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Abstract. A method is presented to help users look up the meaning of
an unknown sign from American Sign Language (ASL). The user sub-
mits a video of the unknown sign as a query, and the system retrieves
the most similar signs from a database of sign videos. The user then
reviews the retrieved videos to identify the video displaying the sign of
interest. Hands are detected in a semi-automatic way: the system per-
forms some hand detection and tracking, and the user has the option to
verify and correct the detected hand locations. Features are extracted
based on hand motion and hand appearance. Similarity between signs is
measured by combining dynamic time warping (DTW) scores, which are
based on hand motion, with a simple similarity measure based on hand
appearance. In user-independent experiments, with a system vocabulary
of 1,113 signs, the correct sign was included in the top 10 matches for
78% of the test queries.
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1 Introduction

This paper focuses on a specific application, namely helping users look up the
meaning of a sign in American Sign Language (ASL). Looking up the meaning
of a sign is not a straightforward task. ASL dictionaries typically allow look-up
of ASL signs based on their English translations; that is, these dictionaries are
really English to ASL dictionaries, which makes it difficult to look up a sign
if the user either does not know the meaning of that sign, or does not know
its translation into English. There are ASL dictionaries that allow access to
ASL signs based on their articulatory properties, such as handshape [1], but
these interfaces either require specification of many articulatory parameters, or
else they require the user to scan long lists of signs (for example that share a
particular handshape). These lookup methods may fail entirely if the signer is
looking for a variant that is different in a small way from the dictionary entry or
errs with respect to the specification of the articulatory parameter(s). A system
that helps users look up unknown signs would be useful to the millions of users
and learners of sign languages around the world (estimated 0.5 to 2 million users
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in the US [2, 3]). The capability to look up signs would be particularly useful to
students of a sign language, as useful as it is for students of a written language
(such as English) to be able to look up the meaning of unknown words.

In our approach, having encountered an unknown sign, the user can simply
perform the sign in front of a webcam. Then, the system compares the input sign
with videos of signs stored in the system database, and presents the most similar
signs (and potentially also their English translations) to the user. The user can
then view the results and decide which (if any) of those results is correct.

In order to produce a system that works well enough for public use, we have
opted for a not fully automatic system, which requires knowing the bounding
box of the hands in each frame of both the test and the database videos. For
our dataset, we have chosen videos from the public ASLLVD resource [4], where
such hand locations are provided for thousands of examples of signs. In our demo
system, the user specifies/verifies hand locations, in collaboration with a semi-
automated hand detector. Making hand detection more or entirely automatic is
a challenging task that we have left for future work.

In our dataset, we have examples from a large vocabulary of 1,113 distinct
sign classes. A key constraint is that we only have two training examples for
each sign. Given the small number of examples per sign, we use an exemplar-
based method, as opposed to a model-based method, such as Hidden Markov
Models (HMMs). We start with a baseline similarity measure based on the pop-
ular dynamic time warping (DTW) distance [5]. DTW is applied on time series
of feature vectors based on hand motion. We improve this baseline similarity
measure by incorporating information from hand appearance.

We evaluate our approach in user-independent experiments with a system
vocabulary of 1,113 signs. The correct sign was included in the top 10 matches
for 78% of the test queries. By considering more signs per query, the user can
successfully look up an even larger percentage of query signs. These results are
a significant improvement over results previously reported in the literature for
comparable vocabulary sizes and under user-independent settings.

2 Related Work

Several methods exist for recognizing isolated gestures or signs, as well as contin-
uous signing. The majority of existing methods are model-based, using Hidden
Markov Models [6–9] or alternative approaches such as recursive partition trees
[10], boosted volumetric features [11], and hidden conditional random fields [12].
Such methods typically use ten or more training examples per gesture or sign.
In contrast, in our setting, we have only two training examples per sign.

Using more examples per sign typically improves accuracy (see, e.g., [13,
14]), but may not be an option, due to lack of data. For example, the Gal-
laudet dictionary of ASL [15] includes 3,000 signs, and the only public video
dataset currently available for a vocabulary of that size is the ASLLVD resource
[4], where only two examples are available for most of the signs. Cooper et al.
[16] aim at automatically generating large corpora by automatically segmenting
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signs from close-captioned sign language videos, but the usability of such auto-
matically built corpora as training data was not evaluated. Another promising
approach for limited numbers of examples per sign is transfer learning [17], but
that approach has only been evaluated in a user-dependent scenario, where the
test signs are performed by a user who has also provided data for training.

Exemplar-based approaches offer an alternative when only limited examples
per class are available. Motion energy images [18] are a well-known exemplar-
based approach, but perform poorly in our experiments. Gorelick et al. [19]
represent videos of gestures/actions using 3D shapes extracted by identifying
areas of motion in each video frame. However, applying that method to our
setting would require accurate silhouette extraction of the hands, which is a
challenging task even if the bounding box of the hand is known, especially when
hands overlap with each other or with the face, or when the background is
cluttered.

Some researchers have reported results on vocabularies of thousands of signs,
using input from digital gloves, e.g., [20]. On the other hand, most existing
vision-based approaches have been evaluated with vocabularies of some tens of
signs, e.g., [6, 10, 8]. Kadir et al. [13] report results on 164 signs, with about 85%
accuracy when only two training examples per sign are used, whereas Zieren et
al. [14] use a vocabulary of 232 signs, and achieve a remarkable 99.3% accuracy
rate. However, in both [13] and [14], a single user signed all the training and
test examples. In Zieren et al. [14], when experiments are performed in a user-
independent setting, the recognition rate drops from 99.3% to 44%, a drop that
highlights the difficulty of user-independent sign recognition.

In earlier work [4, 21] we have reported results on data from the public
ASLLVD resource, with vocabulary sizes of 992 and 921 signs respectively, and
using methods based on motion energy images in [4] and dynamic time warping
(with user-aided hand detection, as in our system) in [21]. In our experiments,
the method described here outperforms our earlier approaches [4, 21] by a large
margin.

3 Application Overview

When a user encounters an unknown sign, the user can perform the sign in front
of a webcam, or submit an existing video of that sign. Then, the system asks
the user to mark the start and end frames of the actual sign in the video, and
to indicate whether the sign is one-handed or two-handed (see Figure 1), and
which is the dominant hand (if there is an asymmetry in the production of the
sign).

At the next step, the system detects bounding boxes of hands on all frames
using features based on skin color and motion. The user views the hand detection
results, and can correct those results on any frame. As soon as the user makes a
correction, the system propagates information from that correction to improve
the detection results in the rest of the frames.
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After hand detection results have been approved by the user, the system
computes the similarity between the query sign and all database signs. The
system ranks the 1,113 distinct signs in decreasing order of similarity to the
query. There are two examples for each of 1,113 distinct signs in the database,
thus producing two similarity scores with respect to the query. For the purposes
of ranking the signs, the better of those two scores is kept.

Once the signs have been ranked, the system presents to the user an ordered
list of the best matching signs. The user then views the results, starting from the
highest-ranked sign, until encountering the video displaying the actual sign of
interest. For example, if the correct match was ranked as 5th best by the system,
the user needs to view the top five results in order to view the correct match.

When the user identifies the correct database sign, the user can readily view
any additional information associated with that sign. Currently, our signs are
labelled with very rough English glosses. These do not necessarily provide accu-
rate information about the meaning of the signs, however, since there is no 1-1
relationship between ASL signs and English words. The longer term plan is that
this interface may provide access to sophisticated multi-media ASL language
resources, which would provide more extensive information about the signs be-
ing looked up. For the time being, though, the user may find the very rough
translation to be of some utility.

Fig. 1. Examples of three signs from the dataset that we use. For each sign, we show
the first, middle, and last frame. Top row: a one-handed sign meaning “bad”. Middle
row: a one-handed sign meaning “badge”, and exhibiting only little motion. Bottom
row: a two-handed sign meaning “abandon”.
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3.1 Measures of Accuracy

As far as the user is concerned, the system has succeeded on a query sign if the
user has indeed managed to retrieve the sign that was being sought. One possible
type of failure is a situation in which the query sign is not part of the system
vocabulary. For the purposes of this paper we ignore this source of failure, as it
does not depend on the quality of the underlying technology, but simply on the
size of the database corpus.

A second type of failure results when the system ranks the correct match too
low. A user would probably not be willing to view more than the top 10 or 20
signs from the results, although this may vary across users. If a user is willing
to view at most k results, then the system fails when the correct match is not
among those top k results.

Consequently, given a query Q, a key measure of performance is the rank
R(Q) that the system assigns to the correct result for Q. Given an integer k,
we define a boolean measure of success S(Q, k), that is true iff R(Q) ≤ k. The
success rate S(k) over a test set Q of queries is simply the average success rate
S(Q, k) over Q. For notational convenience we also define K(s) to be (loosely)
an inverse function of S: given a desired success rate s, K(s) is the maximum
number of results per query that the user must consider to obtain that success
rate, so that K(S(k)) = k. More formally:

R(Q) = the rank the system assigns to the correct result for Q . (1)

S(Q, k) =

{

1 if R(Q) ≤ k .

0 otherwise .
(2)

S(k) = mean{S(Q, k) | Q ∈ Q, where Q is a test set.} . (3)

K(s) = the k such that S(k) = s . (4)

Even if the user is willing to view K(s) results per query, if the correct match
is ranked at R(Q) < K(s), then the user can stop viewing results as soon as the
user encounters the correct match. Consequently, another meaningful measure
of accuracy is the average number of results that the user needs to consider per
query until encountering the correct result, for a given success rate s. We define
that measure as A(s):

A(s) = mean{R(Q) | (Q ∈ Q) ∧ (R(Q) ≤ K(s))} . (5)

4 Features and Normalization

Let X be a video of a sign. We denote by |X | the number of frames in the video,
and by X(t) the t-th frame of that video, t ranging from 1 to |X |. From sign X

we extract the following location, orientation, and hand appearance features:

– Ld(X, t) and Lnd(X, t): The (x, y) centroid respectively of the dominant hand
and non-dominant hand of the signer at frame t.
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– Lδ(X, t): The relative position of the dominant hand with respect to the
non-dominant hand at frame t. Lδ(X, t) = Ld(X, t) − Lnd(X, t).

– Od(X, t) and Ond(X, t): The unit vectors representing the direction of motion
from Ld(X, t − 1) to Ld(X, t + 1) and from Lnd(X, t − 1) to Lnd(X, t + 1).

– Oδ(X, t): The unit vector representing the direction of motion from Lδ(X, t−
1) to Lδ(X, t + 1).

– Hd,s(X), Hd,e(X), Hnd,s(X), and Hnd,e(X): images of the dominant and the
non-dominant hand at the start and end frame of the video.

Each hand appearance image H is preprocessed using the following steps:

1. We start by simply cropping the subwindow H1 corresponding to the bound-
ing box of the hand.

2. We detect skin in that window, using the method of Jones et al. [22].
3. We set all non-skin pixels in H1 to 0.
4. We create H2 to be the grayscale version of H1.
5. We normalize H2 to have a mean of zero and a standard deviation of 1.
6. We create H3 as a scaled version of H2, so that the longest side of H has

length 50.
7. The final image H is a padded version of H3, to make sure that H has an

equal number of rows and columns. Additional rows or columns are added
as needed, with values of zero. The padding is applied symmetrically, so that
the centroid of the hand corresponds with the center of the final image H .

For notational convenience, all features referring to the non-dominant hand
(i.e., Lnd, Lδ, Ond, Oδ, Hnd,s, Hnd,e) are set to zero vectors for one-handed signs.

4.1 Coordinate System

In defining location features, the choice of coordinate system is important. To
account for differences in translation and spatial scale between the query video
and the matching training videos, we use a face-centric coordinate system. We
use the face detector of Rowley et al. [23] to detect the face of each signer at
the first frame of the sign. The coordinate system is defined so that the center
of the face is at the origin, and the diagonal of the face bounding box has length
1. The same scaling factor is applied to both the x and the y direction. Features
Ld, Lnd, Lδ are all defined in this normalized coordinate system.

4.2 Time Series Length Normalization

Different signers may sign at different speeds. Dynamic Time Warping (DTW),
which we describe in Section 5, is a similarity measure that is biased against
longer database matches, and this bias is more noticeable for short queries. To
account for that, we normalize each sequence, so that the length of all sequences
is the same (20 in our experiments). In particular, we resample the sequences
of Ld, Lnd, and Lδ features extracted from each sign, so that each sequence
has length 20. Resampling is done using linear interpolation. As shown in our
experiments, this normalization significantly improves accuracy.
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5 Comparing Trajectories via Dynamic Time Warping

Let X be a video of a sign. We can represent X as a time series (X1, . . . , X|X|),
where each Xt is simply a concatenation of the features extracted at frame t:

Xt = (Ld(X, t), Lnd(X, t), Lδ(X, t), Od(X, t), Ond(X, t), Oδ(X, t)) . (6)

As a reminder, features Lnd, Lδ, Ond, Oδ are set to 0 for one-handed signs.
Dynamic Time Warping (DTW) [5] is a commonly used distance measure for

time series. Given two sign videos Q and X , DTW computes a warping path W

establishing correspondences between frames of Q and frames of X :

W = ((q1, x1), . . . , (q|W |, x|W |)) , (7)

where |W | is the length of the warping path, and pair (qi, xi) means that frame qi

of Q corresponds to frame xi of X . A warping path must follow two constraints:

– boundary constraints: q1 = 1, x1 = 1, q|W | = |Q|, x|W | = |X |.
– monotonicity and continuity: 0 ≤ qi+1 − qi ≤ 1, 0 ≤ xi+1 − xi ≤ 1.

The cost C(W, Q, X) of a warping path W is the sum of individual local costs
c(Qqi

, Xxi
), corresponding to matching each Qqi

with the corresponding Xxi
:

C(W, Q, X) =

|W |
∑

i=1

c(Qqi
, Xxi

) . (8)

As local cost c, we use a weighted linear combination of the individual Eu-
clidean distances between the six features extracted from the two frames:

c(Qqi
, Xxi

) = f1‖Ld(Q, qi) − Ld(X, xi)‖ + f2‖Lnd(Q, qi) − Lnd(X, xi)‖ +

f3‖Lδ(Q, qi) − Lδ(X, xi)‖ + f4‖Od(Q, qi) − Od(X, xi)‖ + (9)

f5‖Ond(Q, qi) − Ond(X, xi)‖ + f6‖Oδ(Q, qi) − Oδ(X, xi)‖

In the above equation, ‖·‖ stands for the Euclidean norm. In our experiments,
weights fj are optimized using cross-validation on the training set.

The DTW distance DDTW(Q, X) between sign videos Q and X is defined as
the cost of the lowest-cost warping path between Q and X :

DDTW(Q, X) = min
W

C(W, Q, X) (10)

The optimal warping path and the distance DDTW(Q, X) can be computed
using dynamic programming, with a time complexity of O(|Q||X |) [5].

6 Incorporating Hand Appearance

The DDTW distance measure defined above depends only on the trajectories of
the two hands. At the same time, the appearance of the hand is an important
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additional source of information about the identity of a sign. Recognizing hand-
shape is a challenging task, especially when a hand appears in front of another
skin-colored object such as the other hand or the face. Given the difficulty of
this topic, we have postponed the task of implementing a sophisticated simi-
larity measure for hand appearance for future work. Instead, in this paper we
have opted for the simplest possible option, which is the Euclidean distance be-
tween hand appearance images. Despite its simplicity, this approach has led to
significant improvements in accuracy, as shown in the experiments.

In particular, we define a distance Dhand(Q, X) between two sign videos Q

and X as follows:

Dhand(Q, X) = ‖Hd,s(Q) − Hd,s(X)‖ + ‖Hd,e(Q) − Hd,e(X)‖ +

‖Hnd,s(Q) − Hnd,s(X)‖ + ‖Hnd,e(Q) − Hnd,e(X)‖ . (11)

As a reminder (see Section 4), each hand image has been preprocessed, by scal-
ing/padding to a canonical size, and removing non-skin pixels.

Combining DDTW and Dhand can be done by simply taking a weighted sum
of the two distances:

D(Q, X) = DDTW(Q, X) + fhandDhand(Q, X) . (12)

The weight fhand is chosen by searching over many possible values, so as to
optimize performance on the training data.

7 Experiments

Our dataset includes 1,113 distinct sign classes. For each sign class there are
three examples, each from a different user. All sign videos and annotations have
been downloaded from the ASLLVD website [4]. Although the ASLLVD website
includes four synchronized camera views for each sign, only a single frontal view
is used for each sign in our experiments.

The dataset was divided into three groups, each group containing a single
example from each of the 1,113 classes. Experiments were performed in a user-
independent manner, by ensuring that each signer appeared in only a single
group out of those three groups. Each group was in turn used as the test set,
with the other two groups used as training. All experimental measurements are
averaged over the three test groups. All weights involved in defining the overall
distance measure were computed exclusively from the training data, and thus a
different combination of weights was applied for each test group.

We use the measures of accuracy defined in Section 3.1, and in particular
K(s) and A(s), which are respectively the maximum and average number of
results that a user must consider for a query in order to encounter the correct
result for a fraction s of all queries.

Since the user indicates at query time whether a sign is one-handed or two-
handed, signs using a different number of hands than the query are not considered
for that query. (For real use cases in the longer term, we will have to allow a
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small probability for a canonically 2-handed sign being produced with just 1
hand, and for a 1-handed sign to be produced with 2 hands.) Signs performed
with the left hand as the dominant hand are replaced by mirrored versions, so
that we can treat all database and query signs as right-handed. These rules have
been applied in all experiments for all methods.
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Fig. 2. Comparison of our method, the method described by Stefan et al. in [21], and
the MEI-based method used in [4]. The y-axis corresponds to success rates s. The
x-axis corresponds to values of K(s) on the left, and to values of A(s) on the right.
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Fig. 3. Comparison of DTW without length normalization, DTW, and our full method
that combines DTW scores with hand appearance similarity scores. The y-axis corre-
sponds to success rates s. The x-axis corresponds to values of K(s) on the left, and to
values of A(s) on the right.
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7.1 Results

We compare our method to previous methods applied to data from the ASLLVD
dataset, namely to the approach of using motion energy images (MEI) described
in [4], and the DTW-based approach reported in [21]. With respect to the DTW
method of [21], we should note that it corresponds to a stripped-down version
of our method, which only uses the Ld and Lnd features, does not normalize the
length of all time series to a fixed constant, and does not use hand appearance.

Figure 2 shows comparative results for the three methods. As measures of
accuracy, we use functions K(s) and A(s) (defined in Section 3.1), which are,
respectively, the maximum and average number of results per query that a user
must consider in order to encounter the correct result for a fraction s of all
queries. Our method clearly outperforms the two other methods. As an example,
the percentage of queries for which the the correct sign is not included in the top
25 results is, respectively, 66% for MEI, 38.6% for Stefan et al. [21], and 11.9%
for our method. Similarly, the correct sign is successfully included in the top 10
results for only 20.4% of the queries using MEI, for 47.8% of the queries using
the method of Stefan et al. [21], and for 78.4% of queries for our method. For
our method, for a success rate of 78.4% the user needs to consider at most 10,
and on average 2.36 results per query, until encountering the correct result.

In Figure 3 we evaluate three different variations of our method: the first
variation, denoted as “DTW without length normalization”, does not use hand
appearance and also does not use the resampling step described in Section 4.2,
which normalizes all time series to length 20. The second variation, denoted as
DTW, does not use hand appearance. The third variation, denoted as “DTW +
hands”, is the full method described in this paper, that incorporates information
from both DTW and hand appearance. As see from the results, normalizing all
time series to the same length significantly improves accuracy, and incorporating
hand appearance leads to a noticeable additional improvement.

In terms of running time, the system takes on average about one second to
compare a query video to the 2,226 database videos. Running time was measured
on a PC with an Intel quad-core CPU, running at 2.4GHz, and with 3GB of
memory. Our method has been implemented as a single-threaded application.

8 Discussion and Future Work

We have presented a method for helping users look up unknown signs, using
similarity-based retrieval in a database containing examples of signs from a large
vocabulary. In our method, feature vectors are defined based on hand motion and
hand appearance. Similarity between signs is measured by combining dynamic
time warping scores, which are based on hand motion, with Euclidean distances
between hand appearances.

There are several research topics that we are interested in pursuing as future
work, with the goal of further improving system performance and the overall user
experience. While in the current system hand detection is only semi-automatic,
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a more (or entirely) automated hand detector will significantly enhance the user
experience, and this is a topic that we intend to explore in the near term. Also,
while our simple way of using hand appearance led to good results, there is clearly
room for improvement in how we use hand appearance, and that is another topic
that we plan to explore. Our current approach of not allowing one-handed signs
to be matched with two-handed signs, and of requiring the user to specify the
dominant hand for the query sign, has limitations that need to be addressed.
Finally, although the proposed approach works reasonably well in our experi-
ments, we believe that more work is needed in order to satisfactorily address
the question of how to learn a good similarity measure for a large vocabulary of
signs, given only one or two training examples per sign.

Acknowledgements

We gratefully acknowledge the following native signers, who have served as mod-
els for the project: Naomi Berlove, Elizabeth Cassidy, Lana Cook,Tyler Richard,
and Dana Schlang. For assistance with data collection and annotations, we thank
Jaimee DiMarco, Joan Nash, Chrisann Papera, Jessica Scott, Jon Suen, Ashwin
Thangali, Iryna Zhuravlova, Kishan Kumar, Roochi Mishra, and Muhammad
Yousaf. The research reported here has been partially funded by grants from the
National Science Foundation: IIS-0705749, IIS-0812601, MRI-0923494.

References

1. Tennant, R.A., Brown, M.G.: The American Sign Language Handshape Dictionary.
Gallaudet U. Press, Washington, DC (Washington, DC)

2. Lane, H., Hoffmeister, R.J., Bahan, B.: A Journey into the Deaf-World. DawnSign
Press, San Diego, CA (1996)

3. Schein, J.: At home among strangers. Gallaudet U. Press, Washington, DC (1989)
4. Athitsos, V., Neidle, C., Sclaroff, S., Nash, J., Stefan, A., Yuan, Q., Thangali,

A.: The American Sign Language lexicon video dataset. In: IEEE Workshop on
Computer Vision and Pattern Recognition for Human Communicative Behavior
Analysis (CVPR4HB). (2008)

5. Kruskal, J.B., Liberman, M.: The symmetric time warping algorithm: From con-
tinuous to discrete. In: Time Warps. Addison-Wesley (1983)

6. Bauer, B., Hienz, H., Kraiss, K.F.: Video-based continuous sign language recogni-
tion using statistical methods. In: International Conference on Pattern Recogni-
tion. (2000) 2463–2466

7. Dreuw, P., Deselaers, T., Keysers, D., Ney, H.: Modeling image variability in
appearance-based gesture recognition. In: ECCV Workshop on Statistical Methods
in Multi-Image and Video Processing. (2006) 7–18

8. Starner, T., Pentland, A.: Real-time American Sign Language recognition using
desk and wearable computer based video. IEEE Transactions on Pattern Analysis
and Machine Intelligence 20 (1998) 1371–1375

9. Vogler, C., Metaxas, D.N.: Parallel hidden markov models for american sign lan-
guage recognition. In: IEEE International Conference on Computer Vision (ICCV).
(1999) 116–122



12 Haijing Wang et al.

10. Cui, Y., Weng, J.: Appearance-based hand sign recognition from intensity image
sequences. Computer Vision and Image Understanding 78 (2000) 157–176

11. Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volu-
metric features. In: IEEE International Conference on Computer Vision (ICCV).
Volume 1. (2005) 166–173

12. Wang, S.B., Quattoni, A., Morency, L.P., Demirdjian, D., Darrell, T.: Hidden con-
ditional random fields for gesture recognition. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Volume 2. (2006) 1521–1527

13. Kadir, T., Bowden, R., Ong, E., Zisserman, A.: Minimal training, large lexicon,
unconstrained sign language recognition. In: British Machine Vision Conference
(BMVC). Volume 2. (2004) 939–948

14. Zieren, J., Kraiss, K.F.: Robust person-independent visual sign language recogni-
tion. In: Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA).
Volume 1. (2005) 520–528

15. Valli, C., ed.: The Gallaudet Dictionary of American Sign Language. Gallaudet
U. Press, Washington, DC (2006)

16. Cooper, H., Bowden, R.: Learning signs from subtitles: A weakly supervised ap-
proach to sign language recognition. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). (2009) 2568–2574

17. Farhadi, A., Forsyth, D.A., White, R.: Transfer learning in sign language. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2007)

18. Bobick, A., Davis, J.: The recognition of human movement using temporal tem-
plates. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
23 (2001) 257–267

19. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-
time shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 29

(2007) 2247–2253
20. Yao, G., Yao, H., Liu, X., Jiang, F.: Real time large vocabulary continuous sign

language recognition based on OP/Viterbi algorithm. In: International Conference
on Pattern Recognition. Volume 3. (2006) 312–315

21. Stefan, A., Wang, H., Athitsos, V.: Towards automated large vocabulary gesture
search. In: Conference on Pervasive Technologies Related to Assistive Environ-
ments (PETRA). (2008)

22. Jones, M., Rehg, J.: Statistical color models with application to skin detection. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (1999)
I:274–280

23. Rowley, H., Baluja, S., Kanade, T.: Rotation invariant neural network-based face
detection. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (1998) 38–44


