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Abstract Gestures are an important modality for human-machine communication. Com-
puter vision modules performing gesture recognition can beimportant components of in-
telligent homes, assistive environments, and human-computer interfaces. A key problem
in recognizing gestures is that the appearance of a gesture can vary widely depending on
variables such as the person performing the gesture, or the position and orientation of the
camera. This paper presents a database-based approach for addressing this problem. The
large variability in appearance among different examples of the same gesture is addressed
by creating large gesture databases, that store enough exemplars from each gesture to capture
the variability within that gesture. This database-based approach is applied to two gesture
recognition problems: handshape categorization and motion-based recognition of American
Sign Language (ASL) signs. A key aspect of our approach is theuse of database indexing
methods, in order to address the challenge of searching large databases without violating the
time constraints of an online interactive system, where system response times of over a few
seconds are oftentimes considered unacceptable. Our experiments demonstrate the benefits
of the proposed database-based framework, and the feasibility of integrating large gesture
databases into online interacting systems.

Keywords gesture recognition· hand pose estimation· embeddings· American Sign
Language· indexing methods· image and video databases

1 Introduction

Gestures are an important modality for human-machine communication, and robust gesture
recognition can be an important component of intelligent homes, assistive environments,
and human-computer interfaces in general. A key problem in recognizing gestures is that
the appearance of a gesture can vary widely depending on variables such as the person
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performing the gesture, or the position and orientation of the camera. For example, the same
handshape can look very different in different images, depending on the 3D orientation of the
hand and the viewpoint of the camera. Similarly, in the domain of sign language recognition,
the appearance of a sign can vary depending on the person performing the sign and the
distance from the camera. This paper presents a database-based approach for addressing this
problem of large intraclass variability. In the proposed approach, large gesture databases are
used, and for each gesture class a large number of exemplars is stored in order to capture the
variability among samples of that gesture class.

This database-based framework is applied to two different gesture recognition domains.
The first domain is handshape categorization. Handshapes can hold important information
about the meaning of the gesture, for example in sign languages, or about the intent of an
action, for example in manipulative gestures or in virtual reality interfaces. In our database-
based approach, a large database of tens of thousands of images is used to represent the
wide variability of handshape appearance. A key advantage of the database approach is that
it provides a very natural way to capture the nonparametric distribution that characterizes the
appearance of each handshape class. Furthermore, databases containing tens or hundreds of
thousands of images can be easily generated overnight usingoff-the-shelf computer graphics
software.

The second gesture recognition domain where we apply the proposed approach is recog-
nition of signs in American Sign Language (ASL). In particular, we consider the problem
of searching an ASL dictionary for the meaning of a particular sign. In an automated sign
lookup system, when a user wants to look up a specific sign, theuser can submit a video
example of that sign, and ask the system to identify databasevideos that are the best matches
for that sign. Each database video can be annotated with information about the sign shown
in that video, such as meaning, usage, or related signs. A keychallenge in such a system
is designing the database search module, so that the resultsreturned to the user include the
correct sign as often as possible.

Designing an accurate search module is a challenging task, that has to address the fact
that the appearance of a sign depends on the person performing the sign, as well as the posi-
tion and distance of the signer with respect to the camera. Toaddress this issue, we convert
the original database of 933 sign exemplars to an extended database of about 270,000 ex-
emplars, by creating multiple copies of each exemplar in theoriginal database, correspond-
ing to different scaling parameters. Our experiments demonstrate that using the extended
database improves retrieval accuracy, while still satisfying the time constraints of an online,
interactive system.

Efficient and accurate indexing methods are important in theproposed database–based
framework. In both the handshape recognition domain and thesign recognition domain, the
system must identify, given a query image or video, the most similar entries in the database.
The best database matches need to be identified fast enough toallow the system to be used
in an interactive environment. At the same time, this database retrieval task can be very
challenging, for the following reasons:

– The similarity measures that are most meaningful for image and video matching are of-
ten non-Euclidean, nonmetric, and computationally expensive. Examples of such non-
metric distance measures are the chamfer distance [7], shape context matching [9,51],
and dynamic time warping (DTW) [31,33].

– The majority of database indexing methods are designed for Euclidean distance mea-
sures or metric distance measures (i.e., distance measuresthat obey the reflexivity, sym-
metry, and triangle inequality properties). Thus a relatively small number of indexing
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methods are available for the nonmetric distance measures typically used for comparing
hand images.

With respect to database indexing, the focus of this paper isnot on proposing new in-
dexing methods, but rather on determining the feasibility of using existing off-the-shelf in-
dexing methods in our gesture recognition tasks. For that purpose, we consider the recently
proposed BoostMap embedding method [3], and integrate thatmethod into the retrieval
modules for both our handshape recognition system and the ASL sign lookup system. A key
result of our experiments is that BoostMap indeed works wellin our domains and offers
significant speedups compared to the naive brute-force method of comparing the query to
every single database entry.

Overall, the experiments demonstrate the advantages of theproposed database-based
framework for gesture recognition. In both our experimental domains, a large database is
used to capture naturally the large variability in appearance between examples of the same
gesture. While brute-force search in such large databases can prohibitively slow for many
applications, existing indexing methods can be used to drastically improve efficiency, and
thus make the proposed approach suitable for interactive applications.

2 Related Work

Gesture recognition has been an active area of research for several years. Progress in auto-
matic recognition of gestures is useful for a diverse array of applications in areas includ-
ing human computer interfaces, surveillance systems, signlanguage recognition, assistive
environments, and healthcare. For example, some recent work proposes gesture recogni-
tion interfaces that facilitate human computer interaction for blind persons [50], or disabled
persons who have difficulty performing standard motions needed to use a traditional key-
board/mouse interface [30]. As another example, the systemdescribed in [32] uses gesture
recognition to facilitate the communication of hospital patients who have difficulty speak-
ing.

A large number of methods have been proposed in the literature covering various aspects
of gesture recognition. In the remainder of this section we briefly review existing methods
for handshape recognition and sign recognition, and we highlight the contrasts between
those methods and the solutions we propose in this paper.

Computer vision systems that estimate handshape under arbitrary 3D orientations typ-
ically do it in the context of tracking [24,36,42,49,64]. Inthat context, the pose can be
estimated at the current frame as long as the system knows thepose at the previous frame.
Since such trackers rely on knowledge about the previous frame, they need to be manually
initialized, and cannot recover when they lose the track. The handshape recognition method
described in this paper can be used (among other things) to automate the initialization and
error recovery of a hand tracker.

A regression system that estimates hand pose from a single image is described in [43].
However, that method assumes that the hand silhouette is correctly identified in the input
image, whereas such precise hand detection is often unrealistic to assume in a real-world
application. Another regression method is presented at [16], but that method requires that
the hand be simultaneously visible from multiple cameras. The database-based handshape
recognition approach described here has the advantage thatit only requires a single camera,
and it can tolerate a certain amount of imprecision in hand detection; we still require the
location of the hand to be given as an input to our system, but we do not require precise
separation of the hand silhouette from the background.
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Another family of methods for hand shape classification are appearance-based methods,
like [19,63]. Such methods are typically limited to estimating 2D hand pose from a limited
number of viewpoints. In contrast, our handshape recognition approach can handle arbitrary
viewpoints.

With respect to recognition of signs and sign languages, a number of approaches have
been proposed in the literature (see [39] for a recent review). Many approaches are not
vision-based, but instead use input from magnetic trackersand sensor gloves, e.g., [21,37,
45,57,58,66]. Such methods achieve good recognition results on continuous Chinese Sign
Language with vocabularies of about 5,000 signs [21,58,66]. On the other hand, vision-
based methods, e.g., [8,13,17,20,29,48,65] use smaller vocabularies (20-300 signs) and
often rely on color markers, e.g., [8,17]. The approach described in this paper is a step to-
wards developing vision-based methods that can handle a more comprehensive vocabulary.

A key focus of this paper is on identifying efficient indexingmethods for speeding up the
task of finding, given a query image or video, the most similardatabase matches. Various
methods have been employed for speeding up nearest neighborretrieval. Comprehensive
reviews on the subject include [10,26,25]. A large amount ofwork focuses on efficient
nearest neighbor retrieval in multidimensional vector spaces using anLp metric, e.g., [22,
34,52,61]. However, that family of approaches is not applicable in our setting, since the
chamfer distance (i.e., the distance measure that we use forcomparing hand images) is not
anLp measure.

A number of nearest neighbor methods can be applied for indexing arbitrary metric
spaces; the reader is referred to [25] for surveys of such methods. As an example, VP-
trees [67] and metric trees [53] hierarchically partition the database into a tree structure by
splitting, at each node, the set of objects based on their distances to pivot objects. However,
while such methods can offer theoretical guarantees of performance in metric spaces, the
chamfer distance and dynamic time warping distance used in our experiments are nonmetric,
and so are other measures typically used for comparing images and video to each other, such
as shape context matching [9,51], and distance measures based on the Viterbi algorithm [51].

In domains with a computationally expensive distance measure, significant speed-ups
can be obtained by embedding objects into another space witha more efficient distance
measure. Several methods have been proposed for embedding arbitrary spaces into a Eu-
clidean or pseudo-Euclidean space [3,4,11,18,27,60]. These methods are indeed applica-
ble to our setting. In this paper we focus on the BoostMap embedding method [3] and we
show that this method can be successfully employed in both our experimental domains, i.e.,
handshape recognition and sign recognition. The success ofthe BoostMap method in both
domains illustrates the feasibility and benefits of using off-the-shelf, domain-independent
indexing methods for gesture recognition tasks.

The parts of this paper discussing our database-based approach for handshape catego-
rization are based on work that we published in three conference papers [2,6,40]. The parts
of the paper describing our database-based approach for automated sign lookup are novel,
and have not been published before.

3 Database-based Handshape Recognition

In handshape recognition, the goal is to recognize a set of different handshapes, such as
the 20 handshapes shown on Fig. 1. In this section, we describe a system that operates on
single images, as opposed to entire video sequences, or images obtained simultaneously
for multiple cameras. We need to specify up front that, in a real-world system, reliable
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Fig. 1 The 20 handshapes used in the ASL handshape dataset.

Fig. 2 Examples of different appearance of a fixed 3D hand shape, obtaining by altering camera viewpoint
and image plane rotation. Top: the ASL “F” handshape rendered from seven different camera viewpoints.
Bottom: the ASL “F” handshape rendered from a specific cameraviewpoint, using seven different image
plane rotations.

recognition of handshapes of arbitrary 3D orientation froma single image is beyond the
current state of the art. At the same time, a system that operates on a single image, even
if it has a relatively low classification accuracy, can be immensely useful in identifying
a relatively small set of likely hypotheses. Such a set of hypotheses can subsequently be
refined:

– using a hand tracker [42,24,36,47,49,64],
– using domain-specific knowledge, such as ASL linguistic constraints, or
– using knowledge of a specific protocol for human-computer communication, that can

place constraints on the current handshape based on the current communication context.
– using simultaneous views from multiple cameras.

3.1 A Database of Hand Images

A key challenge in reliable handshape recognition in an intelligent home setting, or an as-
sistive environment setting, is that the same handshape canlook very different in different
images, depending on the 3D orientation of the hand with respect to the camera (Fig. 2).
Using a large database of hand images is a natural way to address this wide variability of the
appearance of a single handshape. Since handshape appearance depends on 3D orientation,
we can densely sample the space of all possible 3D orientations, and include a database
image for every handshape in every one of the sampled 3D orientations.
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In our system, we include 20 different handshapes (Fig. 1). Those 20 handshapes are all
commonly used in American Sign Language (ASL). For each handshape, we synthetically
generate a total of 4,032 database images that correspond todifferent 3D orientations of the
hand. In particular, the 3D orientation depends on the viewpoint, i.e., the camera position
on the surface of a viewing sphere centered on the hand, and onthe image plane rotation.
We sample 84 different viewpoints from the viewing sphere, so that viewpoints are approxi-
mately spaced 22.5 degrees apart. We also sample 48 image plane rotations, so that rotations
are spaced 7.5 degrees apart. Therefore, the total number of images is 80,640 images, i.e., 20
handshapes× 84 viewpoints× 48 image plane rotations. Figure 2 displays example images
of a handshape in different viewpoints and different image plane rotations. Each image is
normalized to be of size 256×256 pixels, and the hand region in the image is normalized so
that the minimum enclosing circle of the hand region is centered at pixel(128,128), and has
radius 120. All database images are generated using computer graphics, and in particular
using the Poser 5 software [14]. It takes less than 24 hours togenerate these thousands of
images. Image generation is a script-based automated process.

3.2 The Chamfer Distance

Given an input image, the system has to identify the databaseimages that are the closest to
the input. In our system we measure distance between edge images, because edge images
tend to be more stable than intensity images with respect to different lighting conditions.
Examples of hand images and corresponding edge images are shown on Fig. 3.

The chamfer distance [7] is a well-known method to measure the distance between two
edge images. Edge images are represented as sets of points, corresponding to edge pixel
locations. Given two edge images,X andY, the chamfer distanceD(X,Y) is:

D(X,Y) =
1
|X| ∑

x∈X
min
y∈Y

‖x−y‖ +
1
|Y| ∑

y∈Y
min
x∈X

‖y−x‖ , (1)

where‖a−b‖ denotes the Euclidean distance between two pixel locationsa andb. D(X,Y)
penalizes for points in either edge image that are far from any point in the other edge image.
Fig. 4 shows an illustration of the chamfer distance.

The chamfer distance operates on edge images. The syntheticimages generated by Poser
can be rendered directly as edge images by the software. For the test images we simply apply
the Canny edge detector [12].

On an AMD Athlon processor running at 2.0GHz, we can compute on average 715
chamfer distances per second. Consequently, finding the nearest neighbors of each test im-
age using brute force search, which requires computing the chamfer distances between the
test image and each database image, takes about 112 seconds.Taking 112 seconds to match
the input image with the database is clearly too long for an interactive application. The
need for efficiency motivates our exploration of database indexing methods. In Section 5 we
describe how to use an indexing method to speed up the retrieval process.

4 Database-based Sign Recognition

The long-term goal of our work on sign recognition is to design a system that makes it easy
for users and learners of American Sign Language (ASL) to look up the meaning of an
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Fig. 3 Examples of real and synthetic hand images and their corresponding edge images.

Fig. 4 An example of the chamfer distance. The left image shows two sets of points: points in the first
set are shown as circles, and points in the second set are shown a squares. The middle image shows a link
between each circle and its closest square. The circle-to-square directed chamfer distance is the average
length of those links. The right image shows a link between each square and its closest circle. The square-to-
circle chamfer distance is the average length of those links. The chamfer distance (also known asundirected
chamfer distance) between squares and circles is the sum of the two directed distances.

unknown sign. In such a sign lookup system, when the user encounters an unknown sign,
the user submits to the system a video of that sign. The user can submit a pre-existing video,
if such a video is available. Alternatively, the user can perform the sign in front of a camera,
and generate a query video that way.

A key component of the sign lookup project is data collection. As described in [5], we
are in the process of collecting a large video dataset containing examples of almost all of the
3,000 signs contained in the Gallaudet dictionary [54]. Each sign is performed by a native
signer.

Due to the large number of signs, we can only collect a small number of exemplars
for each sign. The lack of a large number of training examplesfor sign renders several
model-based recognition methods inapplicable, e.g., Hidden Markov Models [41,56]. At
the same time, exemplar-based methods are readily applicable in cases with a small number
of examples per class. In an exemplar-based method, processing a query involves identifying
the most similar matches of the query in a database of training examples.

In our experiments, the database contains 933 examples of signs, corresponding to 921
unique sign classes. Experiments are performed in a user-independent manner, where the
people performing signs in the query videos do not appear in the database videos. Figure 5
shows sample frames from four videos from this dataset.
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Fig. 5 Examples of sign videos from the ASL lexicon video dataset [5]. For each sign, we show, from left to
right, the first frame, a middle frame, and the last frame. First row: an example of the sign DIRTY. Second
row: an example of the sign EMBARRASED. Third row: an exampleof the sign COME-ON. Fourth row: an
example of the sign DISAPPEAR.

4.1 Features for Sign Recognition

The meaning of a sign is determined by handshape, hand motion, and hand position with
respect to the body. A key challenge in computer vision approaches for sign recognition is
the current lack of reliable general-purpose modules for extracting handshape, hand motion,
and articulated body pose, that can work in unconstrained, real-world scenes. In order to
simplify the task and produce a functioning end-to-end system, in this paper we only use
hand motion to discriminate between signs, leaving incorporation of hand appearance and
body pose information as future work.

Furthermore, in the system described here we make the simplifying assumption that the
system knows the location of the dominant hand in every frameof every database sequence
and every query sequence. The location of hands in all database sequences is manually an-
notated. While this manual annotation is a labor-intensiveprocess, this process is a one-time
pre-processing cost that is transparent to the end user. Hand detection in the query sequence
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can be performed in a semi-automatic way, where the system identifies hand locations us-
ing skin and motion information [38], and the user reviews and corrects the results before
submitting a query. In the near future we hope to fully automate the query process using
methods that can tolerate errors and ambiguities in hand detection, such as dynamic space-
time warping (DSTW) [1].

4.2 The Dynamic Time Warping Distance Measure

In order for the system to identify the most similar databasematches to a query video, we
need to define a distance measure between sign videos. Given the position of the dom-
inant hand in each frame, each sign video is naturally represented as a 2D time series
((x1,y1), . . . ,(xn,yn)), wheren is the number of frames in the video, and each(xi ,yi) rep-
resents the pixel coordinates of the centroid of the hand in the i-th frame. Consequently,
comparing sign videos to each other becomes a time series matching problem.

For the purpose of measuring distance between the time-series representations of signs,
we use the dynamic time warping (DTW) distance measure [15,31,33]. DTW is a popular
method for matching time series, and satisfies a key requirement for a time series distance
measure: the ability to tolerate temporal misalignments, so as to allow for time warps, such
as stretching or shrinking a portion of a sequence along the time axis, and differences in
length between time series. We now proceed to briefly describe DTW.

Let Q be the time series representation of a query video with|Q| frames, and letX be
the time series representation of a database video with|X| frames. A warping pathW =
((w1,1,w1,2), . . . ,(w|W|,1,w|W|,2)) defines an alignment between two time seriesQ and X,
and |W| denotes the length ofW. The i-th element ofW is a pair(wi,1,wi,2) that specifies
a correspondence between elementQwi,1 of Q and elementXwi,2 of X. The costC(W) of
warping pathW that we use is the sum of the Euclidean distances between corresponding
elementsQwi,1 andXwi,2:

C(W) =
|W|

∑
i=1

‖Qwi,1 −Xwi,2‖ (2)

As a reminder, in our setting,Qwi,1 andXwi,2 denote respectively the center of the domi-
nant hand in framewi,1 of the query video and framewi,2 of the database video.

ForW to be a legal warping path,W must satisfy the following constraints:

– Boundary conditions:w1,1 = w1,2 = 1,w|W|,1 = |Q| andw|W|,2 = |X|. This requires the
warping path to start by matching the first element of the query with the first element of
X, and end by matching the last element of the query with the last element ofX.

– Monotonicity: wi+1,1−wi,1 ≥ 0,wi+1,2−wi,2 ≥ 0. This forces the warping path indices
wi,1 andwi,2 to increase monotonically withi.

– Continuity: wi+1,1−wi,1 ≤ 1,wi+1,2−wi,2 ≤ 1. This restricts the warping path indices
wi,1 andwi,2 to never increase by more than 1, so that the warping path doesnot skip
any elements ofQ, and also does not skip any elements ofX between positionsXw1,2

andXw|W|,2
.

The optimal warping path betweenQ andX is the warping path with the smallest pos-
sible cost. The DTW distance betweenQ andX is the cost of the optimal warping path
betweenQ andX. GivenQ andX, the DTW distance betweenQ andX and the correspond-
ing optimal warping path can be easily computed using dynamic programming [31].
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Computing the DTW distance takes timeO(|Q||X|), i.e., time proportional to the prod-
uct of the lengths of the two time series. IfQ andX have comparable lengths, computing the
DTW distance takes time quadratic to the length of theQ, and thus DTW is a computation-
ally expensive distance measure. Furthermore, DTW is non-metric, as it does not obey the
triangle inequality. On an Intel Xeon quad-core E5405 processor, running at 2.0GHz, and
using only a single core, we can compute on average about 1000DTW distances per second,
when measuring DTW distances between time series corresponding to query and database
videos.

4.3 Tolerating Differences in Translation and Scale

Since the only information we use in measuring sign similarity is hand position, and hand
position isnot translation invariant or scale invariant, we need to take additional steps to
ensure that the matching algorithm tolerates differences in translation and scale between
two examples of the same sign.

We address differences in translation by normalizing all hand position coordinates based
on the location of the face in each frame. Face detection is a relatively easy task in our set-
ting, since we can assume that the signer’s face is oriented upright and towards the camera.
Mature, publicly-available real-time face detection systems have been available for several
years [44,55], that work well in detecting upright, frontalviews of faces. In our experiments,
the face location in database sequences is manually annotated, whereas for query sequences
we use the publicly available face detector developed by Rowley, et al. at CMU [44].

Differences in scale can also cause problems, as a small difference in scale can lead to
large differences in hand positions, and consequently to large DTW distances. Our approach
for tolerating differences in scale is to artificially enlarge the database, by creating for each
database sign multiple copies, each copy corresponding to different scaling parameters. We
should note that each of these multiple copies is not a new sign video, but simply a new time
series, and thus the storage space required for these multiple copies is not significant.

In particular, for each time series corresponding to a database sign video, we generate
289 scaled copies. Each scaled copy is produced by choosing two scaling parametersSx and
Sy, that determine respectively how to scale along thex axis and they axis. EachSx andSy

can take 17 different values, spaced uniformly between 0.92 and 1.08, thus leading to a total
of 172 = 289 possible value for each(Sx,Sy) pair.

While, as mentioned earlier, the space required for storingthese multiple copies is not
significant, the time required to exhaustively compare the query to the entire database is
severely affected. Since in our current system we can compute about 1000 DTW distances
per second, exhaustively matching the query with the 933 entries in the original database
(i.e., without including the scaled copies) takes on average a bit less than a second. On
the other hand, exhaustively matching the query with the 269,637 entries in the extended
database (i.e., including the scaled copies) takes on average over four minutes, which is
too long for an interactive application. Fortunately, we can use existing database indexing
methods, as described in the next section, to significantly reduce the search time and allow
interactive use.
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5 Embedding-based Retrieval

In our example applications, calculating the chamfer distance or the DTW distance between
the query and all database examples takes too long (almost two minutes in the handshape
recognition system, over four minutes in the sign lookup system) to be used in interactive
applications. However, we can obtain an efficient approximation of these expensive distance
measures by embedding query and database objects into a vector space. Using such an em-
bedding we can drastically speed up retrieval time, with relatively small losses in accuracy.
In this section we discuss how such embeddings can be constructed.

5.1 Lipschitz Embeddings

Embeddings of arbitrary spaces into a vector space are a general approach for speeding up
nearest neighbor retrieval. LetX be a set of objects, andD(X1,X2) be a distance measure
between objectsX1,X2 ∈ X. For example, in the handshape recognition setting,X is the set
of edge images of hands, andD is the chamfer distance. In the sign lookup setting,X is the
set of time series corresponding to sign videos, andD is the DTW distance. An embedding
F : X → R

d is a function that maps objects fromX into thed-dimensional real vector space
R

d, where distances are typically measured using anLp or weightedLp measure, denoted as
D′. Such embeddings are useful when it is computationally expensive to evaluate distances
in X, and it is more efficient to map points ofX to vectors and compute someLp distance
between those vectors.

Given an objectX ∈ X, a simple 1D embeddingFR : X → R can be defined as follows:

FR(X) = D(X,R) . (3)

The objectRthat is used to defineFR is typically called areference objector avantage object
[26]. A multidimensional embeddingF : X → R

d can be constructed by concatenating such
1D embeddings: ifF1, . . . ,Fd are 1D embeddings, we can define ad-dimensional embedding
F asF(X) = (F1(X), . . . ,Fd(X)).

The basic intuition behind such embeddings is that two objects that are close to each
other typically have similar distances to all other objects. An everyday example that illus-
trates this property is looking at distances between cities. The distance from New York to
Boston is about 240 miles, and the distance from New York to Los Angeles is about 2800
miles. Suppose that we did not know these two distances. Furthermore, suppose that some-
one gave us, for 100 towns spread across the United States, their distances to New York,
Boston and Los Angeles. What would that information tell us about the distances from New
York to Boston and from New York to Los Angeles?

First we would notice that the distance from each town to New York is always within
240 miles or less of the distance between that town and Boston. On the other hand, there are
some towns, like Lincoln, Nebraska, whose distances from Los Angeles and New York are
very similar, and some towns, like Sacramento, whose distances to Los Angeles and New
York are very different (Sacramento-Los Angeles is 400 miles, Sacramento-New York is
2800 miles). Given these distances, we could deduce that, most likely, New York is a lot
closer to Boston than it is to Los Angeles.

Suppose that we have chosen a set ofd database objectsR1,R2, ...,Rd as reference ob-
jects. Then, we can define a functionF , mappingX to R

d as follows:

F(X) = (D(X,R1),D(X,R2), ...,D(X,Rd)) . (4)



12

The functionF turns out to be a special case of Lipschitz embeddings [11,35]. In our hand-
shape recognition setting,F maps edge images tod-dimensional vectors. In our sign recog-
nition setting,F maps time-series representations of sign videos tod-dimensional vectors.

We define theapproximate distance D′ between two objectsX1 and X2 to be theL1

distance betweenF(X1) andF(X2):

D′(A,B) =
d

∑
i=1

|D(X1,Ri)−D(X2,Ri)| . (5)

The actual value ofD′(A,B) is not necessarily similar in scale to the valueD(A,B). However,
D′(A,B) is an approximation ofD(A,B) in the sense that, whenD(A,B) is much smaller than
D(A,G), then we also expectD′(A,B) to be smaller thanD′(A,G). The intuition is, again,
that if A andB are close to each other, then they will also have relatively similar distances to
each of theRi ’s.

In the handshape recognition domain, the time complexity ofcomputing the approxi-
mate distanceD′ between an edge imageX andU database edge images isO(dnlogn+Ud),
wheren is the max number of edge pixels in any edge image andd is the dimensionality of
the embedding. In particular, it takesO(dnlogn) time to computeF(X), i.e., to compute the
d chamfer distances between the edge image and each of thed reference objects, and it takes
O(Ud) time to compute theL1 distance betweenF(X) and the embeddings of all database
images (which just need to be precomputed once, off-line, and stored in memory). On the
other hand, computing the chamfer distanceC betweenX and all database images takes
O(Unlogn) time. The complexity savings are substantial whend is much smaller thanU . In
our system it takes on average 112 seconds to compute the chamfer distances between the
input image and all database images (for test and database images of size 256x256). In con-
trast, ford = 100, it takes 0.14 seconds to compute the corresponding approximate distances
D′, which is close to three orders of magnitude faster. Similarspeedups are obtained in our
sign recognition domain by replacing the DTW distance with the corresponding embedding-
based approximate distance.

5.2 BoostMap Embeddings

A simple way to define embeddings for our purposes, i.e., for efficient matching of hand
images and time series representations of sign videos, is toapply Eq. 4 for some reasonable
embedding dimensionalityd (values between 20 and 100 typically work well in practice),
and usingd reference objectsRi chosen randomly from the database. However, we can
significantly optimize embedding quality using tools available from the machine learning
community. In particular, embedding optimization can be casted as the machine learning
problem of optimizing a binary classifier, and boosting methods such as AdaBoost [46]
can be employed for embedding optimization. This is the approach taken in the BoostMap
method, which is described in [3]. In our experiments we demonstrate that the BoostMap
method works well for both our handshape recognition systemand our sign lookup system.
In this section we briefly summarize the BoostMap method, following the description in [3].

Suppose we have an embeddingF with the following property: for anyQ,A,B ∈ X

(whereX in our applications is either the space of edge images of hands, or the space of
time series representations of signs), ifQ is closer (according to the chamfer distance or
DTW) to A than toB, thenF(Q) is closer toF(A) than toF(B). We can easily derive thatF
would also have the following property: for every query object Q, if A is the nearest neighbor
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of Q in the database, thenF(A) is the nearest neighbor ofF(Q) among the embeddings of
all database objects. Such an embedding would lead to perfectly accurate nearest neighbor
retrieval.

Finding such a perfect embedding is usually impossible. However, we can try to con-
struct an embedding that, as much as possible, tries to behave like a perfect embedding. In
other words, we want to construct an embedding in a way that maximizes the fraction of
triples (Q,A,B) such that, ifQ is closer toA than toB, thenF(Q) is closer toF(A) than to
F(B).

More formally, using an embeddingF we can define a classifier̃F , that estimates (some-
times wrongly) for any three objectsQ,A,B if Q is closer toAor toB. F̃ is defined as follows:

F̃(Q,A,B) = ‖F(Q)−F(B)‖1−‖(F(Q)−F(A)‖1 , (6)

where‖X,Y‖1 is theL1 distance betweenX andY. A positive value ofF̃(Q,A,B) means
thatF mapsQ closer toA than toB, and can be interpreted as a “prediction” thatQ is closer
to A than toB in the original spaceX. If this prediction is always correct, thenF perfectly
preserves the similarity structure ofX.

Simple 1D embeddings, like the one defined in Eq. 3, are expected to behave asweak
classifiers, i.e. classifiers that may have a high error rate, but at leastgive answers that are not
as bad as random guesses (random guesses are wrong 50% of the time). Given many weak
classifiers, a well-studied problem in machine learning is how to combine such classifiers
into a single, strong classifier, i.e., a classifier with a lowerror rate. A popular choice is
AdaBoost [46], which has been successfully applied to several domains in recent years.

The BoostMap algorithm [3] uses AdaBoost to construct an embedding. The input to
AdaBoost is a large set of randomly picked 1D embeddings (i.e., embeddings defined by
applying Eq. 3 using reference objectsR picked randomly from our database), and a large
set of training triples(Q,A,B) of objects, for which we know ifQ is closer toA or to B
(closer according to the chamfer distance, or to DTW, in our case). The output of AdaBoost
is a classifierH = ∑d

j=1 α j F̃j , where eachF̃j is the weak classifier associated with a 1D
embeddingFj , and eachα j is the weight (corresponding to importance) assigned to that 1D
embedding. If AdaBoost has been successful, thenH has a low error rate.

UsingH, we can easily define a high-dimensional embeddingFout and a distance mea-
sureD′ with the following property: for any triple(Q,A,B), if Q is closer toA than toB, H
misclassifies that triple if and only if, according to distance measureD′ (i.e., theL1 distance
measure in the embedding space)Fout(Q) is closer toFout(B) than toFout(A). We defineFout

andD′ as follows:
Fout(x) = (F1(x), ...,Fd(x)) . (7)

D′(Fout(x),Fout(y)) =
d

∑
j=1

(α j |Fj(x)−Fj(y)|) . (8)

It is easy to prove thatH andFout fail on the same triples [3]. Therefore, if AdaBoost
has successfully produced a classifierH with low error rate, thenFout inherits the low error
rate ofH.

5.3 Filter-and-refine Retrieval

In order to implement an end-to-end retrieval system using BoostMap, we use the well-
known filter-and-refine retrieval framework [26], which works as follows:
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Fig. 6 Classification accuracy vs. speedup attained using BoostMap on the handshape dataset. For each
accuracy, the plot shows the corresponding speedup factor obtained using BoostMap. Brute-force nearest
neighbor search yields a classification accuracy of 33.1% and an average retrieval time of 112 seconds per
query, corresponding to a speedup factor of 1.

– Offline preprocessing step:Run the BoostMap algorithm to construct an embedding.
Then, compute and store the embeddings of all database objects.

– Mapping step:given an input imageQ, compute the embedding ofQ.
– Filter step: identify a small set of candidate nearest neighbors, by comparingF(Q) with

the embeddings of all database objects and selecting a smallnumber of database objects
whose embeddings are the closest toF(Q).

– Refine step:Compute the exact distance betweenQ and each of the database objects
selected during the filter step.

– Output: return the database object (among all objects considered inthe refine step) with
the smallest distance to the input image.

The filter step provides a preliminary set of candidate nearest neighbors in an efficient
manner, that avoids computing the exact distance between the query and the vast majority
of database objects. The refine step applies the exact distance only to those few candidates.
Assuming that the mapping step and the filter step take negligible time (a property that
is demonstrated in the experiments), filter-and-refine retrieval is much more efficient than
brute-force retrieval.

5.4 Retrieval Complexity

Given a query objectQ, the retrieval time for that object is simply the sum of the times
that it takes respectively for the mapping step, the filter step, and the refine step. For the
mapping step, we need to compute thed-dimensional embedding ofQ, which takesO(d)
time and requiresd distance measurements between the query and reference objects. For
the filter step, we need to compare the embedding of the queryQ to the embeddings of
n database objects, which takes timeO(dn). For the refine step, we need to measurep
distances between the query and database objects selected during the filter step, which takes
O(p) time. Consequently, the retrieval time complexity isO(dn+ p).

Measured solely in terms of the size of the database, retrieval takes timeO(n), assuming
that at the filter step we compare the embedding of the query with the embeddings of all
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database objects. It is worth noting that, in terms of big-O notation, the complexity of brute
force search using the original computationally expensivedistance measure is alsoO(n).
However, in terms of actual running time in our experiments,the filter step is at least three
orders of magnitude faster than brute-force search using the original distance measure. The
factor by which the filter step is faster than brute-force search using the original distance
measure is a constant factor, computed as the ratio of the time it takes to measure a single
distance under the original distance measure over the time it takes to measure the distance
between two vectors in the target space of the embedding.

We should also note that, asd increases, the filter step also becomes more expensive,
because we need to compare vectors of increasingly high dimensionality. However, in our
experiments so far, with embeddings of up to 1,000 dimensions, the filter step always takes
negligible time; retrieval time is dominated by the few exact distance computations we need
to perform at the embedding step and the refine step.

In cases (not encountered in our experiments) when the filterstep takes up a significant
part of retrieval time, one can apply vector indexing techniques [10,28,62] to speed up
filtering. We should keep in mind that in the filter step we are finding nearest neighbors in
a real vector space, and many indexing methods are applicable in such a setting. One of the
advantages of using embeddings is exactly the fact that we map arbitrary spaces to well-
understood real vector spaces, for which many tools are available. Using locality sensitive
hashing (LSH) [28], for example, the complexity of the filterstep can drop fromO(n) to
O(logn).

6 Experiments

We evaluate the proposed database-based approach for gesture recognition on two experi-
mental systems: a handshape recognition system, and an ASL sign lookup system.

Performance is evaluated using three measures: retrieval time, K-percentile accuracy,
and classification accuracy. These measures are defined as follows:

– Retrieval time: average time it takes to process a single query.
– K-percentile accuracy: fraction of test queries for which the correct class is among

the topK-percentile of classes, as ranked by the retrieval system, whereK can vary
depending on the experiment.

– Classification accuracy:fraction of test queries for which the correct class is the highest-
ranked class.

In order to computeK-percentile accuracy, we look at the rankings produced by the
filter-and-refine algorithm of Section 5.3, and choose for each class its highest-ranking ex-
emplar. We then rank classes according to the rank of the highest-ranking exemplar for each
class. For example, suppose that the top three database matches come from class A, the
fourth and fifth match come from class B, the sixth match comesfrom class C, and the sev-
enth match comes from class A again. Then, A is the highest-ranking class, B is the second
highest-ranking class, and C is the third highest-ranking class.

WhetherK-percentile accuracy or classification accuracy is a more appropriate measure
depends on the application. For handshape recognition, there are only 20 classes to be rec-
ognized, so classification accuracy is more appropriate. Onthe other hand, in the sign search
system,K-percentile accuracy is a more meaningful measure. Our ASL sign dataset contains
921 sign classes and, given a query, it is not strictly necessary for the correct class to be the
highest-ranking class. Including the correct class in the top K% of classes, for reasonably
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small values ofK (e.g.,K ≤ 1%), would allow the user to identify the correct class aftera
quick visual inspection of the highest-ranking results.

6.1 Results on Handshape Recognition

The database of hand images used in the experiments has been constructed as described in
Section 3. The test set consists of 710 images. All test images were obtained from video
sequences of a native ASL signer either performing individual handshapes in isolation or
signing in ASL. The hand locations were extracted from thosesequences using the method
described in [68]. The test images are obtained from the original frames by extracting the
subwindow corresponding to the hand region, and then performing the same normalization
that we perform for database images, so that the image size is256× 256 pixels, and the
minimum enclosing circle of the hand region is centered at pixel (128,128), and has radius
120. Examples of test images and their corresponding edge images (edge images are used
for the chamfer distance computation) are shown in Figure 3.

For each test image, filter-and-refine retrieval is performed to identify the nearest neigh-
bor of the test image. BoostMap is used for the filter step. Thetest image is considered to
have been classified correctly if the handshape of the nearest neighbor is the same as the
handshape of the test image. The ground truth for the test images is manually provided.
The total number of handshapes is 20, so our classification task consists of recognizing 20
distinct classes.

Figure 6 illustrates the results obtained on this dataset. An important thing to note here
is that the classification accuracy of brute force search (i.e., before we introduce any errors
caused by our indexing scheme) is only 33.1%. This accuracy rate reflects the upper limit
of how well we can do using our indexing schemes: even if we have an indexing scheme
that gives the same results as brute force and achieves enormous speedups, the classification
accuracy is still going to be the same as that of brute-force search. At the same time, it is
important to note that this accuracy rate is obtained without using any domain-specific con-
straints, and such constraints are oftentimes available, and highly informative, in concrete
real-world applications, as discussed in Section 3.

With respect to the classification performance obtained using BoostMap, we notice that
the speedup that we obtain over brute-force search is quite significant: we can get the exact
same accuracy rate (33.1%) as with brute-force search, but about 800 times faster. This
means that classification time is reduced from 112 seconds per query (using brute-force
search) to 0.14 seconds per query. In other words, integrating an indexing scheme into the
system drastically improves efficiency, with no loss in accuracy.

Besides embeddings, a simple alternative way to speed up brute-force search is to di-
rectly reduce the size of the database, by discarding a certain percentage of database ob-
jects. For example, if we only use 10% of the original database objects, brute force search
becomes 10 times faster. We have run an experiment evaluating that approach, by using
smaller databases of different sizes, obtained by discarding different percentages of objects
from the original database. The results are shown on Table 1.The results show that, for the
hands dataset, the efficiency gained by reducing the size of the database comes at a signifi-
cant cost in classification accuracy. Overall, filter-and-refine retrieval using BoostMap em-
beddings provides far better trade-offs between accuracy and efficiency compared to simply
using brute force and reducing the size of the database. For example, with BoostMap we can
obtain an accuracy rate of 33.1% with a speedup factor of 800 over brute-force search. If we
reduce the database size by a factor of 800, we obtain the samespeedup factor of 800, but
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Reduction factor Accuracy rate
1 33.1
2 31.7
3 32.5
4 30.0
6 27.2
8 21.1
10 22.5
16 22.4
32 19.1
64 16.8
100 14.7
128 15.4
256 14.5
512 12.1
800 9.4

Table 1 Classification error rates obtained by using smaller databases. The left column shows the factor by
which database size is reduced compared to the original database of 80,640 hand images. The right column
shows the obtained classification accuracy rates for that database size. For comparison, using BoostMap we
attain an accuracy rate of 33.1% for a speedup factor of 800.

the accuracy drops drastically to 9.4%. Even if we only reduce the size of the database by a
factor of 8, the accuracy drops from 33.1% to 21.1%.

The experiments with reduced database sizes also show that,in certain cases, a smaller
database size leads to slightly better results than a largerdatabase size. For example, using
one eighth of the original database objects the accuracy is 21.1%, and using one sixteenth of
the original database objects the accuracy is 22.4%. Given that the test size is 710 images, it
is not clear whether such small increases in accuracy are accidental artifacts or whether some
database objects actually act as distractors and hurt classification accuracy. The condensing
method [23] could be used, in theory, to identify such distractors.

Overall, the experiments show the need for more research, todesign image matching
methods that are more accurate that the chamfer distance (some recent progress on that
topic is reported in [59]). At the same time, the experimentsalso illustrate the effectiveness
of BoostMap as an indexing method. BoostMap yields a classification time that is almost
three orders of magnitude faster than that of brute-force search, thus making it feasible to
search a large database of hand images in real time.

6.1.1 Discussion of Handshape Recognition Results

The handshape recognition accuracy that we report in the system is clearly not sufficiently
high for deployment as a standalone module in unconstrainedreal-world environments. At
the same time, it is important to note that handshape recognition in cluttered images under
arbitrary 3D orientation is still a largely unsolved problem. To the best of our knowledge,
so far no competing methods have been quantitatively evaluated on real hand images for the
task of handshape recognition under arbitrary 3D orientation.

Furthermore, we believe that the handshape recognition rates we report correspond, in
some sense, to a worst-case scenario, where no prior information is available as to what 3D
orientations and handshapes are most likely to be observed.As discussed in Section 3, our
system can be a useful module in a larger hand tracking or gesture recognition system, by
identifying a relatively small number of initial hypotheses, that can further be refined using
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Fig. 7 K-percentile accuracy plot for the ASL sign dataset, for brute-force search in the original database
of 933 time series, brute-force search in the extended database of 269,637 time series, and embedding-based
retrieval in the extended database. The x-axis correspondsto values ofK, between 0 and 3%. For each such
value ofK, we show the percentage of test signs for which the correct sign class was ranked in the highest
K-percentile among all 921 classes. For example, using embedding-based retrieval in the extended database,
for 32.6% of the queries the correct class was ranked in the top 1.1% of all classes, i.e., in the top 10 out of
all 921 classes.

domain-specific knowledge, information from multiple consecutive frames, or information
from multiple cameras.

6.2 Results on ASL Sign Retrieval

The query and database videos for these experiments have been obtained from the ASL
Lexicon Video Dataset [5]. Our test set consists of 193 sign videos, with all signs performed
by two native ASL signers. The video database contains 933 sign videos, corresponding to
921 unique sign classes (we had two videos for a few of the signclasses). The database signs
were performed also by a native ASL signer, who was differentfrom the signers performing
in the test videos.

Each query and database video was converted to a time series,as described in Sec-
tion 4.1. From the original database of 933 time series we created an extended database
of 269,637 time series, by creating multiple scaled copies of each original time series, as
described in Section 4.3.

Figure 7 illustrates the retrieval accuracy obtained on this dataset using brute-force
search on the original database of 933 time series, using brute-force search on the extended
database of 269,637 time series, and using filter-and-refineretrieval (with BoostMap used
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Fig. 8 K-percentile accuracy plot for the ASL sign dataset, for brute-force search in the original database
of 933 time series, brute-force search in the extended database of 269,637 time series, and embedding-based
retrieval in the extended database with two 10-dimensionalembeddings, with filter-and-refine parameterp
set to 10,000. The first of the two 10-dimensional embeddingswas trained using BoostMap, and the second
one was defined using as reference objects 10 medoids, identified using an iterativeK-medoid algorithm. The
x-axis corresponds to values ofK, between 0 and 3%. For each such value ofK, we show the percentage of
test signs for which the correct sign class was ranked in the highestK-percentile among all 921 classes.

in the filter step), with a 100-dimensional embedding, and a refine step that compares the
query to the top 10,000 matches obtained from the filter step.

In Figure 7 we focus onK-percentile accuracy withK up to 3%. Our rationale is that if,
for a query, the correct class is not ranked in the top 3% of allclasses, the retrieval result
is unlikely to be useful to the user, because it is unlikely that the user will be willing to
visually inspect that many retrieval results in order to identify the correct match. In our
current database of 921 sign classes, the top 3% correspondsto 28 classes. When, as is our
goal [5], the database is extended to include almost all of the 3,000 signs included in the
Gallaudet dictionary [54], the top 3% of all classes will correspond to 90 classes, which will
be rather cumbersome for a user to visually inspect.

As Figure 7 shows, extending the database with multiple scaled copies of each time
series improves accuracy significantly. For example, as shown in the figure, using brute
force search in both the original and the extended database,we obtain the following results:
the fraction of test signs for which the correct class is ranked in the top 1.1% of all classes
(i.e., in the top 10 out of 921 classes) is 24.4% using the original database and 32.1% using
the extended database. Similarly, the fraction of test signs for which the correct class is
ranked in the top 2.2% of all classes (i.e., in the top 20 out of921 classes) is 36.3% using
the original database and 43.8% using the extended database.

At the same time, as mentioned in Section 4.2, our current system can compute about
1000 DTW distances per second. Therefore, brute-force search on the original database
takes on average a bit less than a second per query, whereas onthe extended database it
takes on average more than four minutes per query. Here is where incorporating an indexing
method can make a big difference. In Figure 7 we include results obtained using embedding-
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Fig. 9 K-percentile accuracy plot for the ASL sign dataset, for brute-force search in the original database of
933 time series, brute-force search in the extended database of 269,637 time series, and embedding-based re-
trieval in the extended database with embeddings of different dimensionality, with filter-and-refine parameter
p set to 10,000. The x-axis corresponds to values ofK, between 0 and 3%. For each such value ofK, we show
the percentage of test signs for which the correct sign classwas ranked in the highestK-percentile among all
921 classes.

based indexing on the extended database. In particular, we use a 100-dimensional embed-
ding, and the refine step evaluates DTW distances between thequery and the top 10,000
matches identified using the embedding. In total, embedding-based retrieval evaluates 100
DTW distances to compute the embedding of the query, and 10,000 DTW distances during
the refine step, thus reducing retrieval runtime per query from over 4 minutes to about 10
seconds. We believe that a retrieval time of 10 seconds, while leaving room for improvement,
is still within acceptable limits for an online interactivesystem.

In evaluating a similarity indexing method, a key question is how much accuracy is
lost by using indexing instead of brute-force search. Figure 7 shows that, with respect to
K-percentile accuracy, forK values ranging between 0.4% and 1.3%, embedding-based re-
trieval is not only faster but also more accurate than brute-force search. Given that our test
set size is only 193 sign videos, the slightly improved accuracy may well be accidental, as
our method only aims to get close to the accuracy of brute-force search, and not to sur-
pass that accuracy. ForK ranging between 0 and 2.5%, the difference in accuracy between
embedding-based retrieval and brute force is rather small.The difference becomes more
pronounced forK ranging between 2.5% and 3%, but those are ranges in which thesystem
becomes increasingly less useful to the user; arguably, in an extended search lookup system
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Fig. 10 K-percentile accuracy plot for the ASL sign dataset, for brute-force search in the original database
of 933 time series, brute-force search in the extended database of 269,637 time series, and embedding-based
retrieval in the extended database with 10-dimensional embeddings, for different values of the filter-and-refine
parameterp. The x-axis corresponds to values ofK, between 0 and 3%. For each such value ofK, we show
the percentage of test signs for which the correct sign classwas ranked in the highestK-percentile among all
921 classes.

covering the 3000 sign classes of the the Gallaudet dictionary [54], the most important val-
ues ofK for measuringK-percentile accuracy are in the range between 0 and 1%. In that
range, embedding-based retrieval works quite well in our experiments.

In Figure 8 we compare performance obtained using a 10-dimensional BoostMap em-
bedding versus performance obtained using a 10-dimensional embedding where the refer-
ence objects were selected to be the 10 medoids (among all database objects) identified using
a standard iterativeK-medoid algorithm. We see that the BoostMap embedding, where the
reference objects were selected using AdaBoost, significantly outperforms the embedding
that uses medoids.

It is also interesting to see how performance depends on system parameters, namely
the dimensionalityd of the embedding, and the numberp of distance evaluations at the
refine step of the retrieval process. Figures 9 and 10 show howK-percentile accuracy varies
vs. d and vs.p respectively. It is interesting to note that there are no major differences in
performance between embeddings of dimensions 10, 30, 60, and 100. This indicates that
increasing the dimensionality above 100 is not likely to improve performance. At the same
time, as expected, we see that varyingp between 1000 and 10000 drastically affects the
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obtainedK-percentile accuracy, with higher values ofp leading to better accuracy, which
naturally comes at the cost of slower retrieval time.

6.2.1 Discussion of Sign Retrieval Results

As in the handshape recognition results, we note that the results we have obtained on the
sign retrieval system are not at a level that would make the system ready for deployment
as a standalone module. At the same time, we believe that the results we have obtained are
quite promising, especially given that we only use hand motion information, ignoring hand
appearance and position with respect to other parts of the face and torso. Also, we have
obtained the results using dynamic time warping, a relatively simple similarity measure,
that considers only correspondences between frames, and does not take into account higher-
level information like motion pattern over multiple frames, or repeated patterns of motion.
We believe that extracting and using additional information from the videos, as well as using
more sophisticated similarity measures, can significantlyimprove accuracy.

It is worth noting that, even with this relatively simple system, for about 32% of the
queries, the system ranks the correct result within the top 1% of all classes. While visually
inspecting 1% of all signs can be somewhat cumbersome (1% would correspond to 30 out of
the 3000 signs in the Gallaudet dictionary [54]), it would still be an acceptable cost for many
users, given the current lack of straightforward methods for looking up the meaning of a sign.
In that sense, we believe that our current, relatively simple system, still works reasonably
well for about one third of the queries, and we hope to make that fraction significantly higher
as we continue working towards improving the system.

7 Discussion and Conclusions

This paper has presented a database-based framework for gesture recognition in the context
of human computer interaction in real-world applications.We have shown that using large
databases of exemplars is a feasible and promising method for capturing the wide range
of variability in the appearance of each individual gestureclass. We have described in de-
tail how to apply the proposed framework on two specific gesture recognition domains: a
handshape recognition system and an ASL sign retrieval system.

A key issue that this paper has addressed is the ability to search large gesture databases
fast enough for interactive applications, given the large number of database objects that need
to be matched with each query. We have described how to apply BoostMap, an embedding-
based indexing method, in order to achieve efficient retrieval in both our applications. Our
experiments demonstrate that BoostMap is an effective indexing method, that reduces re-
trieval time by more than an order of magnitude in both replications, thus allowing retrieval
to be performed at interactive speeds. Furthermore, we haveshown that the drastic improve-
ments in running time obtained using BoostMap incur only small decreases in recognition
accuracy.

While the accuracy rates we have attained in our experimentsare still not quite satis-
factory, it is important to note that our database-based approach has produced quantitative
results based on real datasets, both for handshape recognition under arbitrary 3D orientation,
and for large vocabulary sign retrieval. The ability to tackle these hard gesture recognition
problems and to produce quantitative results is a key advantage of the proposed database-
based framework, where a large database can naturally capture the wide variations of the
gestures we want to recognize. The challenge remains to build on top of our results, so as
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to create gesture recognition systems that are ready for real-world deployment, and that ad-
dress real user needs, such as the ability to look up the meaning of an unknown ASL sign,
or the ability to help disabled persons interact with a computer or communicate with other
people. We hope to address that challenge in our ongoing and future work.
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