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ABSTRACT

This paper describes work towards designing a computeorvisi
system for helping users look up the meaning of a sign. Sign
lookup is treated as a video database retrieval problem. d&ovi
database is utilized that contains one or more video exanfple
each sign, for a large number of signs (close to 1000 in ouentir
experiments). The emphasis of this paper is on evaluatstyalde-
offs between a non-automated approach, where the user ftyanua
specifies hand locations in the input video, and a fully aatizmh
approach, where hand locations are determined using a ecempu
vision module, thus introducing inaccuracies into the sigrieval
process. We experimentally evaluate both approaches asemr
their respective advantages and disadvantages.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing: Indexing methods; H.2.8
[Database Applicationg: Data Mining; H.2.4 Bystem$: Multi-
media Databases

Keywords

American Sign Language recognition, ASL recognition, gest
recognition, video indexing

1. INTRODUCTION

When we encounter an English word that we do not understand,
we can look it up in a dictionary. However, when an AmericagrSi
Language (ASL) user encounters an unknown sign, lookindnep t
meaning of that sign is not a straightforward process. Is paiper
we describe work towards designing a computer vision sy$oem
helping users look up the meaning of a sign.

Sign lookup is treated as a video database retrieval probfem
video database is utilized that contains one or more vidameles
for each sign, for a large number of signs (close to 1000 in our
current experiments). When the user encounters an unknigmn s
the user provides a video example of that sign as a query, &b as
retrieve the most similar signs in the database. The quelsovtan
be either extracted from a pre-existing video sequencé,caini be
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recorded directly by the user, who can perform the sign afrest
in front of a camera.

A crucial component of any similarity-based retrieval syst
is the choice of similarity measure for comparing the queithw
database objects. In this paper we evaluate two ratherefiffep-
proaches for similarity-based search in a database of .sighe
first approach is not fully automatic: in that approach, #éssumed
that the hand location for every frame of the query video & pr
vided manually. In practice, this assumption can be entbime
requiring the user to review and correct, as needed, thdtsesfu
an automatic hand detection module. This approach, whie-pl
ing some burden on the user, allows us to use the popular Dgnam
Time Warping (DTW) distance measure [9, 14, 15] for measurin
similarity between signs.

The second approach we evaluate in this paper is a fully auto-
mated approach where the system simply uses the result® of th
hand detection module, without asking the user to corredelre-
sults. While this approach is less cumbersome for the useorks
rather poorly with DTW, because the correct hand locationois
always identified unambiguously by the system. To handleiamb
guities in hand detection we employ an extension of DTW dalle
Dynamic Space-Time Warping (DSTW) [1]. The key difference
between DSTW and DTW is that DTW takes as input a single (pre-
sumably correct) hand location per video frame, whereas\WST
takes as input a set &f candidate hand locations per frame, where
K can range, for example, between 5 and 20.

In our experiments we have found that, while it is really hard
to design a hand detection module that unambiguously iiesti
the hand location with high accuracy, it is rather easy, endther
hand, to design a hand detector that regularly includesdheact
hand location in the top 10 candidates. In that sense, DSTW is
a much more realistic choice for a fully automated system. At
the same time, allowing multiple candidate hand locatioakes
it easier to obtain false matches for the query video, as e e
neous hand locations can match true hand locations in tabalse
videos.

For both approaches we evaluate in this paper, we requite tha
the hand locations for every frame of every database sigmbek
to the system. In our dataset, the hand locations in all datab
sequences are annotated manually. In our view, this regeine
does not affect the user-friendliness of the system. Animgtdhe
database is a task that is carried out by the designers ofstens,
and that is transparent to the user. Furthermore, databastagion
is a one-time preprocessing cost.

We perform experiments using a video database containiig 93
signs from 921 distinct sign classes, and a test set of 198 sig
videos. The experiments are performed in a user-indepéfakdn
ion: the signers performing the test signs are differentnfitbe



signer performing the database signs. All signers are &L
signers.

The results that we obtain illustrate the promise of the agn,
but also the significant challenges that remain in order talpce

a system ready to be deployed in the real world. As an example,

using the second, fully-automatic approach, for 23% of theryg
signs the system ranks the correct class within the top 1thgmo

that can be used for both tracking and recognition. In practi
however, the system described in [4] used CONDENSATION only
for the recognition part, once the trajectory had been bblias-
timated using a color marker. Even given the trajectoryfesys
performance was reported to be significantly slower thaltirea,

due to the large number of hypotheses that needed to be ®@lua
and propagated at each frame.

all 921 database classes. At the same time, even when uging th  We should also note that, to use CONDENSATION, we need to

first, non-automated approach, for about 33% of the quenyssig
the correct match is not included even in the top 100 matchas,
demonstrating the difficulty of obtaining accurate reswiith such

a large gesture vocabulary.

2. RELATED WORK

A number of approaches have been proposed for sign languag
recognition (see [18] for a recent review). Many approacies
not vision-based, but instead use input from magnetic é@cnd
sensor gloves, e.g., [12, 16, 23, 29, 30, 32]. Such methdds\ax
good recognition results on continuous Chinese Sign Lagegyudth
vocabularies of about 5,000 signs [12, 30, 32]. On the othadh
vision-based methods, e.g., [3, 7, 10, 11, 13, 25, 31] usdleama
vocabularies (20-300 signs) and often rely on color markexs,

[3, 10]. One goal in our project is to make progress towardglde
oping vision-based methods that operate on unadorned rfesgke
images and can handle a more comprehensive vocabulary.

With respect to more general gesture recognition methads, i
most dynamic gesture recognition systems (e.g., [8, 25dynma-
tion flows bottom-up: the video is input into the analysis mod

e

know the observation density and propagation density fcin state

of each class model, whereas in our method no such knowledge i
necessary. In our current training set, we have only oneitrgiex-
ample for the majority of sign classes. Clearly, no obséraden-
sities can be computed in this context, which renders CONDEN
SATION inapplicable in our setting. DSTW, being an exemplar
based method, can easily be applied in such single-exapapte-
class contexts.

3. THE ASL LEXICON DATASET

The long-term goal of our work on sign recognition is to dasig
a system that makes it easy for users and learners of Ame3igan
Language (ASL) to look up the meaning of an unknown sign. In
such a sign lookup system, when the user encounters an unknow
sign, the user submits to the system a video of that sign. $ee u
can submit a pre-existing video, if such a video is availatfé
ternatively, the user can perform the sign in front of a campand

ule, which estimates the hand pose and shape model parameter generate a query video that way.

and these parameters are in turn fed into the recognitiorurapd
which classifies the gesture [19]. Skin detection, moticect®n,
edges, and background subtraction are commonly used foti-ide
fying hand location in each frame [5, 17].

A key drawback of bottom-up approaches is the assumptidn tha
we can have a preprocessing module that reliably detectslbea-
tions in every frame. In many real-world settings, that agstion
is simply unrealistic. For example, in Figure 2 skin detattyields
multiple hand candidates, and the top candidate is oftercoot
rect. Other visual cues commonly used for hand detectiarth as
motion, edges, and background subtraction, would alsdadaih-
ambiguously locate the hand in the image. Motion-basecttiete
and background subtraction may fail to uniquely identify tbca-
tion of the hand when the face, non-gesturing hand or otheresc
objects (such as walking people in the background) are ngovin

DTW, one of the two similarity measures used in this papes wa
originally intended to recognize spoken words of small \otary
[15, 21]. It was also applied successfully to recognize allsvoa
cabulary of gestures [6, 9]. The DTW algorithm temporaligas

A key component of the sign lookup project is data collection
As described in [2], we are in the process of collecting adatigeo
dataset containing examples of almost all of the 3,000 signs
tained in the Gallaudet dictionary [26]. Each sign is perfed by
a native signer. The video sequences for this dataset ateredp
simultaneously from four different cameras, providingdesiiew,
two frontal views, and a view zoomed in on the face of the gigne
In both the side view and two frontal views the upper body eccu
pies a relatively large part of the visible scene. In the faesy,

a frontal view of the face occupies a large part of the imagk. A
sequences are in color.

For the side view, first frontal view, and face view, video épe
tured at 60 frames per second, non-interlaced, at a resolofi
640x480 pixels per frame. For the second frontal view, video
captured at 30 frames per second, noninterlaced, at a tiesoaf
1600x1200 pixels per frame. This high-resolution frontalwmay
facilitate the application of existing hand pose estimatiad hand
tracking systems on our dataset, by displaying the handyimfsi
cantly more detail than in the 640x480 views.

two sequences, a query sequence and a model sequence, and com Due to the large number of signs, we can only collect a small

putes a matching score, which is used for classifying theyque
sequence. The time complexity of the basic DTW algorithm is
quadratic in the sequence length, but more efficient vazihatve
been proposed [24, 14].

In DTW, it is assumed that a feature vector can be reliably ex-
tracted from each query frame. Consequently, DTW-basetiges
recognition falls under the category of bottom-up appreachnd,
as discussed above, becomes problematic when the gedhariclg
cannot be detected with absolute confidence. Dynamic Space-
Warping (DSTW) [1], the second similarity measure that weels-
ing in this paper, is an extension of Dynamic Time Warping DT
designed explicitly to work with multiple candidate handations
per frame.

The CONDENSATION method [4] is, in principle, an approach

number of exemplars for each sign. The lack of a large number o
training examples per sign renders several model-basedmgion
methods inapplicable, e.g., Hidden Markov Models [20, 28fthe
same time, exemplar-based methods are readily appliaabkskes
with a small number of examples per class. In an exemplagebas
method, processing a query involves identifying the masilar
matches of the query in a database of training examples.

In our experiments, the database contains 933 examplegns, si
corresponding to 921 unigue sign classes. Experimentseare p
formed in a user-independent manner, where the peoplerpeng
signs in the query videos do not appear in the database videds
of the four camera views recorded, only the 60fps, 640x480t&
view is used in our experiments. Figure 1 shows sample frames
from four videos from this dataset.



Figure 1: Examples of sign videos from the ASL lexicon video ataset [2]. For each sign, we show, from left to right, the firsframe,
a middle frame, and the last frame. First row: an example of tte sign DIRTY. Second row: an example of the sign EMBARRASED.
Third row: an example of the sign COME-ON. Fourth row: an example of the sign DISAPPEAR.



Figure 2: Detection of candidate hand regions based on skin
color. Clearly, skin color is not sufficient to unambiguousy de-
tect the gesturing hand since the face, the non-gesturing hd,
and other objects in the scene have similar color. On the othre
hand, for this particular scene, the gesturing hand is consk
tently among the top 15 candidates identified by skin detection.

4. DETECTION AND FEATURE EXTRAC-
TION

The fully-automated version of the system has been designed
accommodate multiple hypotheses for the hand location éh ea
frame. Therefore, we can afford to use a relatively simpl efn
ficient hand detection scheme. In our implementation we é¢oenb
two visual cues, i.e., color and motion; both requiring oalfew
operations per pixel. Skin color detection is computatiigneifi-
cient, since itinvolves only a histogram lookup per pixémigarly,
motion detection, which is based on frame differencingoines a
small number of operations per pixel.

The skin detector computes for every image pixel a skinikikel
hood term, given the skin color model that was built basedhen t
results of face detection. The motion detector computessk foma
thresholding the result of frame differencing (frame diffiecing is
the operation of computing, for every pixel, the absoluteieaf
the difference in intensity between the current frame aedptte-
vious frame). If there is significant motion between the mes
and current frame the motion mask is applied to the skinitikel
hood image to obtain the hand likelihood image. Using thegrsl
image [27] of the hand likelihood image, we efficiently corteou
for every subwindow of some predetermined size the sum @ pix
likelihoods in that subwindow. Then we extract tiesubwindows
with the highest sum, such that none of tResubwindows may
include the center of another of ti€ subwindows. If there is no
significant motion between the previous and current frahve) the
previousK subwindows are copied over to the current frame.

A distinguishing feature of our hand detection algorithnmeo
pared to most existing methods [5] is that we do not use cdadec
component analysis to find the largest component (discogitiie
face), and associate it with the gesturing hand. The coadexm-
ponent algorithm may group the hand with the arm (if the user i
wearing a shirt with short sleeves), or with the face, or veitlty
other skin-colored objects with which the hand may overlAg.

a result the hand location, which is typically representgdhe
largest component’s centroid, will be incorrectly estiatatin con-
trast, our hand detection algorithm maintains for everyniaf the

sequence multiple subwindows, some of which may occupgmiff
ent parts of the same connected component. The gesturingisian
typically covered by one or more of these subwindows (SeerEig
2).

As described above, for every framjeof the query sequence,
the hand detector identifies candidate hand regions. For every
candidatek in frame j a 2D feature vectorQ;, = (2;x,y;x) IS
extracted. Th&D position(z, y) is the region centroid.

4.1 Tolerating Differences in Translation and
Scale

Since the only information we use in measuring sign sintifasi
hand position, and hand positiorrist translation invariant or scale
invariant, we need to take additional steps to ensure teattitch-
ing algorithm tolerates differences in translation andesbatween
two examples of the same sign.

We address differences in translation by normalizing atichao-
sition coordinates based on the location of the face in eahd.
Face detection is a relatively easy task in our setting esime can
assume that the signer’s face is oriented upright and teée
camera. Mature, publicly-available real-time face deébvectys-
tems have been available for several years [22, 27], thélt wefl
in detecting upright, frontal views of faces. In our expegits, the
face location in database sequences is manually annotatedeas
for query sequences we use the publicly available face tetde-
veloped by Rowley, et al. at CMU [22].

Differences in scale can also cause problems, as a smalt-diff
ence in scale can lead to large differences in hand posjtams
consequently to large DTW distances or DSTW distances. @ur a
proach for tolerating differences in scale is to artifigiadinlarge
the database, by creating for each database sign multipies;o
each copy corresponding to different scaling parametargattic-
ular, for each time series corresponding to a database gigo,v
we generate 361 scaled copies. Each scaled copy is prodyced b
choosing two scaling parametefs and.S,, that determine respec-
tively how to scale along the axis and they axis. EachS, and.S,
can take 19 different values, spaced uniformly betwe®2 and
1.1, thus leading to a total of92 = 361 possible value for each
(Sz,Sy) pair.

5. COMPARING GESTURESVIADYNAMIC
PROGRAMMING

In order for the system to identify the most similar database
matches to a query video, we need to define a distance measure
between sign videos. In this section we describe DynamiceTim
Warping (DTW), which requires the hand location in each fedm
be known, and Dynamic Space Time Warping (DSTW), which can
tolerate a significantly larger amount of ambiguity in thepout of
hand detection.

5.1 Dynamic Time Warping

Given the position of the dominant hand in each frame, eaph si
video is naturally represented as a 2D time sefies, y1), .- -,
(zn,yn)), wheren is the number of frames in the video, and each
(z1,y;) represents the pixel coordinates of the centroid of the hand
in the i-th frame. Consequently, comparing sign videos to each
other becomes a time series matching problem.

For the purpose of measuring distance between these tires-se
representations of signs, we use the dynamic time warpifiy\(P
distance measure [9, 14, 15]. DTW is a popular method for Imatc
ing time series, and satisfies a key requirement for a timeser
distance measure: the ability to tolerate temporal misatignts,



so as to allow for time warps, such as stretching or shrinkipgr-
tion of a sequence along the time axis, and differences igthen
between time series. We now proceed to briefly describe DTW.

Let @Q be the time series representation of a query video |gth
frames, and lefX be the time series representation of a database
video with | X| frames. A warping pathV = ((wi1,1,w1,2),...,
(wywy,1, wiw|,2)) defines an alignment between two time se@es
and.X, and|W| denotes the length 6¥. The i-th element ofV is
a pair(w;,1, w;,2) that specifies a correspondence between element
Qu, , of Q and elementX,,, , of X. The costC(W) of warping
pathT that we use is the sum of the Euclidean distances between
corresponding elementg.,, ; and Xy, ,:

W]
O(W) = z HQ'LU11 - Xwi,2 H (l)
i=1
As a reminder, in our setting?.,, , and X,,, , denote respec-
tively the center of the dominant hand in frame ; of the query
video and framev; » of the database video.
For W to be a legal warping patf}’ must satisfy the following
constraints:

e Boundary conditions: w11 = wi2 = Lww1 = |Q]
andww . = | X|. This requires the warping path to start by
matching the first element of the query with the first element
of X, and end by matching the last element of the query with
the last element ok .

Monotonicity: w;y1,1 — wi,1 > 0, wit1,2 — wiz > O.
This forces the warping path indices, ; andw; » to increase
monotonically withi.

Continuity: Wi4+1,1 — Wi,1 < 1, Wi41,2 — Wi,2 < 1. This
restricts the warping path indices 1 andw; 2 to never in-
crease by more thah so that the warping path does not skip
any elements of), and also does not skip any elementsxof
between position(w, , andXw, ;| ,-
The optimal warping path betweé&hand X is the warping path
with the smallest possible cost. The DTW distance betwigamd
X is the cost of the optimal warping path betwe&gmand X . Given
Q andX, the DTW distance betweén and X and the correspond-
ing optimal warping path can be easily computed using dyaami
programming [14].
Computing the DTW distance takes tingg|Q||X]|), i.e., time
proportional to the product of the lengths of the two timaeserlf
Q@ and X have comparable lengths, computing the DTW distance
takes time quadratic to the length of tge

5.2 Dynamic Space-Time Warping

Here we describe dynamic space time warping [1], which is an
extension of DTW that can handle multiple candidate detastin
each frame of the query.

Let M = (M, ..., M) be a model sequence in which each
M; is a feature vector. Le® = (Q1,...,Q@Qn) be a query se-
quence. In the regular DTW framework, ea€Jj would be a
feature vector, of the same form as eaef;. However, in dy-
namic space-time warping (DSTW), we want to model the fact
that we have multiple candidate feature vectors in eachdram
the query. For example, if the feature vector consists ofths-
tion of the hand in each frame, and we have multiple hypothese
for hand location, each of those hypotheses defines a difféza-
ture vector. Therefore, in DSTVQ); is a set of feature vectors:
Q; = {Qj1,-..,Q;r}, where eachQ;i, for k € {1,..., K},

percentile of rank percentage of queries

of correct class | DTW | DSTW | Auto-DTW
0.5 218 | 145 15.0
1.0 316 | 21.8 19.7
2.0 42.0 | 31.6 275
3.0 51.8 | 35.8 32.1
4.0 549 | 38.9 34.7
5.0 575 | 435 36.8
10.0 66.3 | 59.1 52.3
20.0 80.8 | 73.6 68.4
30.0 86.5 | 82.9 75.7
40.0 90.7 | 89.6 83.4

Table 1: P-percentile accuracy statistics for non-automated
DTW, automated DSTW, and the automated version of DTW
(marked “Auto-DTW?”). The first column specifies values of P.
For each such value ofP, for each of the three methods, we
show the percentage of test signs for which the correct sigriass
was ranked in the highestP-percentile among all 921 classes.
For example, using DSTW, for 21.8% of the queries the correct
class was ranked in the top 1.0% of all classes, i.e., in thep®
out of all 921 classes.

is a candidate feature vectoK is the number of feature vectors
extracted from each query frame. In our algorithm we asskime
fixed, but in principleX may vary from frame to frame.

As in DTW, a warping patiV in DSTW defines an alignment
betweenM and@. However, in contrast to DTW, where each el-
ement of W is a pair, in DSTW each element &¥ is a triple:

W = (w11, w1,2,w13), ..., (Ww|1, Ww|2), ww,3)) Which
specifies a correspondence between elerggnt, of @ and ele-
ment X, , of X (as in DTW), but also specifies that, out of the
multiple candidate hand locations in frar@g,, , , the location in-
dexed byw; 3 is the one that optimizes the similarity score between
query and model sequence.

In matching@ with M, and allowingK candidate hand loca-
tions per frame, the number of possible warping paths for\Ws$§
O(K'@I*1MIy jarger than the number of possible warping paths for
DTW. Despite the exponential number of possible warpindngat
for DSTW, it is shown [1] that the optimal warping path cari &
found efficiently, in polynomial time, using dynamic prograning.

6. EXPERIMENTS

The query and database videos for these experiments hane bee
obtained from the ASL Lexicon Video Dataset [2]. Our test set
consists of 193 sign videos, with all signs performed by tae n
tive ASL signers. The video database contains 933 sign sideo
corresponding to 921 unigue sign classes (we had two videas f
few of the sign classes). The database signs were perfortsed a
by a native ASL signer, who was different from the signers per
forming in the test videos. From the original database of 482
series we created an extended database of 336,813 tims, ¢Brie
creating multiple scaled copies of each original time serée de-
scribed in Section 4.1. While somewhat more than half thessig
in our dataset are two-handed, we only use the right (dorfjinan
hand locations for the purposes of matching signs. All gigiie
the dataset we used are right-handed.

Performance is evaluated usifiypercentile accuracy, which is
defined as the fraction of test queries for which the corrlaciscis
among the topP-percentile of classes, as ranked by the retrieval
system. ParametdP can vary depending on the experiment. In
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Figure 3: P-percentile accuracy plot for the ASL sign dataset,
for non-automated DTW, automated DSTW, and the auto-
mated version of DTW (marked “Auto-DTW?”). The x-axis cor-
responds to values ofP. For each such value ofP, we show
the percentage of test signs for which the correct sign clasgas
ranked in the highest P-percentile among all 921 classes. For
example, using DSTW, for 22.8% of the queries the correct
class was ranked in the top 1.1% of all classes, i.e., in thepo
10 out of all 921 classes. Plots (b) and (c) focus di+percentile
ranges from 0 to 20 and 0O to 5, respectively, as results for low
P-percentile values are of far more interest to system users.

order to computeP-percentile accuracy, we look at the similar-
ity scores produced by comparing the query to every videtén t
database, and we choose for each class its highest-rarnkémg- e
plar. We then rank classes according to the score of the $tighe
ranking exemplar for each class. For example, suppose hbat t
top three database matches come from class A, the fourthféind fi
match come from class B, the sixth match comes from class C,
and the seventh match comes from class A again. Then, A is the
highest-ranking class, B is the second highest-rankingscknd C

is the third highest-ranking class.

Figure 3 and Table 1 illustrate the results obtained on otasga
using our two approaches, which are based respectively o DT
and DSTW. For DSTW, parametdf was set to 11, i.e., 11 can-
didate hand locations were identified for each frame in therygu
videos. For comparison purposes, we have also includedisesu
with an automated DTW-based approach (denoted as “Auto-D);TW
where the hand location used in each frame is simply the most
likely location identified by the hand detector, with no mahcor-
rections.

The results demonstrate that, as expected, the fully atézna
DSTW-based approach is less accurate than the DTW-based ap-
proach. At the same time, we note that the results of Auto-DTW
are mostly inferior to the results of DSTW, with the exceptid the
results for 0.5-percentile accuracy, where the percerégeery
signs attaining that accuracy is marginally higher for AD{6W
than for DSTW. These results demonstrate the advantageSTN\D
with respect to DTW when the goal is to have a fully automated
gesture recognition system, and the ability of DSTW to btk
erate ambiguities in the output of the hand detection module

The results show that we have still quite some work to do, in or
der to obtain retrieval accuracy that would be sufficientiyhtfor
real-world deployment. We note that, even with the non-zatted
DTW-based approach, for about 33% of the query signs the cor-
rect class was not included even in the top 100 matches. At the
same time, we need to take into account that these resules wer
obtained using only hand location features. Incorporatiagd ap-
pearance as well as additional body part detection modsieh @s
a forearm detector) can bring significant improvements tidesel
accuracy, and these topics are the focus of our current work.

At the same time, even with these rather minimal hand loca-
tion features, using the fully automated DSTW-based ampr,dar
about 23% of the queries we get the correct sign ranked iroge t
10, out of 921 sign classes. We believe that visually inspgctO
signs can be an acceptable load for users of the system,i&spec
given the current lack of alternative efficient methods fasking
up the meaning of a sign. We hope that including more inforraat
features will help increase the percentage of queries factwtne
system attains a satisfactory level of retrieval accuracy.

7. DISCUSSION

This paper has described ongoing work towards a system for
automatically looking up the meaning of ASL signs. Our focus
has been on comparing a non-automated DTW-based approach,
where hand locations are assumed to be known to the systeim, an
a fully automated DSTW-based approach where hand locagiens
obtained, with a certain amount of ambiguity, using a comput
vision-based hand detector. As expected, the fully autedhap-
proach resulted in lower accuracy. At the same time, thdtsesb-
tained using DSTW indicate the advantages of DSTW over DTW
when the goal is a fully automated system.

Several challenging research problems are posed by owedata
that remain topics for future investigation. For example,@irrent
approach is purely exemplar-based, and no learning is ipeefd



by the system. An interesting question is whether it is fmdesib
develop learning methods that can be applied in this cormést

a large number of classes and only a single example (as of orow)
a couple (as we proceed with data collection) of examplesiger
class available for training. Another interesting topinigestigat-
ing novel similarity measures, that may overcome someditioihs

of both DTW and DSTW that stem from the underlying dynamic

programming formulation. One significant limitation is thzoth

DTW and DSTW cannot explicitly model dependencies between

non-consecutive frames; the warping path cost only depends
matches between individual frames and transitions between
secutive frames.
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