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ABSTRACT
This paper describes work towards designing a computer vision
system for helping users look up the meaning of a sign. Sign
lookup is treated as a video database retrieval problem. A video
database is utilized that contains one or more video examples for
each sign, for a large number of signs (close to 1000 in our current
experiments). The emphasis of this paper is on evaluating the trade-
offs between a non-automated approach, where the user manually
specifies hand locations in the input video, and a fully automated
approach, where hand locations are determined using a computer
vision module, thus introducing inaccuracies into the signretrieval
process. We experimentally evaluate both approaches and present
their respective advantages and disadvantages.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing methods; H.2.8
[Database Applications]: Data Mining; H.2.4 [Systems]: Multi-
media Databases

Keywords
American Sign Language recognition, ASL recognition, gesture
recognition, video indexing

1. INTRODUCTION
When we encounter an English word that we do not understand,

we can look it up in a dictionary. However, when an American Sign
Language (ASL) user encounters an unknown sign, looking up the
meaning of that sign is not a straightforward process. In this paper
we describe work towards designing a computer vision systemfor
helping users look up the meaning of a sign.

Sign lookup is treated as a video database retrieval problem. A
video database is utilized that contains one or more video examples
for each sign, for a large number of signs (close to 1000 in our
current experiments). When the user encounters an unknown sign,
the user provides a video example of that sign as a query, so asto
retrieve the most similar signs in the database. The query video can
be either extracted from a pre-existing video sequence, or it can be
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recorded directly by the user, who can perform the sign of interest
in front of a camera.

A crucial component of any similarity-based retrieval system
is the choice of similarity measure for comparing the query with
database objects. In this paper we evaluate two rather different ap-
proaches for similarity-based search in a database of signs. The
first approach is not fully automatic: in that approach, it isassumed
that the hand location for every frame of the query video is pro-
vided manually. In practice, this assumption can be enforced by
requiring the user to review and correct, as needed, the results of
an automatic hand detection module. This approach, while plac-
ing some burden on the user, allows us to use the popular Dynamic
Time Warping (DTW) distance measure [9, 14, 15] for measuring
similarity between signs.

The second approach we evaluate in this paper is a fully auto-
mated approach where the system simply uses the results of the
hand detection module, without asking the user to correct those re-
sults. While this approach is less cumbersome for the user, it works
rather poorly with DTW, because the correct hand location isnot
always identified unambiguously by the system. To handle ambi-
guities in hand detection we employ an extension of DTW called
Dynamic Space-Time Warping (DSTW) [1]. The key difference
between DSTW and DTW is that DTW takes as input a single (pre-
sumably correct) hand location per video frame, whereas DSTW
takes as input a set ofK candidate hand locations per frame, where
K can range, for example, between 5 and 20.

In our experiments we have found that, while it is really hard
to design a hand detection module that unambiguously identifies
the hand location with high accuracy, it is rather easy, on the other
hand, to design a hand detector that regularly includes the correct
hand location in the top 10 candidates. In that sense, DSTW is
a much more realistic choice for a fully automated system. At
the same time, allowing multiple candidate hand locations makes
it easier to obtain false matches for the query video, as the erro-
neous hand locations can match true hand locations in the database
videos.

For both approaches we evaluate in this paper, we require that
the hand locations for every frame of every database sign be known
to the system. In our dataset, the hand locations in all database
sequences are annotated manually. In our view, this requirement
does not affect the user-friendliness of the system. Annotating the
database is a task that is carried out by the designers of the system,
and that is transparent to the user. Furthermore, database annotation
is a one-time preprocessing cost.

We perform experiments using a video database containing 933
signs from 921 distinct sign classes, and a test set of 193 sign
videos. The experiments are performed in a user-independent fash-
ion: the signers performing the test signs are different from the
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signer performing the database signs. All signers are native ASL
signers.

The results that we obtain illustrate the promise of the approach,
but also the significant challenges that remain in order to produce
a system ready to be deployed in the real world. As an example,
using the second, fully-automatic approach, for 23% of the query
signs the system ranks the correct class within the top 10 among
all 921 database classes. At the same time, even when using the
first, non-automated approach, for about 33% of the query signs
the correct match is not included even in the top 100 matches,thus
demonstrating the difficulty of obtaining accurate resultswith such
a large gesture vocabulary.

2. RELATED WORK
A number of approaches have been proposed for sign language

recognition (see [18] for a recent review). Many approachesare
not vision-based, but instead use input from magnetic trackers and
sensor gloves, e.g., [12, 16, 23, 29, 30, 32]. Such methods achieve
good recognition results on continuous Chinese Sign Language with
vocabularies of about 5,000 signs [12, 30, 32]. On the other hand,
vision-based methods, e.g., [3, 7, 10, 11, 13, 25, 31] use smaller
vocabularies (20-300 signs) and often rely on color markers, e.g.,
[3, 10]. One goal in our project is to make progress towards devel-
oping vision-based methods that operate on unadorned markerless
images and can handle a more comprehensive vocabulary.

With respect to more general gesture recognition methods, in
most dynamic gesture recognition systems (e.g., [8, 25]) informa-
tion flows bottom-up: the video is input into the analysis mod-
ule, which estimates the hand pose and shape model parameters,
and these parameters are in turn fed into the recognition module,
which classifies the gesture [19]. Skin detection, motion detection,
edges, and background subtraction are commonly used for identi-
fying hand location in each frame [5, 17].

A key drawback of bottom-up approaches is the assumption that
we can have a preprocessing module that reliably detects hand loca-
tions in every frame. In many real-world settings, that assumption
is simply unrealistic. For example, in Figure 2 skin detection yields
multiple hand candidates, and the top candidate is often notcor-
rect. Other visual cues commonly used for hand detection, such as
motion, edges, and background subtraction, would also failto un-
ambiguously locate the hand in the image. Motion-based detection
and background subtraction may fail to uniquely identify the loca-
tion of the hand when the face, non-gesturing hand or other scene
objects (such as walking people in the background) are moving.

DTW, one of the two similarity measures used in this paper, was
originally intended to recognize spoken words of small vocabulary
[15, 21]. It was also applied successfully to recognize a small vo-
cabulary of gestures [6, 9]. The DTW algorithm temporally aligns
two sequences, a query sequence and a model sequence, and com-
putes a matching score, which is used for classifying the query
sequence. The time complexity of the basic DTW algorithm is
quadratic in the sequence length, but more efficient variants have
been proposed [24, 14].

In DTW, it is assumed that a feature vector can be reliably ex-
tracted from each query frame. Consequently, DTW-based gesture
recognition falls under the category of bottom-up approaches, and,
as discussed above, becomes problematic when the gesturinghand
cannot be detected with absolute confidence. Dynamic Space-Time
Warping (DSTW) [1], the second similarity measure that we are us-
ing in this paper, is an extension of Dynamic Time Warping (DTW),
designed explicitly to work with multiple candidate hand locations
per frame.

The CONDENSATION method [4] is, in principle, an approach

that can be used for both tracking and recognition. In practice,
however, the system described in [4] used CONDENSATION only
for the recognition part, once the trajectory had been reliably es-
timated using a color marker. Even given the trajectory, system
performance was reported to be significantly slower than real time,
due to the large number of hypotheses that needed to be evaluated
and propagated at each frame.

We should also note that, to use CONDENSATION, we need to
know the observation density and propagation density for each state
of each class model, whereas in our method no such knowledge is
necessary. In our current training set, we have only one training ex-
ample for the majority of sign classes. Clearly, no observation den-
sities can be computed in this context, which renders CONDEN-
SATION inapplicable in our setting. DSTW, being an exemplar-
based method, can easily be applied in such single-example-per-
class contexts.

3. THE ASL LEXICON DATASET
The long-term goal of our work on sign recognition is to design

a system that makes it easy for users and learners of AmericanSign
Language (ASL) to look up the meaning of an unknown sign. In
such a sign lookup system, when the user encounters an unknown
sign, the user submits to the system a video of that sign. The user
can submit a pre-existing video, if such a video is available. Al-
ternatively, the user can perform the sign in front of a camera, and
generate a query video that way.

A key component of the sign lookup project is data collection.
As described in [2], we are in the process of collecting a large video
dataset containing examples of almost all of the 3,000 signscon-
tained in the Gallaudet dictionary [26]. Each sign is performed by
a native signer. The video sequences for this dataset are captured
simultaneously from four different cameras, providing a side view,
two frontal views, and a view zoomed in on the face of the signer.
In both the side view and two frontal views the upper body occu-
pies a relatively large part of the visible scene. In the faceview,
a frontal view of the face occupies a large part of the image. All
sequences are in color.

For the side view, first frontal view, and face view, video is cap-
tured at 60 frames per second, non-interlaced, at a resolution of
640x480 pixels per frame. For the second frontal view, videois
captured at 30 frames per second, noninterlaced, at a resolution of
1600x1200 pixels per frame. This high-resolution frontal view may
facilitate the application of existing hand pose estimation and hand
tracking systems on our dataset, by displaying the hand in signifi-
cantly more detail than in the 640x480 views.

Due to the large number of signs, we can only collect a small
number of exemplars for each sign. The lack of a large number of
training examples per sign renders several model-based recognition
methods inapplicable, e.g., Hidden Markov Models [20, 28].At the
same time, exemplar-based methods are readily applicable in cases
with a small number of examples per class. In an exemplar-based
method, processing a query involves identifying the most similar
matches of the query in a database of training examples.

In our experiments, the database contains 933 examples of signs,
corresponding to 921 unique sign classes. Experiments are per-
formed in a user-independent manner, where the people performing
signs in the query videos do not appear in the database videos. Out
of the four camera views recorded, only the 60fps, 640x480 frontal
view is used in our experiments. Figure 1 shows sample frames
from four videos from this dataset.
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Figure 1: Examples of sign videos from the ASL lexicon video dataset [2]. For each sign, we show, from left to right, the first frame,
a middle frame, and the last frame. First row: an example of the sign DIRTY. Second row: an example of the sign EMBARRASED.
Third row: an example of the sign COME-ON. Fourth row: an example of the sign DISAPPEAR.
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Figure 2: Detection of candidate hand regions based on skin
color. Clearly, skin color is not sufficient to unambiguously de-
tect the gesturing hand since the face, the non-gesturing hand,
and other objects in the scene have similar color. On the other
hand, for this particular scene, the gesturing hand is consis-
tently among the top15 candidates identified by skin detection.

4. DETECTION AND FEATURE EXTRAC-
TION

The fully-automated version of the system has been designedto
accommodate multiple hypotheses for the hand location in each
frame. Therefore, we can afford to use a relatively simple and ef-
ficient hand detection scheme. In our implementation we combine
two visual cues, i.e., color and motion; both requiring onlya few
operations per pixel. Skin color detection is computationally effi-
cient, since it involves only a histogram lookup per pixel. Similarly,
motion detection, which is based on frame differencing, involves a
small number of operations per pixel.

The skin detector computes for every image pixel a skin likeli-
hood term, given the skin color model that was built based on the
results of face detection. The motion detector computes a mask by
thresholding the result of frame differencing (frame differencing is
the operation of computing, for every pixel, the absolute value of
the difference in intensity between the current frame and the pre-
vious frame). If there is significant motion between the previous
and current frame the motion mask is applied to the skin likeli-
hood image to obtain the hand likelihood image. Using the integral
image [27] of the hand likelihood image, we efficiently compute
for every subwindow of some predetermined size the sum of pixel
likelihoods in that subwindow. Then we extract theK subwindows
with the highest sum, such that none of theK subwindows may
include the center of another of theK subwindows. If there is no
significant motion between the previous and current frame, then the
previousK subwindows are copied over to the current frame.

A distinguishing feature of our hand detection algorithm com-
pared to most existing methods [5] is that we do not use connected
component analysis to find the largest component (discounting the
face), and associate it with the gesturing hand. The connected com-
ponent algorithm may group the hand with the arm (if the user is
wearing a shirt with short sleeves), or with the face, or withany
other skin-colored objects with which the hand may overlap.As
a result the hand location, which is typically represented by the
largest component’s centroid, will be incorrectly estimated. In con-
trast, our hand detection algorithm maintains for every frame of the

sequence multiple subwindows, some of which may occupy differ-
ent parts of the same connected component. The gesturing hand is
typically covered by one or more of these subwindows (See Figure
2).

As described above, for every framej of the query sequence,
the hand detector identifiesK candidate hand regions. For every
candidatek in frame j a 2D feature vectorQjk = (xjk, yjk) is
extracted. The2D position(x, y) is the region centroid.

4.1 Tolerating Differences in Translation and
Scale

Since the only information we use in measuring sign similarity is
hand position, and hand position isnot translation invariant or scale
invariant, we need to take additional steps to ensure that the match-
ing algorithm tolerates differences in translation and scale between
two examples of the same sign.

We address differences in translation by normalizing all hand po-
sition coordinates based on the location of the face in each frame.
Face detection is a relatively easy task in our setting, since we can
assume that the signer’s face is oriented upright and towards the
camera. Mature, publicly-available real-time face detection sys-
tems have been available for several years [22, 27], that work well
in detecting upright, frontal views of faces. In our experiments, the
face location in database sequences is manually annotated,whereas
for query sequences we use the publicly available face detector de-
veloped by Rowley, et al. at CMU [22].

Differences in scale can also cause problems, as a small differ-
ence in scale can lead to large differences in hand positions, and
consequently to large DTW distances or DSTW distances. Our ap-
proach for tolerating differences in scale is to artificially enlarge
the database, by creating for each database sign multiple copies,
each copy corresponding to different scaling parameters. In partic-
ular, for each time series corresponding to a database sign video,
we generate 361 scaled copies. Each scaled copy is produced by
choosing two scaling parametersSx andSy , that determine respec-
tively how to scale along thex axis and they axis. EachSx andSy

can take 19 different values, spaced uniformly between0.92 and
1.1, thus leading to a total of192 = 361 possible value for each
(Sx, Sy) pair.

5. COMPARING GESTURES VIA DYNAMIC
PROGRAMMING

In order for the system to identify the most similar database
matches to a query video, we need to define a distance measure
between sign videos. In this section we describe Dynamic Time
Warping (DTW), which requires the hand location in each frame to
be known, and Dynamic Space Time Warping (DSTW), which can
tolerate a significantly larger amount of ambiguity in the output of
hand detection.

5.1 Dynamic Time Warping
Given the position of the dominant hand in each frame, each sign

video is naturally represented as a 2D time series((x1, y1), . . . ,
(xn, yn)), wheren is the number of frames in the video, and each
(xi, yi) represents the pixel coordinates of the centroid of the hand
in the i-th frame. Consequently, comparing sign videos to each
other becomes a time series matching problem.

For the purpose of measuring distance between these time-series
representations of signs, we use the dynamic time warping (DTW)
distance measure [9, 14, 15]. DTW is a popular method for match-
ing time series, and satisfies a key requirement for a time series
distance measure: the ability to tolerate temporal misalignments,
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so as to allow for time warps, such as stretching or shrinkinga por-
tion of a sequence along the time axis, and differences in length
between time series. We now proceed to briefly describe DTW.

Let Q be the time series representation of a query video with|Q|
frames, and letX be the time series representation of a database
video with |X| frames. A warping pathW = ((w1,1, w1,2), . . . ,
(w|W |,1, w|W |,2)) defines an alignment between two time seriesQ

andX, and|W | denotes the length ofW . The i-th element ofW is
a pair(wi,1, wi,2) that specifies a correspondence between element
Qwi,1

of Q and elementXwi,2
of X. The costC(W ) of warping

pathW that we use is the sum of the Euclidean distances between
corresponding elementsQwi,1

andXwi,2
:

C(W ) =

|W |
X

i=1

‖Qwi,1
− Xwi,2

‖ (1)

As a reminder, in our setting,Qwi,1
andXwi,2

denote respec-
tively the center of the dominant hand in framewi,1 of the query
video and framewi,2 of the database video.

ForW to be a legal warping path,W must satisfy the following
constraints:

• Boundary conditions: w1,1 = w1,2 = 1, w|W |,1 = |Q|
andw|W |,2 = |X|. This requires the warping path to start by
matching the first element of the query with the first element
of X, and end by matching the last element of the query with
the last element ofX.

• Monotonicity: wi+1,1 − wi,1 ≥ 0, wi+1,2 − wi,2 ≥ 0.
This forces the warping path indiceswi,1 andwi,2 to increase
monotonically withi.

• Continuity: wi+1,1 − wi,1 ≤ 1, wi+1,2 − wi,2 ≤ 1. This
restricts the warping path indiceswi,1 andwi,2 to never in-
crease by more than1, so that the warping path does not skip
any elements ofQ, and also does not skip any elements ofX

between positionsXw1,2 andXw|W |,2
.

The optimal warping path betweenQ andX is the warping path
with the smallest possible cost. The DTW distance betweenQ and
X is the cost of the optimal warping path betweenQ andX. Given
Q andX, the DTW distance betweenQ andX and the correspond-
ing optimal warping path can be easily computed using dynamic
programming [14].

Computing the DTW distance takes timeO(|Q||X|), i.e., time
proportional to the product of the lengths of the two time series. If
Q andX have comparable lengths, computing the DTW distance
takes time quadratic to the length of theQ.

5.2 Dynamic Space-Time Warping
Here we describe dynamic space time warping [1], which is an

extension of DTW that can handle multiple candidate detections in
each frame of the query.

Let M = (M1, . . . , Mm) be a model sequence in which each
Mi is a feature vector. LetQ = (Q1, . . . , Qn) be a query se-
quence. In the regular DTW framework, eachQj would be a
feature vector, of the same form as eachMi. However, in dy-
namic space-time warping (DSTW), we want to model the fact
that we have multiple candidate feature vectors in each frame of
the query. For example, if the feature vector consists of theposi-
tion of the hand in each frame, and we have multiple hypotheses
for hand location, each of those hypotheses defines a different fea-
ture vector. Therefore, in DSTW,Qj is a set of feature vectors:
Qj = {Qj1, . . . , QjK}, where eachQjk, for k ∈ {1, . . . , K},

percentile of rank percentage of queries
of correct class DTW DSTW Auto-DTW

0.5 21.8 14.5 15.0
1.0 31.6 21.8 19.7
2.0 42.0 31.6 27.5
3.0 51.8 35.8 32.1
4.0 54.9 38.9 34.7
5.0 57.5 43.5 36.8
10.0 66.3 59.1 52.3
20.0 80.8 73.6 68.4
30.0 86.5 82.9 75.7
40.0 90.7 89.6 83.4

Table 1: P -percentile accuracy statistics for non-automated
DTW, automated DSTW, and the automated version of DTW
(marked “Auto-DTW”). The first column specifies values ofP .
For each such value ofP , for each of the three methods, we
show the percentage of test signs for which the correct sign class
was ranked in the highestP -percentile among all 921 classes.
For example, using DSTW, for 21.8% of the queries the correct
class was ranked in the top 1.0% of all classes, i.e., in the top 9
out of all 921 classes.

is a candidate feature vector.K is the number of feature vectors
extracted from each query frame. In our algorithm we assumeK is
fixed, but in principleK may vary from frame to frame.

As in DTW, a warping pathW in DSTW defines an alignment
betweenM andQ. However, in contrast to DTW, where each el-
ement ofW is a pair, in DSTW each element ofW is a triple:
W = ((w1,1, w1,2, w1,3), . . . , (w|W |,1, w|W |,2), w|W |,3)) which
specifies a correspondence between elementQwi,1

of Q and ele-
mentXwi,2

of X (as in DTW), but also specifies that, out of the
multiple candidate hand locations in frameQwi,1

, the location in-
dexed bywi,3 is the one that optimizes the similarity score between
query and model sequence.

In matchingQ with M , and allowingK candidate hand loca-
tions per frame, the number of possible warping paths for DSTW is
O(K|Q|+|M|) larger than the number of possible warping paths for
DTW. Despite the exponential number of possible warping paths
for DSTW, it is shown [1] that the optimal warping path can still be
found efficiently, in polynomial time, using dynamic programming.

6. EXPERIMENTS
The query and database videos for these experiments have been

obtained from the ASL Lexicon Video Dataset [2]. Our test set
consists of 193 sign videos, with all signs performed by two na-
tive ASL signers. The video database contains 933 sign videos,
corresponding to 921 unique sign classes (we had two videos for a
few of the sign classes). The database signs were performed also
by a native ASL signer, who was different from the signers per-
forming in the test videos. From the original database of 933time
series we created an extended database of 336,813 time series, by
creating multiple scaled copies of each original time series, as de-
scribed in Section 4.1. While somewhat more than half the signs
in our dataset are two-handed, we only use the right (dominant)
hand locations for the purposes of matching signs. All signers in
the dataset we used are right-handed.

Performance is evaluated usingP -percentile accuracy, which is
defined as the fraction of test queries for which the correct class is
among the topP -percentile of classes, as ranked by the retrieval
system. ParameterP can vary depending on the experiment. In
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Figure 3: P -percentile accuracy plot for the ASL sign dataset,
for non-automated DTW, automated DSTW, and the auto-
mated version of DTW (marked “Auto-DTW”). The x-axis cor-
responds to values ofP . For each such value ofP , we show
the percentage of test signs for which the correct sign classwas
ranked in the highestP -percentile among all 921 classes. For
example, using DSTW, for 22.8% of the queries the correct
class was ranked in the top 1.1% of all classes, i.e., in the top
10 out of all 921 classes. Plots (b) and (c) focus onP -percentile
ranges from 0 to 20 and 0 to 5, respectively, as results for low
P -percentile values are of far more interest to system users.

order to computeP -percentile accuracy, we look at the similar-
ity scores produced by comparing the query to every video in the
database, and we choose for each class its highest-ranking exem-
plar. We then rank classes according to the score of the highest-
ranking exemplar for each class. For example, suppose that the
top three database matches come from class A, the fourth and fifth
match come from class B, the sixth match comes from class C,
and the seventh match comes from class A again. Then, A is the
highest-ranking class, B is the second highest-ranking class, and C
is the third highest-ranking class.

Figure 3 and Table 1 illustrate the results obtained on our dataset
using our two approaches, which are based respectively on DTW
and DSTW. For DSTW, parameterK was set to 11, i.e., 11 can-
didate hand locations were identified for each frame in the query
videos. For comparison purposes, we have also included results
with an automated DTW-based approach (denoted as “Auto-DTW”),
where the hand location used in each frame is simply the most
likely location identified by the hand detector, with no manual cor-
rections.

The results demonstrate that, as expected, the fully automated
DSTW-based approach is less accurate than the DTW-based ap-
proach. At the same time, we note that the results of Auto-DTW
are mostly inferior to the results of DSTW, with the exception of the
results for 0.5-percentile accuracy, where the percentageof query
signs attaining that accuracy is marginally higher for Auto-DTW
than for DSTW. These results demonstrate the advantages of DSTW
with respect to DTW when the goal is to have a fully automated
gesture recognition system, and the ability of DSTW to better tol-
erate ambiguities in the output of the hand detection module.

The results show that we have still quite some work to do, in or-
der to obtain retrieval accuracy that would be sufficiently high for
real-world deployment. We note that, even with the non-automated
DTW-based approach, for about 33% of the query signs the cor-
rect class was not included even in the top 100 matches. At the
same time, we need to take into account that these results were
obtained using only hand location features. Incorporatinghand ap-
pearance as well as additional body part detection modules (such as
a forearm detector) can bring significant improvements to retrieval
accuracy, and these topics are the focus of our current work.

At the same time, even with these rather minimal hand loca-
tion features, using the fully automated DSTW-based approach, for
about 23% of the queries we get the correct sign ranked in the top
10, out of 921 sign classes. We believe that visually inspecting 10
signs can be an acceptable load for users of the system, especially
given the current lack of alternative efficient methods for looking
up the meaning of a sign. We hope that including more informative
features will help increase the percentage of queries for which the
system attains a satisfactory level of retrieval accuracy.

7. DISCUSSION
This paper has described ongoing work towards a system for

automatically looking up the meaning of ASL signs. Our focus
has been on comparing a non-automated DTW-based approach,
where hand locations are assumed to be known to the system, and
a fully automated DSTW-based approach where hand locationsare
obtained, with a certain amount of ambiguity, using a computer
vision-based hand detector. As expected, the fully automated ap-
proach resulted in lower accuracy. At the same time, the results ob-
tained using DSTW indicate the advantages of DSTW over DTW
when the goal is a fully automated system.

Several challenging research problems are posed by our dataset,
that remain topics for future investigation. For example, our current
approach is purely exemplar-based, and no learning is performed
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by the system. An interesting question is whether it is possible to
develop learning methods that can be applied in this context, with
a large number of classes and only a single example (as of now)or
a couple (as we proceed with data collection) of examples persign
class available for training. Another interesting topic isinvestigat-
ing novel similarity measures, that may overcome some limitations
of both DTW and DSTW that stem from the underlying dynamic
programming formulation. One significant limitation is that both
DTW and DSTW cannot explicitly model dependencies between
non-consecutive frames; the warping path cost only dependson
matches between individual frames and transitions betweencon-
secutive frames.

The usability aspects of such a system also need to be better
studied. While expecting the user to manually mark hand locations
in every frame of the query video is not realistic, it is not clear at
this point what amount of manual intervention would be acceptable
to most users, and it is also not clear what kind of trade-offscan
be achieved by allowing users to provide some limited help tothe
system. For example, an interesting experiment will be to allow
users to mark hand locations for only the first frame of the video,
and let a hand tracker track the hands in the remainder of the video.
Marking hand locations for only a single frame does not seem to be
an excessive burden, and it will be interesting to evaluate how much
such minimal manual annotation will impact retrieval accuracy.
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