 faster than brute force.

Fig. 4 compares the single embedding constructed via
AdaBoost vs. results from 100 randomly constructed em-
beddings. Interestingly, for the real hand images, sev-
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Figure 5. Measuring generalization of ClassMap embeddings to
patterns from classes not available during AdaBoost training. We
show results from an embedding optimized on all 535 classes,
and an embedding optimized on only 435 classes, leaving out 100
classes. We also show results from the best performing out of 100
CM-RRC embeddings (with reference classifiers chosen from the
435 classes), and the median result from those 100 embeddings.
The test set here is the set of test patterns from the left-out 100
classes. Each test pattern is classified against all 535 classes.

eral random embeddings perform better than the AdaBoost-
constructed embedding. Since AdaBoost in general con-
verges only to a local optimum, it is always possible that
a random construction turns out to be better than this local
optimum. In the faces dataset, the AdaBoost-constructed
embedding does outperform all 100 CM-RRC embeddings.
Still the randomly constructed ClassMap embeddings per-
form better than brute force, achieving similar accuracy at
more than twice the speed.

One last experiment measures the generalization ability
of CM-Boosted embeddings. In this experiment, AdaBoost
uses training examples from only 435 of the 535 classes
of the face dataset, and the test set includes only examples
from the left-out 100 classes. For each test example, all 535
classes are still considered as possible outputs. In Fig. 5 we
compare the results to those obtained (on the same test set
from the left-out 100 classes) using the original embedding,
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that was trained on all 535 classes. Not surprisingly, perfor-
mance is worse for the embedding that was trained without
examples from the classes in the test set. At the same time,
performance on those left-out classes is still better than that
of CM-RRC embeddings and brute force. For example, at a
cost of 110 classifier evaluations per query, the embedding
trained without examples from the test classes achieves an
accuracy of 84.5%, which is worse than the 87% accuracy
of the embedding trained with all 535 classes, but is better
than than the median accuracy (78.5%) and the max accu-
racy (82.5%) attained using 100 randomly constructed em-
beddings. This experiment shows that our method could
be applicable in a dynamic setting, where new classes and
classifiers can be inserted after the embedding was trained,
without requiring a new embedding to be constructed.

8. Discussion
We have presented a novel approach for speeding up

recognition in the presence of a large number of classes.
The key idea has been to relate patterns and classes by con-
structing a joint embedding, that maps both patterns and
classes into a common vector space. Using this embedding,
a small number of candidate classes for each query can be
quickly identified using simple vector comparisons.

In experiments with datasets of hand and face images,
and in the presence of large numbers of classes (2430 and
535 classes respectively), our method leads to 3 to 28 times
faster classification compared to brute force, with negligi-
ble or no loss in accuracy. In our experiments, our method
also works well on query patterns from classes that were not
available during embedding construction.

In our implementation, the filter step compares the em-
bedding of the query to the embeddings of all classes.
This step takes negligible time in our experiments, but can
become a bottleneck for really large numbers of classes.
However, by mapping classes to a vector space, ClassMap
allows application of numerous vector indexing methods
(e.g., LSH [12]) for speeding up the filter step. Using vector
indexing methods can lead to recognition time that is sublin-
ear to the number of classes, thus allowing efficient recogni-
tion even with significantly more classes than the numbers
used in our experiments.
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