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Abstract Gestures are an important modality for human-machine camcation. Com-
puter vision modules performing gesture recognition canntygortant components of in-
telligent homes, assistive environments, and human-ctenpnterfaces. A key problem
in recognizing gestures is that the appearance of a gestmwreary widely depending on
variables such as the person performing the gesture, ordsiéign and orientation of the
camera. This paper presents a database-based approaddfessing this problem. The
large variability in appearance among different exampleth® same gesture is addressed
by creating large gesture databases, that store enougipksiftom each gesture to capture
the variability within that gesture. This database-baggut@ach is applied to two gesture
recognition problems: handshape categorization and mdi@sed recognition of American
Sign Language (ASL) signs. A key aspect of our approach isitleeof database indexing
methods, in order to address the challenge of searching tiatabases without violating the
time constraints of an online interactive system, wherg¢esgsesponse times of over a few
seconds are oftentimes considered unacceptable. Ourirmgres demonstrate the benefits
of the proposed database-based framework, and the féigsdfiintegrating large gesture
databases into online interacting systems.

Keywords gesture recognition hand pose estimationembeddings American Sign
Language indexing methodsimage and video databases

1 Introduction

Gestures are an important modality for human-machine camization, and robust gesture
recognition can be an important component of intelligennés, assistive environments,
and human-computer interfaces in general. A key problenedaognizing gestures is that
the appearance of a gesture can vary widely depending oablesi such as the person
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performing the gesture, or the position and orientatiornefdcamera. For example, the same
handshape can look very different in different images, ddjpey on the 3D orientation of the
hand and the viewpoint of the camera. Similarly, in the donadisign language recognition,
the appearance of a sign can vary depending on the persoormparf the sign and the
distance from the camera. This paper presents a databaed-tjpproach for addressing this
problem of large intraclass variability. In the proposegmach, large gesture databases are
used, and for each gesture class a large number of exenpkséd in order to capture the
variability among samples of that gesture class.

This database-based framework is applied to two differestige recognition domains.
The first domain is handshape categorization. Handshapelatd important information
about the meaning of the gesture, for example in sign laregjag about the intent of an
action, for example in manipulative gestures or in virtielity interfaces. In our database-
based approach, a large database of tens of thousands adsnsagsed to represent the
wide variability of handshape appearance. A key advantageealatabase approach is that
it provides a very natural way to capture the nonparametsiidution that characterizes the
appearance of each handshape class. Furthermore, databasgning tens or hundreds of
thousands of images can be easily generated overnight oféitige-shelf computer graphics
software.

The second gesture recognition domain where we apply tipopeal approach is recog-
nition of signs in American Sign Language (ASL). In parteulwe consider the problem
of searching an ASL dictionary for the meaning of a particgign. In an automated sign
lookup system, when a user wants to look up a specific signyske can submit a video
example of that sign, and ask the system to identify datalidses that are the best matches
for that sign. Each database video can be annotated withmafion about the sign shown
in that video, such as meaning, usage, or related signs. Akaljenge in such a system
is designing the database search module, so that the restuitsed to the user include the
correct sign as often as possible.

Designing an accurate search module is a challenging tagkhas to address the fact
that the appearance of a sign depends on the person perfpthearsign, as well as the posi-
tion and distance of the signer with respect to the cameradtivess this issue, we convert
the original database of 933 sign exemplars to an extendedbase of about 270,000 ex-
emplars, by creating multiple copies of each exemplar irotiginal database, correspond-
ing to different scaling parameters. Our experiments destiate that using the extended
database improves retrieval accuracy, while still saitigfyhe time constraints of an online,
interactive system.

Efficient and accurate indexing methods are important irptioposed database—based
framework. In both the handshape recognition domain anditrerecognition domain, the
system must identify, given a query image or video, the minstar entries in the database.
The best database matches need to be identified fast enoaibvidhe system to be used
in an interactive environment. At the same time, this dateb=trieval task can be very
challenging, for the following reasons:

— The similarity measures that are most meaningful for imagkvadeo matching are of-
ten non-Euclidean, nonmetric, and computationally exiwen&xamples of such non-
metric distance measures are the chamfer distance [7]est@gext matching [9,51],
and dynamic time warping (DTW) [31, 33].

— The majority of database indexing methods are designed dolidean distance mea-
sures or metric distance measures (i.e., distance meabatesbey the reflexivity, sym-
metry, and triangle inequality properties). Thus a rekdfivsmall number of indexing



methods are available for the nonmetric distance measypasatly used for comparing
hand images.

With respect to database indexing, the focus of this papeotin proposing new in-
dexing methods, but rather on determining the feasibilityging existing off-the-shelf in-
dexing methods in our gesture recognition tasks. For thgiqae, we consider the recently
proposed BoostMap embedding method [3], and integratenttedhod into the retrieval
modules for both our handshape recognition system and thesf® lookup system. A key
result of our experiments is that BoostMap indeed works webur domains and offers
significant speedups compared to the naive brute-force adethcomparing the query to
every single database entry.

Overall, the experiments demonstrate the advantages girtdposed database-based
framework for gesture recognition. In both our experimédi@mains, a large database is
used to capture naturally the large variability in appeeeabetween examples of the same
gesture. While brute-force search in such large databasegmhibitively slow for many
applications, existing indexing methods can be used taidedly improve efficiency, and
thus make the proposed approach suitable for interactipkcagions.

2 Related Work

Gesture recognition has been an active area of researchvierad years. Progress in auto-
matic recognition of gestures is useful for a diverse arrbgpplications in areas includ-
ing human computer interfaces, surveillance systems, laigguage recognition, assistive
environments, and healthcare. For example, some receikt proposes gesture recogni-
tion interfaces that facilitate human computer interacfiar blind persons [50], or disabled
persons who have difficulty performing standard motionsdeeeto use a traditional key-
board/mouse interface [30]. As another example, the sydsaribed in [32] uses gesture
recognition to facilitate the communication of hospitatipats who have difficulty speak-
ing.

A large number of methods have been proposed in the literatwering various aspects
of gesture recognition. In the remainder of this section wefly review existing methods
for handshape recognition and sign recognition, and weligigththe contrasts between
those methods and the solutions we propose in this paper.

Computer vision systems that estimate handshape undéraayl8D orientations typ-
ically do it in the context of tracking [24,36,42,49,64]. that context, the pose can be
estimated at the current frame as long as the system knowso#eeat the previous frame.
Since such trackers rely on knowledge about the previousdrahey need to be manually
initialized, and cannot recover when they lose the traclke Atindshape recognition method
described in this paper can be used (among other things)}temate the initialization and
error recovery of a hand tracker.

A regression system that estimates hand pose from a singlgeiis described in [43].
However, that method assumes that the hand silhouette risctigridentified in the input
image, whereas such precise hand detection is often ustiedth assume in a real-world
application. Another regression method is presented gt L& that method requires that
the hand be simultaneously visible from multiple camerdee @atabase-based handshape
recognition approach described here has the advantagi oh&t requires a single camera,
and it can tolerate a certain amount of imprecision in harted®n; we still require the
location of the hand to be given as an input to our system, leutl@vnot require precise
separation of the hand silhouette from the background.



Another family of methods for hand shape classification ppearance-based methods,
like [19,63]. Such methods are typically limited to estimgt2D hand pose from a limited
number of viewpoints. In contrast, our handshape recagnapproach can handle arbitrary
viewpoints.

With respect to recognition of signs and sign languages,naben of approaches have
been proposed in the literature (see [39] for a recent revidhany approaches are not
vision-based, but instead use input from magnetic trackedssensor gloves, e.g., [21, 37,
45,57,58,66]. Such methods achieve good recognitionteesul continuous Chinese Sign
Language with vocabularies of about 5,000 signs [21,58,68] the other hand, vision-
based methods, e.g., [8,13,17,20,29,48,65] use smaltabutaries (20-300 signs) and
often rely on color markers, e.g., [8,17]. The approach dieed in this paper is a step to-
wards developing vision-based methods that can handle @ coonprehensive vocabulary.

A key focus of this paper is on identifying efficient indeximgethods for speeding up the
task of finding, given a query image or video, the most sindlatabase matches. Various
methods have been employed for speeding up nearest neigthierval. Comprehensive
reviews on the subject include [10,26,25]. A large amountvofk focuses on efficient
nearest neighbor retrieval in multidimensional vectorcgsausing ar., metric, e.g., [22,
34,52,61]. However, that family of approaches is not aplie in our setting, since the
chamfer distance (i.e., the distance measure that we usergparing hand images) is not
anLp measure.

A number of nearest neighbor methods can be applied for indearbitrary metric
spaces; the reader is referred to [25] for surveys of suchhoast As an example, VP-
trees [67] and metric trees [53] hierarchically partitibre tdatabase into a tree structure by
splitting, at each node, the set of objects based on theardiss to pivot objects. However,
while such methods can offer theoretical guarantees obpegnce in metric spaces, the
chamfer distance and dynamic time warping distance usedriex@eriments are nonmetric,
and so are other measures typically used for comparing isnaige video to each other, such
as shape context matching [9, 51], and distance measured bashe Viterbi algorithm [51].

In domains with a computationally expensive distance measignificant speed-ups
can be obtained by embedding objects into another spaceaitiore efficient distance
measure. Several methods have been proposed for embedditrgrg spaces into a Eu-
clidean or pseudo-Euclidean space [3,4,11,18,27,60]sd heethods are indeed applica-
ble to our setting. In this paper we focus on the BoostMap eluiibg method [3] and we
show that this method can be successfully employed in batexperimental domains, i.e.,
handshape recognition and sign recognition. The succetbe @doostMap method in both
domains illustrates the feasibility and benefits of usinfgtioé-shelf, domain-independent
indexing methods for gesture recognition tasks.

The parts of this paper discussing our database-basedaabpfor handshape catego-
rization are based on work that we published in three conter@apers [2,6,40]. The parts
of the paper describing our database-based approach famated sign lookup are novel,
and have not been published before.

3 Database-based Handshape Recognition

In handshape recognition, the goal is to recognize a setffareint handshapes, such as
the 20 handshapes shown on Fig. 1. In this section, we desarilystem that operates on
single images, as opposed to entire video sequences, oesm@yained simultaneously
for multiple cameras. We need to specify up front that, in @-world system, reliable



Fig. 2 Examples of different appearance of a fixed 3D hand shapeinatg by altering camera viewpoint
and image plane rotation. Top: the ASL “F” handshape rerttién@m seven different camera viewpoints.
Bottom: the ASL “F" handshape rendered from a specific camverapoint, using seven different image
plane rotations.

recognition of handshapes of arbitrary 3D orientation frarsingle image is beyond the
current state of the art. At the same time, a system that tggem a single image, even
if it has a relatively low classification accuracy, can be iemsely useful in identifying
a relatively small set of likely hypotheses. Such a set ofolypses can subsequently be
refined:

— using a hand tracker [42,24,36,47,49,64],

— using domain-specific knowledge, such as ASL linguisticstaints, or

— using knowledge of a specific protocol for human-computenmuinication, that can
place constraints on the current handshape based on tletoommunication context.

— using simultaneous views from multiple cameras.

3.1 A Database of Hand Images

A key challenge in reliable handshape recognition in anliggnt home setting, or an as-
sistive environment setting, is that the same handshapé&obrvery different in different
images, depending on the 3D orientation of the hand withe&sio the camera (Fig. 2).
Using a large database of hand images is a natural way tosdithis wide variability of the
appearance of a single handshape. Since handshape apgpgedeaends on 3D orientation,
we can densely sample the space of all possible 3D oriengtend include a database
image for every handshape in every one of the sampled 3Dtatiens.



In our system, we include 20 different handshapes (Fig. 19s& 20 handshapes are all
commonly used in American Sign Language (ASL). For each $lamge, we synthetically
generate a total of 4,032 database images that correspdiftetent 3D orientations of the
hand. In particular, the 3D orientation depends on the v@@mtpi.e., the camera position
on the surface of a viewing sphere centered on the hand, atitedmage plane rotation.
We sample 84 different viewpoints from the viewing sphecgthat viewpoints are approxi-
mately spaced 23 degrees apart. We also sample 48 image plane rotatiorsgtsotations
are spaced.B degrees apart. Therefore, the total number of images@l8@mnages, i.e., 20
handshapes 84 viewpointsx 48 image plane rotations. Figure 2 displays example images
of a handshape in different viewpoints and different imalgme rotations. Each image is
normalized to be of size 256256 pixels, and the hand region in the image is normalized so
that the minimum enclosing circle of the hand region is certtat pixel(128 128), and has
radius 120. All database images are generated using comgmatghics, and in particular
using the Poser 5 software [14]. It takes less than 24 hougenerate these thousands of
images. Image generation is a script-based automatedgsroce

3.2 The Chamfer Distance

Given an input image, the system has to identify the dataipaages that are the closest to
the input. In our system we measure distance between edgeénbecause edge images
tend to be more stable than intensity images with respeciffiereht lighting conditions.
Examples of hand images and corresponding edge imagesave s Fig. 3.

The chamfer distance [7] is a well-known method to measwralistance between two
edge images. Edge images are represented as sets of poimesponding to edge pixel
locations. Given two edge imagesandY, the chamfer distandg(X,Y) is:

1 , 1 .
D(X,Y) = — — — — 1
(X,Y) ‘X|X§€ min x| +\Y|y§e minly—x] . €Y

wherel||ja— b|| denotes the Euclidean distance between two pixel locati@mlb. D(X,Y)
penalizes for points in either edge image that are far froynpmint in the other edge image.
Fig. 4 shows an illustration of the chamfer distance.

The chamfer distance operates on edge images. The syrithaties generated by Poser
can be rendered directly as edge images by the softwaren&test images we simply apply
the Canny edge detector [12].

On an AMD Athlon processor running at 2.0GHz, we can computeagerage 715
chamfer distances per second. Consequently, finding threstazighbors of each test im-
age using brute force search, which requires computing lieenéer distances between the
test image and each database image, takes about 112 sefakidg.112 seconds to match
the input image with the database is clearly too long for aaractive application. The
need for efficiency motivates our exploration of databadexing methods. In Section 5 we
describe how to use an indexing method to speed up the @tpevcess.

4 Database-based Sign Recognition

The long-term goal of our work on sign recognition is to desigsystem that makes it easy
for users and learners of American Sign Language (ASL) td lop the meaning of an
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. 3 Examples of real and synthetic hand images and their canelpg edge images.
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Fig. 4 An example of the chamfer distance. The left image shows w®ts ef points: points in the first
set are shown as circles, and points in the second set aremsheguares. The middle image shows a link
between each circle and its closest square. The circledars directed chamfer distance is the average
length of those links. The right image shows a link betwearheauare and its closest circle. The square-to-
circle chamfer distance is the average length of those liike chamfer distance (also knownwaslirected
chamfer distangebetween squares and circles is the sum of the two directtdrdies.

unknown sign. In such a sign lookup system, when the userueexs an unknown sign,
the user submits to the system a video of that sign. The usesudanit a pre-existing video,
if such a video is available. Alternatively, the user carf@an the sign in front of a camera,
and generate a query video that way.

A key component of the sign lookup project is data collectias described in [5], we
are in the process of collecting a large video dataset auintaexamples of almost all of the
3,000 signs contained in the Gallaudet dictionary [54].tEsign is performed by a native
signer.

Due to the large number of signs, we can only collect a smatiber of exemplars
for each sign. The lack of a large number of training examptessign renders several
model-based recognition methods inapplicable, e.g., étiddlarkov Models [41,56]. At
the same time, exemplar-based methods are readily aplgicabases with a small number
of examples per class. In an exemplar-based method, pingesguery involves identifying
the most similar matches of the query in a database of trgiekamples.

In our experiments, the database contains 933 examplegref, siorresponding to 921
unique sign classes. Experiments are performed in a udependent manner, where the
people performing signs in the query videos do not appedrdrdatabase videos. Figure 5
shows sample frames from four videos from this dataset.



Fig. 5 Examples of sign videos from the ASL lexicon video datasgtHb6r each sign, we show, from left to

right, the first frame, a middle frame, and the last framestHiow: an example of the sign DIRTY. Second
row: an example of the sign EMBARRASED. Third row: an examgfliéhe sign COME-ON. Fourth row: an

example of the sign DISAPPEAR.

4.1 Features for Sign Recognition

The meaning of a sign is determined by handshape, hand meatimhhand position with
respect to the body. A key challenge in computer vision apghes for sign recognition is
the current lack of reliable general-purpose modules ftnaeting handshape, hand motion,
and articulated body pose, that can work in unconstraineal;world scenes. In order to
simplify the task and produce a functioning end-to-endeystin this paper we only use
hand motion to discriminate between signs, leaving inc@tion of hand appearance and
body pose information as future work.

Furthermore, in the system described here we make the $jimgliassumption that the
system knows the location of the dominant hand in every frahevery database sequence
and every query sequence. The location of hands in all ds¢edquences is manually an-
notated. While this manual annotation is a labor-intenpieeess, this process is a one-time
pre-processing cost that is transparent to the end used Hetection in the query sequence



can be performed in a semi-automatic way, where the systentifits hand locations us-

ing skin and motion information [38], and the user reviewd aorrects the results before

submitting a query. In the near future we hope to fully auttenthe query process using

methods that can tolerate errors and ambiguities in harettieh, such as dynamic space-
time warping (DSTW) [1].

4.2 The Dynamic Time Warping Distance Measure

In order for the system to identify the most similar databemsgches to a query video, we
need to define a distance measure between sign videos. Gigeposition of the dom-
inant hand in each frame, each sign video is naturally reptesl as a 2D time series
((X1,¥1),---,(Xn,¥n)), wheren is the number of frames in the video, and edghy;) rep-
resents the pixel coordinates of the centroid of the handhéri-th frame. Consequently,
comparing sign videos to each other becomes a time seriehimgtproblem.

For the purpose of measuring distance between the timess@presentations of signs,
we use the dynamic time warping (DTW) distance measure [1,833. DTW is a popular
method for matching time series, and satisfies a key reqeinefior a time series distance
measure: the ability to tolerate temporal misalignmerisgssto allow for time warps, such
as stretching or shrinking a portion of a sequence alongithe axis, and differences in
length between time series. We now proceed to briefly desEibw.

Let Q be the time series representation of a query video y@hframes, and leX be
the time series representation of a database video [Xitirames. A warping pathV =
(W11, W12),- .., (Ww1,Ww|2)) defines an alignment between two time se@and X,
and|W| denotes the length aW. The i-th element oV is a pair(w; 1,w; ») that specifies
a correspondence between elem@af, of Q and elemeni,, , of X. The costC(W) of
warping pathW that we use is the sum of the Euclidean distances betweeaspomding
elementRy; , andXy ,:

W

C(W) = ;HQWu - xwi.z” (2)

As a reminder, in our settin@y, , andX,, , denote respectively the center of the domi-
nant hand in framey; 1 of the query video and frama; > of the database video.
ForW to be a legal warping pathly must satisfy the following constraints:

— Boundary conditions:wy 1 = w12 = 1, Wy 1 = |Q| andwy, > = [X|. This requires the
warping path to start by matching the first element of the gueth the first element of
X, and end by matching the last element of the query with theelasnent ofX.

— Monotonicity: Wit11—W; 1> 0,wit12—W;2 > 0. This forces the warping path indices
w; 1 andw; » to increase monotonically with

— Continuity: wi+11—W 1 <1,wiy12—Ww» < 1. This restricts the warping path indices
w; 1 andw; » to never increase by more than 1, so that the warping path mimteskip
any elements 0@, and also does not skip any elementsXobetween positionX, ,

andXw,, ,-

The optimal warping path betwe&pandX is the warping path with the smallest pos-
sible cost. The DTW distance betwe€hand X is the cost of the optimal warping path
betweerQ andX. GivenQ andX, the DTW distance betweepandX and the correspond-
ing optimal warping path can be easily computed using dyogmagramming [31].
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Computing the DTW distance takes tirdg|Q||X|), i.e., time proportional to the prod-
uct of the lengths of the two time seriesQfandX have comparable lengths, computing the
DTW distance takes time quadratic to the length of@hend thus DTW is a computation-
ally expensive distance measure. Furthermore, DTW is netricy as it does not obey the
triangle inequality. On an Intel Xeon quad-core E5405 pssog running at 2.0GHz, and
using only a single core, we can compute on average aboutDU@ddistances per second,
when measuring DTW distances between time series corrdsmpto query and database
videos.

4.3 Tolerating Differences in Translation and Scale

Since the only information we use in measuring sign sinmifas hand position, and hand
position isnot translation invariant or scale invariant, we need to takditamhal steps to
ensure that the matching algorithm tolerates differenoesanslation and scale between
two examples of the same sign.

We address differences in translation by normalizing atichposition coordinates based
on the location of the face in each frame. Face detectionésasively easy task in our set-
ting, since we can assume that the signer’s face is oriemieght and towards the camera.
Mature, publicly-available real-time face detection sys$ have been available for several
years [44,55], that work well in detecting upright, frontéws of faces. In our experiments,
the face location in database sequences is manually aadptetereas for query sequences
we use the publicly available face detector developed byl&gwt al. at CMU [44].

Differences in scale can also cause problems, as a sma&lfdtiffe in scale can lead to
large differences in hand positions, and consequentlyrge B TW distances. Our approach
for tolerating differences in scale is to artificially erderthe database, by creating for each
database sign multiple copies, each copy correspondinifféoesht scaling parameters. We
should note that each of these multiple copies is not a nenwsitgo, but simply a new time
series, and thus the storage space required for these hawtipies is not significant.

In particular, for each time series corresponding to a degalsign video, we generate
289 scaled copies. Each scaled copy is produced by choasingciling parameters, and
S, that determine respectively how to scale alongxlais and they axis. Eacls, andS,
can take 17 different values, spaced uniformly betwe8@ @nd 108, thus leading to a total
of 172 = 289 possible value for ead,, S,) pair.

While, as mentioned earlier, the space required for statiege multiple copies is not
significant, the time required to exhaustively compare theryg to the entire database is
severely affected. Since in our current system we can caenglobut 1000 DTW distances
per second, exhaustively matching the query with the 93Besnin the original database
(i.e., without including the scaled copies) takes on aweragit less than a second. On
the other hand, exhaustively matching the query with the@5B entries in the extended
database (i.e., including the scaled copies) takes on gweayeer four minutes, which is
too long for an interactive application. Fortunately, we egse existing database indexing
methods, as described in the next section, to significaatlyce the search time and allow
interactive use.
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5 Embedding-based Retrieval

In our example applications, calculating the chamfer disteor the DTW distance between
the query and all database examples takes too long (almostninutes in the handshape
recognition system, over four minutes in the sign lookuptesyg to be used in interactive
applications. However, we can obtain an efficient approfioneof these expensive distance
measures by embedding query and database objects intocs spate. Using such an em-
bedding we can drastically speed up retrieval time, withtiegly small losses in accuracy.
In this section we discuss how such embeddings can be cotedru

5.1 Lipschitz Embeddings

Embeddings of arbitrary spaces into a vector space are aaepmproach for speeding up
nearest neighbor retrieval. L&t be a set of objects, arid(X1, X2) be a distance measure
between objectX;, X, € X. For example, in the handshape recognition setfihg, the set
of edge images of hands, abdis the chamfer distance. In the sign lookup settiidgs the
set of time series corresponding to sign videos, Brid the DTW distance. An embedding
F : X — RY is a function that maps objects frakinto thed-dimensional real vector space
RY, where distances are typically measured usingmor weighted_, measure, denoted as
D’. Such embeddings are useful when it is computationally rsige to evaluate distances
in X, and it is more efficient to map points &f to vectors and compute sorhg distance
between those vectors.

Given an objecK € X, a simple 1D embeddingR : X — R can be defined as follows:

FR(X) =D(X,R) . ©)

The objecRthat is used to defingR is typically called aeference objeabr avantage object
[26]. A multidimensional embedding : X — RY can be constructed by concatenating such
1D embeddings: iy, ..., Fy are 1D embeddings, we can defing-dimensional embedding
F asF (X) = (Fi(X),...,F(X)).

The basic intuition behind such embeddings is that two dbjdtt are close to each
other typically have similar distances to all other objeéts everyday example that illus-
trates this property is looking at distances between cifiée distance from New York to
Boston is about 240 miles, and the distance from New York t® Angeles is about 2800
miles. Suppose that we did not know these two distanceshémunbre, suppose that some-
one gave us, for 100 towns spread across the United Staesdistances to New York,
Boston and Los Angeles. What would that information tell bsid the distances from New
York to Boston and from New York to Los Angeles?

First we would notice that the distance from each town to Nesk\Ys always within
240 miles or less of the distance between that town and BoStothe other hand, there are
some towns, like Lincoln, Nebraska, whose distances frosmAmgeles and New York are
very similar, and some towns, like Sacramento, whose disito Los Angeles and New
York are very different (Sacramento-Los Angeles is 400 milBacramento-New York is
2800 miles). Given these distances, we could deduce that likely, New York is a lot
closer to Boston than itis to Los Angeles.

Suppose that we have chosen a sed database objec?;, Ry, ..., Ry as reference ob-
jects. Then, we can define a functiBnmappingX to RY as follows:

F(X) = (D(X,Ry),D(X,Ry),....D(X,Ryq)) . (4)
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The functionF turns out to be a special case of Lipschitz embeddings []1li36ur hand-
shape recognition setting, maps edge images tbdimensional vectors. In our sign recog-
nition setting,F maps time-series representations of sign videakdanensional vectors.

We define theapproximate distance 'Dhetween two objectX; and X, to be thelL;
distance betweeh (X;1) andF(Xy):

d
D'(A.B) = 'ZI\D(XLR) —D(X2,R)I . ©)

The actual value dd’(A, B) is not necessarily similar in scale to the valigA, B). However,
D’(A,B) is an approximation dD(A, B) in the sense that, whém(A, B) is much smaller than
D(A,G), then we also exped®’ (A, B) to be smaller tha’(A, G). The intuition is, again,
that if A andB are close to each other, then they will also have relativietyiar distances to
each of theR/’s.

In the handshape recognition domain, the time complexitgashputing the approxi-
mate distanc®’ between an edge imadeandU database edge imagesi&dnlogn+Ud),
wheren is the max number of edge pixels in any edge imagedisdhe dimensionality of
the embedding. In particular, it tak€§dnlogn) time to computd-(X), i.e., to compute the
d chamfer distances between the edge image and eachaféfierence objects, and it takes
O(Ud) time to compute thé; distance betweeR (X) and the embeddings of all database
images (which just need to be precomputed once, off-lind,stared in memory). On the
other hand, computing the chamfer distaf@d®etweenX and all database images takes
O(Unlogn) time. The complexity savings are substantial wdésamuch smaller thabl . In
our system it takes on average 112 seconds to compute thderhdistances between the
input image and all database images (for test and databasgeiof size 256x256). In con-
trast, ford = 100, it takes 0.14 seconds to compute the correspondingdpmate distances
D/, which is close to three orders of magnitude faster. Sinsifrredups are obtained in our
sign recognition domain by replacing the DTW distance with¢orresponding embedding-
based approximate distance.

5.2 BoostMap Embeddings

A simple way to define embeddings for our purposes, i.e., fiicient matching of hand
images and time series representations of sign videosaigdly Eq. 4 for some reasonable
embedding dimensionalitgt (values between 20 and 100 typically work well in practice),
and usingd reference object® chosen randomly from the database. However, we can
significantly optimize embedding quality using tools aable from the machine learning
community. In particular, embedding optimization can bsted as the machine learning
problem of optimizing a binary classifier, and boosting noetth such as AdaBoost [46]
can be employed for embedding optimization. This is the @gqn taken in the BoostMap
method, which is described in [3]. In our experiments we destrate that the BoostMap
method works well for both our handshape recognition systathour sign lookup system.
In this section we briefly summarize the BoostMap methodipfahg the description in [3].
Suppose we have an embeddiRgwith the following property: for anyQ,A,B € X
(whereX in our applications is either the space of edge images of hasrdthe space of
time series representations of signs)Qifis closer (according to the chamfer distance or
DTW) to A than toB, thenF (Q) is closer toF (A) than toF (B). We can easily derive thét
would also have the following property: for every query atj®, if A is the nearest neighbor
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of Q in the database, thén(A) is the nearest neighbor &f(Q) among the embeddings of
all database objects. Such an embedding would lead to ggréecurate nearest neighbor
retrieval.

Finding such a perfect embedding is usually impossible. él@y we can try to con-
struct an embedding that, as much as possible, tries to dikava perfect embedding. In
other words, we want to construct an embedding in a way thaimizes the fraction of
triples (Q, A, B) such that, ifQ is closer toA than toB, thenF (Q) is closer toF (A) than to
F(B).

More formally, using an embeddirfgwe can define a classifiér, that estimates (some-
times wrongly) for any three objec@ A, Bif Qis closer toAor toB. F is defined as follows:

F(QAB)=|F(Q-F®B)|1—I(F(Q -F(A)1, (6)

where||X,Y||1 is theL; distance betweeX andY. A positive value ofF (Q,A, B) means
thatF mapsQ closer toA than toB, and can be interpreted as a “prediction” tigis closer
to A than toB in the original spac&. If this prediction is always correct, thén perfectly
preserves the similarity structure Xt

Simple 1D embeddings, like the one defined in Eq. 3, are egddctbehave aweak
classifiersi.e. classifiers that may have a high error rate, but at giestanswers that are not
as bad as random guesses (random guesses are wrong 50%iofethesiven many weak
classifiers, a well-studied problem in machine learningas o combine such classifiers
into a single, strong classifier, i.e., a classifier with a lewor rate. A popular choice is
AdaBoost [46], which has been successfully applied to sédkemains in recent years.

The BoostMap algorithm [3] uses AdaBoost to construct anezidimg. The input to
AdaBoost is a large set of randomly picked 1D embeddings, @émbeddings defined by
applying Eq. 3 using reference obje®gpicked randomly from our database), and a large
set of training tripleg Q, A, B) of objects, for which we know ifQ is closer toA or to B
(closer according to the chamfer distance, or to DTW, in @seg. The output of AdaBoost
is a classifieH = 3¢, ajFj, where eactF; is the weak classifier associated with a 1D
embedding=j, and each; is the weight (corresponding to importance) assigned toltha
embedding. If AdaBoost has been successful, thdras a low error rate.

UsingH, we can easily define a high-dimensional embeddiggand a distance mea-
sureD’ with the following property: for any tripl€éQ, A, B), if Q is closer toA than toB, H
misclassifies that triple if and only if, according to distarmeasur®’ (i.e., thelL; distance
measure in the embedding spaEg}(Q) is closer taui(B) than toFeui(A). We defineFoy
andD’ as follows:

Fout(X) = (FL(X), ..., Fa(X)) - @)
d

D' (Fout(X), Fout(y)) = Z(aj IFi() —Fi(y)]) - 8
]:
It is easy to prove that and Ry fail on the same triples [3]. Therefore, if AdaBoost
has successfully produced a classifiewith low error rate, ther; inherits the low error
rate ofH.

5.3 Filter-and-refine Retrieval

In order to implement an end-to-end retrieval system usingdBMap, we use the well-
known filter-and-refine retrieval framework [26], which viksras follows:
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Fig. 6 Classification accuracy vs. speedup attained using Bogsthfathe handshape dataset. For each
accuracy, the plot shows the corresponding speedup fabtained using BoostMap. Brute-force nearest
neighbor search yields a classification accuracy of 33.18aemaverage retrieval time of 112 seconds per
query, corresponding to a speedup factor of 1.

— Offline preprocessing stepRun the BoostMap algorithm to construct an embedding.
Then, compute and store the embeddings of all databasetsbjec

— Mapping step: given an input image€), compute the embedding Q.

— Filter step: identify a small set of candidate nearest neighbors, by esimgF (Q) with
the embeddings of all database objects and selecting aisumabier of database objects
whose embeddings are the closestt®).

— Refine step:Compute the exact distance betwe@mnd each of the database objects
selected during the filter step.

— Output: return the database object (among all objects considerbe irefine step) with
the smallest distance to the input image.

The filter step provides a preliminary set of candidate retameighbors in an efficient
manner, that avoids computing the exact distance betweequéry and the vast majority
of database objects. The refine step applies the exact cistary to those few candidates.
Assuming that the mapping step and the filter step take riblgligime (a property that
is demonstrated in the experiments), filter-and-refinéendt is much more efficient than
brute-force retrieval.

5.4 Retrieval Complexity

Given a query objec@, the retrieval time for that object is simply the sum of theds
that it takes respectively for the mapping step, the filtepseind the refine step. For the
mapping step, we need to compute thdimensional embedding @, which takesO(d)
time and requiresl distance measurements between the query and referenagsoltjer
the filter step, we need to compare the embedding of the qQety the embeddings of
n database objects, which takes tif@¢dn). For the refine step, we need to measpre
distances between the query and database objects seladteglttie filter step, which takes
O(p) time. Consequently, the retrieval time complexityd&dn+ p).

Measured solely in terms of the size of the database, ratriakes timeO(n), assuming
that at the filter step we compare the embedding of the quetty the embeddings of all
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database objects. It is worth noting that, in terms of bige@ation, the complexity of brute
force search using the original computationally expensiigance measure is al€a(n).
However, in terms of actual running time in our experimetits, filter step is at least three
orders of magnitude faster than brute-force search usimgtiginal distance measure. The
factor by which the filter step is faster than brute-forcersleaising the original distance
measure is a constant factor, computed as the ratio of theititakes to measure a single
distance under the original distance measure over the titages to measure the distance
between two vectors in the target space of the embedding.

We should also note that, a@sincreases, the filter step also becomes more expensive,
because we need to compare vectors of increasingly highndiimality. However, in our
experiments so far, with embeddings of up to 1,000 dimerssithe filter step always takes
negligible time; retrieval time is dominated by the few eb@istance computations we need
to perform at the embedding step and the refine step.

In cases (not encountered in our experiments) when the dikgrtakes up a significant
part of retrieval time, one can apply vector indexing tequeis [10,28,62] to speed up
filtering. We should keep in mind that in the filter step we anglifig nearest neighbors in
a real vector space, and many indexing methods are ap@igablich a setting. One of the
advantages of using embeddings is exactly the fact that wearigdtrary spaces to well-
understood real vector spaces, for which many tools ardadlai Using locality sensitive
hashing (LSH) [28], for example, the complexity of the filgep can drop fron©(n) to
O(logn).

6 Experiments

We evaluate the proposed database-based approach foregestagnition on two experi-
mental systems: a handshape recognition system, and anig$loskup system.

Performance is evaluated using three measures: retriewea| K-percentile accuracy,
and classification accuracy. These measures are defineliomssfo

— Retrieval time: average time it takes to process a single query.

— K-percentile accuracy: fraction of test queries for which the correct class is among
the topK-percentile of classes, as ranked by the retrieval systemerel can vary
depending on the experiment.

— Classification accuracyfraction of test queries for which the correct class is tlghbist-
ranked class.

In order to computeK-percentile accuracy, we look at the rankings produced By th
filter-and-refine algorithm of Section 5.3, and choose fatheglass its highest-ranking ex-
emplar. We then rank classes according to the rank of theebigtanking exemplar for each
class. For example, suppose that the top three databasbesateme from class A, the
fourth and fifth match come from class B, the sixth match cofr@s class C, and the sev-
enth match comes from class A again. Then, A is the highestg class, B is the second
highest-ranking class, and C is the third highest-ranklags

WhetherK-percentile accuracy or classification accuracy is a mopeaiate measure
depends on the application. For handshape recognitiore dre only 20 classes to be rec-
ognized, so classification accuracy is more appropriateh®other hand, in the sign search
systemK-percentile accuracy is a more meaningful measure. Our A@lLdataset contains
921 sign classes and, given a query, it is not strictly neogder the correct class to be the
highest-ranking class. Including the correct class in tpek% of classes, for reasonably
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small values oK (e.g.,K < 1%), would allow the user to identify the correct class aéter
quick visual inspection of the highest-ranking results.

6.1 Results on Handshape Recognition

The database of hand images used in the experiments hasdrestructed as described in
Section 3. The test set consists of 710 images. All test imagge obtained from video
sequences of a native ASL signer either performing indi@ichandshapes in isolation or
signing in ASL. The hand locations were extracted from treeguences using the method
described in [68]. The test images are obtained from thar@igrames by extracting the
subwindow corresponding to the hand region, and then paify the same normalization
that we perform for database images, so that the image si286is 256 pixels, and the
minimum enclosing circle of the hand region is centered &Ii128 128), and has radius
120. Examples of test images and their corresponding edggem(edge images are used
for the chamfer distance computation) are shown in Figure 3.

For each test image, filter-and-refine retrieval is perfatnmeidentify the nearest neigh-
bor of the test image. BoostMap is used for the filter step. fEseimage is considered to
have been classified correctly if the handshape of the neaegghbor is the same as the
handshape of the test image. The ground truth for the tesiem#& manually provided.
The total number of handshapes is 20, so our classificatgkndansists of recognizing 20
distinct classes.

Figure 6 illustrates the results obtained on this datasetinfportant thing to note here
is that the classification accuracy of brute force seareh, fbefore we introduce any errors
caused by our indexing scheme) is only 33.1%. This accuraeyreflects the upper limit
of how well we can do using our indexing schemes: even if weekavindexing scheme
that gives the same results as brute force and achieves ensispeedups, the classification
accuracy is still going to be the same as that of brute-foezgch. At the same time, it is
important to note that this accuracy rate is obtained withising any domain-specific con-
straints, and such constraints are oftentimes availablg highly informative, in concrete
real-world applications, as discussed in Section 3.

With respect to the classification performance obtainedguBioostMap, we notice that
the speedup that we obtain over brute-force search is ggitéfisant: we can get the exact
same accuracy rate (33.1%) as with brute-force search, dnute800 times faster. This
means that classification time is reduced from 112 seconds|yesy (using brute-force
search) to 0.14 seconds per query. In other words, integyain indexing scheme into the
system drastically improves efficiency, with no loss in aecy.

Besides embeddings, a simple alternative way to speed up-fuxce search is to di-
rectly reduce the size of the database, by discarding aicertacentage of database ob-
jects. For example, if we only use 10% of the original datebatsjects, brute force search
becomes 10 times faster. We have run an experiment evajutitéat approach, by using
smaller databases of different sizes, obtained by disegdifferent percentages of objects
from the original database. The results are shown on Tabl&d results show that, for the
hands dataset, the efficiency gained by reducing the sizeealdatabase comes at a signifi-
cant cost in classification accuracy. Overall, filter-aafine retrieval using BoostMap em-
beddings provides far better trade-offs between accurmadyefficiency compared to simply
using brute force and reducing the size of the database xaan@e, with BoostMap we can
obtain an accuracy rate of 33.1% with a speedup factor of 880krute-force search. If we
reduce the database size by a factor of 800, we obtain the sp@eelup factor of 800, but
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Reduction factor | Accuracy rate
1 33.1
2 317
3 325
4 30.0
6 27.2
8 21.1
10 225
16 22.4
32 19.1
64 16.8
100 14.7
128 15.4
256 145
512 12.1
800 9.4

Table 1 Classification error rates obtained by using smaller dadaThe left column shows the factor by
which database size is reduced compared to the originabas¢aof 80,640 hand images. The right column
shows the obtained classification accuracy rates for thtabdae size. For comparison, using BoostMap we
attain an accuracy rate of 33.1% for a speedup factor of 800.

the accuracy drops drastically to 9.4%. Even if we only redile size of the database by a
factor of 8, the accuracy drops from 33.1% to 21.1%.

The experiments with reduced database sizes also showirtltattain cases, a smaller
database size leads to slightly better results than a laegabase size. For example, using
one eighth of the original database objects the accurady.i9®, and using one sixteenth of
the original database objects the accuracy is 22.4%. Ghegrthe test size is 710 images, it
is not clear whether such small increases in accuracy aigeatal artifacts or whether some
database objects actually act as distractors and hurifetasion accuracy. The condensing
method [23] could be used, in theory, to identify such distres.

Overall, the experiments show the need for more researctiesmn image matching
methods that are more accurate that the chamfer distanoge (secent progress on that
topic is reported in [59]). At the same time, the experimexi® illustrate the effectiveness
of BoostMap as an indexing method. BoostMap yields a classifin time that is almost
three orders of magnitude faster than that of brute-foreecte thus making it feasible to
search a large database of hand images in real time.

6.1.1 Discussion of Handshape Recognition Results

The handshape recognition accuracy that we report in thersyis clearly not sufficiently
high for deployment as a standalone module in unconstraiaeworld environments. At
the same time, it is important to note that handshape retiogrin cluttered images under
arbitrary 3D orientation is still a largely unsolved profleTo the best of our knowledge,
so far no competing methods have been quantitatively eteaduan real hand images for the
task of handshape recognition under arbitrary 3D orieotati

Furthermore, we believe that the handshape recogniti@s rae report correspond, in
some sense, to a worst-case scenario, where no prior infiomria available as to what 3D
orientations and handshapes are most likely to be obseAsdiscussed in Section 3, our
system can be a useful module in a larger hand tracking ougestcognition system, by
identifying a relatively small number of initial hypothessehat can further be refined using
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Fig. 7 K-percentile accuracy plot for the ASL sign dataset, for éarce search in the original database
of 933 time series, brute-force search in the extended dagabf 269,637 time series, and embedding-based
retrieval in the extended database. The x-axis correspmndsiues ofK, between 0 and 3%. For each such
value ofK, we show the percentage of test signs for which the corrgct diass was ranked in the highest
K-percentile among all 921 classes. For example, using editigzdbased retrieval in the extended database,
for 32.6% of the queries the correct class was ranked in the t6% of all classes, i.e., in the top 10 out of
all 921 classes.

domain-specific knowledge, information from multiple ceastive frames, or information
from multiple cameras.

6.2 Results on ASL Sign Retrieval

The query and database videos for these experiments haweobégined from the ASL
Lexicon Video Dataset [5]. Our test set consists of 193 sigaas, with all signs performed
by two native ASL signers. The video database contains 988\sdeos, corresponding to
921 unique sign classes (we had two videos for a few of thed#agses). The database signs
were performed also by a native ASL signer, who was diffefearh the signers performing
in the test videos.

Each query and database video was converted to a time sasiefescribed in Sec-
tion 4.1. From the original database of 933 time series watetkan extended database
of 269,637 time series, by creating multiple scaled copfesagh original time series, as
described in Section 4.3.

Figure 7 illustrates the retrieval accuracy obtained oms thataset using brute-force
search on the original database of 933 time series, using-fowce search on the extended
database of 269,637 time series, and using filter-and-redineval (with BoostMap used
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Fig. 8 K-percentile accuracy plot for the ASL sign dataset, for &éfiarce search in the original database
of 933 time series, brute-force search in the extended dagabf 269,637 time series, and embedding-based
retrieval in the extended database with two 10-dimensienabeddings, with filter-and-refine parameger
set to 10,000. The first of the two 10-dimensional embeddwas trained using BoostMap, and the second
one was defined using as reference objects 10 medoids fiddntsing an iterativé&-medoid algorithm. The
x-axis corresponds to values kf between 0 and 3%. For each such valu&pfve show the percentage of
test signs for which the correct sign class was ranked in igfeelstK-percentile among all 921 classes.

in the filter step), with a 100-dimensional embedding, andfme step that compares the
query to the top 10,000 matches obtained from the filter step.

In Figure 7 we focus oiK-percentile accuracy witK up to 3%. Our rationale is that if,
for a query, the correct class is not ranked in the top 3% oflalises, the retrieval result
is unlikely to be useful to the user, because it is unlikelgttthe user will be willing to
visually inspect that many retrieval results in order toniily the correct match. In our
current database of 921 sign classes, the top 3% correspo@8sclasses. When, as is our
goal [5], the database is extended to include almost all ®f34000 signs included in the
Gallaudet dictionary [54], the top 3% of all classes willrapond to 90 classes, which will
be rather cumbersome for a user to visually inspect.

As Figure 7 shows, extending the database with multipleescabpies of each time
series improves accuracy significantly. For example, asvshia the figure, using brute
force search in both the original and the extended databeasebtain the following results:
the fraction of test signs for which the correct class is eghl the top 1.1% of all classes
(i.e., in the top 10 out of 921 classes) is 24.4% using thdralglatabase and 32.1% using
the extended database. Similarly, the fraction of testssfgn which the correct class is
ranked in the top 2.2% of all classes (i.e., in the top 20 o@aif classes) is 36.3% using
the original database and 43.8% using the extended database

At the same time, as mentioned in Section 4.2, our curreiesysan compute about
1000 DTW distances per second. Therefore, brute-forceceam the original database
takes on average a bit less than a second per query, wherghae emrtended database it
takes on average more than four minutes per query. Here isvith@orporating an indexing
method can make a big difference. In Figure 7 we include tesltained using embedding-
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Fig. 9 K-percentile accuracy plot for the ASL sign dataset, for &iatrce search in the original database of
933 time series, brute-force search in the extended dataif@69,637 time series, and embedding-based re-
trieval in the extended database with embeddings of difteslenensionality, with filter-and-refine parameter
p setto 10,000. The x-axis corresponds to valuds,dfetween 0 and 3%. For each such valu& pfve show

the percentage of test signs for which the correct sign elassranked in the highegt-percentile among all
921 classes.

based indexing on the extended database. In particularse@ 100-dimensional embed-
ding, and the refine step evaluates DTW distances betweequtry and the top 10,000
matches identified using the embedding. In total, embedoéasgd retrieval evaluates 100
DTW distances to compute the embedding of the query, andQ@TIW distances during

the refine step, thus reducing retrieval runtime per quesynfover 4 minutes to about 10
seconds. We believe that a retrieval time of 10 secondsewdalving room for improvement,

is still within acceptable limits for an online interactiggstem.

In evaluating a similarity indexing method, a key questierhow much accuracy is
lost by using indexing instead of brute-force search. Fgtrshows that, with respect to
K-percentile accuracy, fdf values ranging between 0.4% and 1.3%, embedding-based re-
trieval is not only faster but also more accurate than bfatee search. Given that our test
set size is only 193 sign videos, the slightly improved aacymay well be accidental, as
our method only aims to get close to the accuracy of bruteef@earch, and not to sur-
pass that accuracy. F&r ranging between 0 and 2.5%, the difference in accuracy tegtwe
embedding-based retrieval and brute force is rather srh#g. difference becomes more
pronounced foK ranging between 2.5% and 3%, but those are ranges in whicty#tem
becomes increasingly less useful to the user; arguably) extended search lookup system
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Fig. 10 K-percentile accuracy plot for the ASL sign dataset, for &iatrce search in the original database
of 933 time series, brute-force search in the extended dagabf 269,637 time series, and embedding-based
retrieval in the extended database with 10-dimensionalegitiings, for different values of the filter-and-refine
parameterp. The x-axis corresponds to valueskofbetween 0 and 3%. For each such valu&pfve show

the percentage of test signs for which the correct sign elassranked in the highegt-percentile among all
921 classes.

covering the 3000 sign classes of the the Gallaudet diatydadd], the most important val-
ues ofK for measuringK-percentile accuracy are in the range between 0 and 1%. tn tha
range, embedding-based retrieval works quite well in opeexnents.

In Figure 8 we compare performance obtained using a 10-ditoeal BoostMap em-
bedding versus performance obtained using a 10-dimerséonbedding where the refer-
ence objects were selected to be the 10 medoids (amongathadat objects) identified using
a standard iterativi-medoid algorithm. We see that the BoostMap embedding, evtier
reference objects were selected using AdaBoost, significantperforms the embedding
that uses medoids.

It is also interesting to see how performance depends orrmsyparameters, hamely
the dimensionalityd of the embedding, and the numbprof distance evaluations at the
refine step of the retrieval process. Figures 9 and 10 showhgercentile accuracy varies
vs.d and vs.p respectively. It is interesting to note that there are noomdijfferences in
performance between embeddings of dimensions 10, 30, @01@0. This indicates that
increasing the dimensionality above 100 is not likely to ioye performance. At the same
time, as expected, we see that varyipdpetween 1000 and 10000 drastically affects the
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obtainedK-percentile accuracy, with higher values pieading to better accuracy, which
naturally comes at the cost of slower retrieval time.

6.2.1 Discussion of Sign Retrieval Results

As in the handshape recognition results, we note that thdtsewe have obtained on the
sign retrieval system are not at a level that would make tis¢esy ready for deployment
as a standalone module. At the same time, we believe thaésiudts we have obtained are
quite promising, especially given that we only use hand emoitnformation, ignoring hand
appearance and position with respect to other parts of e dad torso. Also, we have
obtained the results using dynamic time warping, a relbtiggmple similarity measure,
that considers only correspondences between frames, aschdbtake into account higher-
level information like motion pattern over multiple frames repeated patterns of motion.
We believe that extracting and using additional informafi@m the videos, as well as using
more sophisticated similarity measures, can significantlyrove accuracy.

It is worth noting that, even with this relatively simple s, for about 32% of the
queries, the system ranks the correct result within the fépolall classes. While visually
inspecting 1% of all signs can be somewhat cumbersome (1%gwotrespond to 30 out of
the 3000 signs in the Gallaudet dictionary [54]), it woulidl b an acceptable cost for many
users, given the current lack of straightforward methodsoioking up the meaning of a sign.
In that sense, we believe that our current, relatively sargyistem, still works reasonably
well for about one third of the queries, and we hope to makeftaetion significantly higher
as we continue working towards improving the system.

7 Discussion and Conclusions

This paper has presented a database-based framework forggescognition in the context
of human computer interaction in real-world applicatiode have shown that using large
databases of exemplars is a feasible and promising methochfituring the wide range
of variability in the appearance of each individual gestriess. We have described in de-
tail how to apply the proposed framework on two specific gestecognition domains: a
handshape recognition system and an ASL sign retrievagésyst

A key issue that this paper has addressed is the ability tolséarge gesture databases
fast enough for interactive applications, given the langeber of database objects that need
to be matched with each query. We have described how to appigtBlap, an embedding-
based indexing method, in order to achieve efficient reatigv both our applications. Our
experiments demonstrate that BoostMap is an effectivexindemethod, that reduces re-
trieval time by more than an order of magnitude in both regilans, thus allowing retrieval
to be performed at interactive speeds. Furthermore, we $tamen that the drastic improve-
ments in running time obtained using BoostMap incur only Idecreases in recognition
accuracy.

While the accuracy rates we have attained in our experimemetstill not quite satis-
factory, it is important to note that our database-basedoggh has produced quantitative
results based on real datasets, both for handshape rdoogmiter arbitrary 3D orientation,
and for large vocabulary sign retrieval. The ability to tlecthese hard gesture recognition
problems and to produce quantitative results is a key adganof the proposed database-
based framework, where a large database can naturallyreahi® wide variations of the
gestures we want to recognize. The challenge remains td builtop of our results, so as
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to create gesture recognition systems that are ready fbwvadd deployment, and that ad-
dress real user needs, such as the ability to look up the mgafian unknown ASL sign,
or the ability to help disabled persons interact with a corapor communicate with other
people. We hope to address that challenge in our ongoinguaarcefwork.
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