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Abstract port vector machines (SVMs) [23], have been very success-
fulin recent years in various pattern recognition domams.
Boosted one-versus-all (OVA) classifiers are commonly common way to apply such methods to multiclass problems
used in multiclass problems, such as generic object recog-is to train a one-versus-all (OVA) classifier for each class
nition, biometrics-based identification, or gesture regeg  [2, 22]. However, a major bottleneck of such approaches is
tion. JointBoost is a recently proposed method where OVAthat, given a new pattern to classify, all OVA classifiers tnus
classifiers are trained jointly and are forced to share fea- be applied to that pattern, so as to identify the OVA classi-
tures. JointBoost has been demonstrated to lead both tofier that yields the strongest response. This leads to time
higher accuracy and smaller classification time, compared complexity that is linear to the number of classes, which
to using OVA classifiers that were trained independently can lead to prohibitively large classification times in krg
and without sharing features. However, even with the im- multiclass domains with thousands or millions of classes.

proved efficiency of JointBoost, the time complexity of OVA-  j5intBoost [22] is a method that has recently attracted
based multiclass recognition is still linear to the numbér o significant attention in the vision community. In JointBgos
classes, and can lead to prohibitively large running times the OVA classifiers are trained jointly, and are forced to
in domains with a very large number of classes. In this pa- ghare features. In practice, this typically leads to baghér

per, itis shown that JointBoost-based recognition can be re gccuracy and faster classification time. Higher accuracy is
duced, at classification time, to nearest neighbor searehin - gptained because the impact of each feature is evaluated si-
vector space. Using this reduction, we propose a simple andmyitaneously on multiple OVA problems, thus making the
easy-to-implement vector indexing scheme based on prinCigstimate of that impact more reliable than if measured only
pal component analysis (PCA). In our experiments, the pro- o a single OVA problem. Faster classification time is ob-
posed method achieves a speedup of two orders of magniained because the total number of unique features that need
tude over standard JointBoost classification, in a hand posetg pe extracted from an input image is drastically reduced,

recognition system where the number of classes is close tos features are shared among multiple classifiers.
50,000, with negligible loss in classification accuracy.rOu

method also yields promising results in experiments on the
widely used FRGC-2 face recognition dataset, where the
number of classes is 535.

Although JointBoost drastically improves feature extrac-
tion time, the time complexity of classifying an input image
with JointBoost is still linear to the number of classes, as
is the case with other OVA methods based on boosting or
SVMs. As the number of classes becomes large, feature
. extraction time becomes a negligible part of total classific
1. Introduction tion time, and most of the time is spent on computing the

Many real-world applications involve recognizing a very esponse of each OVA classifier. The main contribution of
large number of classes, a number that can range from thouthis paper is showing that, given a pattern to classify using
sands to millions. Examples of such applications include JOiNtBoost, identifying the strongest-responding OV/sela
biometrics-based identification (based on faces and/or fin-Sifier for that pattern can be treated as a proximity search
gerprints), hand and human body pose classification, speeciRroblem, and more specifically as a nearest neighbor search
and sign language recognition, and generic object recogni-Problem in a vector space. This result allows us to use a vast
tion using computer vision. An important problem in such array of vector indexing methods, e.g., [4, 11, 13, 19, 24],
domains is designing recognition methods that are scalableS0 @S to improve classification time.
and that achieve efficient runtime in the presence of such a To demonstrate the computational advantage that can be
large number of classes. obtained by reducing JointBoost classification to nearest

Large margin methods, such as boosting [9, 20] and sup-neighbor search, we have implemented and evaluated a sim-



ple, easy-to-use vector indexing method based on princi-both accuracy and efficiency in the experiments of [22], in
pal component analysis (PCA). In our experiments, the pro- JointBoost it is still the case that all OVA classifiers are ap
posed method achieves a speedup of two orders of magniplied to each pattern at runtime. Our method can be applied
tude over standard JointBoost classification, in a hand poseon top of JointBoost and significantly reduce classification
recognition system where the number of classes is close tdime, as shown in the experiments.

50,000, with negligible loss in classification accuracy.r Ou In ClassMap [3], OVA classifiers and patterns are em-
method also yields promising results in experiments on thebedded into a common vector space, where the strongest re-
widely used FRGC-2 face recognition dataset, where thesponding OVA classifier for each pattern can be found more
number of classes is 535. Furthermore, the results of theefficiently. ClassMap can be applied on top of more gen-
proposed method compare favorably to those of ClassMaperal large-margin methods, whereas the method proposed
[3], a competing method for speeding up multiclass recog- in this paper is designed for JointBoost-based OVA classi-

nition in domains with large numbers of classes. fiers. On the other hand, the mapping proposed in this paper
is lossess, and preserves information as to which OVA clas-
2. Related Work sifier gives the strongest response for a pattern; ClassMap

does not guarantee preserving such information.

Large margin methods, such as boosting methods [9, Some additional methods have been proposed for speed-

2(.)] a}nd support vector machines (SVMs) [,23]’ hz?]ve beening up specific large multiclass problems. Efficient artic-
widely used in recent years. Large margin methods are ;oia hose estimation is achieved in [15] by combining
appealing because of their good generalization properties,ie o chical classifiers into a tree structure. Hieramhic

and their state-of-the-art performance in marny applicatio template matching has been used for pedestrian detection
(g.g., [22]). The standgrd strategy for.applymg large mar- [10] and articulated pose estimation [21]. Articulated gpos
gin r_nethods to a ”.‘“'“C'ass pro?"em is to decompose theq, 550 pe treated as a multidimensional regression prob-
mult!class problem into a ;et of bmary problems [2, 2_2_]' lem, and estimators can be trained that directly map obser-
Different types of multiclass-to-binary decompositions | -+ions into vectors from a continuous pose space [1, 7].

can be defined using error-correcting_output c_odes [2. 8]' However, many domains (e.g., face recognition) do not lend
The most commonly used decompositions are into all-pairs o selves readily either to hierarchical decomposition o
problems, whelre a classifier is trained to discriminate be- to regression-based estimation. In contrast, our method ca
tween each pair of classes, or into one-vs.-all (GVA) prob- readily be applied in any domain where JointBoost is appli-

Ie_ms_, V\_/here, for each class, an OVA classifier is trained to cable, and thus is significantly more general than the above-
discriminate between that class and all other classes. T

classify a query, typically all binary classifiers are apgli “mentioned domain specific approaches.
on the query pattern. An exception is the the DAGSVM 3
method [17], that uses the all-pairs scheme but requires a™*
number of classifier evaluations that is linear, not quacirat

to the number of C'?SSGS- S _ Let X be a space of patterns, aticbe a finite set of class
One way to achieve classification time sublinear to the |apels. Every patterX € X has a class labdl(X) € Y.

number of classes is to decompose the multiclass prob-in jointBoost [22], for each clagse Y a boosted classifier

lem into a sublinear number of binary problems. Inthe- fy . X — R is trained to discriminate between patterns

ory, recognizing: classes can be decomposeddg, n bi-  of classy and all other patterns. Classifif, is of the
nary problems. However, such sublinear decompositionsto|lowing form:

are rarely used because they define binary problems with

unnatural and hard-to-learn class boundaries, leadirayto | d

classification accuracy. OVA and all-pairs decompositions Hy = Z tymbum + Ky , @)

on the other hand, lead to more natural binary classifica- m=1

tion boundaries, and this explains the popularity of those where eacth,, is a weak classifier with weight,, ,,,, and

decompositions in practice. k, is a class-specific constant that gives a way to encode a
While OVA and all-pairs methods are frequently used in prior bias for each clasg [22]. We should also note that,

practice [3, 18, 22], the time complexity of those methods is in JointBoost, weightsy, ,,, are constrained to be either 1

at least linear to the number of classes. Linear complexity or O (depending on whethéf,, is using weak classifigt,,,

means that these methods are hard to scale to problems witbr not), but the method proposed in this paper does not use

a very large number of classes. Torralba, et al. [22] pro- that constraint, and can be applied regardless of the gessib

pose the JointBoost method for speeding up classificationvalues foroy, , .

time. In JointBoost, the OVA models share weak classifiers  Higher (more positive) responség, (Q) indicate higher

among them. While sharing weak classifiers has improvedconfidence that the true class labg|Q) of pattern( is

Review: Multiclass Recognition Using Joint-
Boost



y. To classify a query) € X, we evaluateff, (Q) for all By defining ¢, this way, it can easily be verified that the

y € Y, and classifyQ as belonging to the clagsfor which Euclidean norm of every (H,) is equal toNV,ax.

H,(Q) is maximized. More specifically, if we denote as Now we can define the vectors corresponding to test pat-
H(Q) the output of the multiclass classifiéf for pattern terns. In particular, given a pattefp € X, we define an

Q, H(Q) is defined as: auxiliary vectorV,is (@), and the vector of intere$t(Q),
as follows:
H(Q) = argmax, ey H,(Q) . ) "
At runtime, given a patter@ to classify, the standard ap- Vorig(Q) = (m(Q), ..., ha(Q),1,0), (6)
proach is to apply all OVA classifie,,, and identify they NiaxVorig(Q)
such that, gives the strongest response. Clearly, this ap- V) = [Vorig(Q)[| @)
proach has complexity linear to the number of classes. Our ©)

goal in this paper is to show that the strongest-responding

classifierf, can be found efficiently, using vector search where|V|| denotes the Euclidean norm &f, andh.,,, are

methods, without needing to evaludi (Q) for all y. This the weak classifiers used in Equation 1.

topic is addressed in the next sections. Using these definitions, Equation 2 can be rewritten as
follows:

) _ ) H(Q) = argmax,yH,(Q) 9)
The core observation underlying our method is that, for argmax, v (Voria (Q) - V(H,))  (10)
JointBoost-based multiclass recognition, both test pate gmaxyey Vorig Y
and OVA classifiers can be represented as vectors, specify- = argmax,.y(V(Q)-V(Hy)), (11)
ing points on the surface ofahypersphere. Findi'ng foratestwherev1 . V3 denotes the dot product between vectors
pattern@) the s_trongest-requndmg OVA classifiiy can andV;. To justify the above lines, we first observe that the
be done by doing nearest neighbor search on those points. (d + 2)-th coordinate ofV’(,), which is set toc,, does
In particular, we will map both OVA classifiers and test not influenceV.i (Q) - V(H, ) since the(d +2)- t?;]’ OO
. . . Ol‘lg Yy
e i e Of 001, () s sl 10 zer0. Thereor, it canbe
OVA classifiers. We denote by (Q) and V' (H,) respec- easily verified that, for alt, , , (Q) = Vorig(Q) - V (Hy).

) . Also, sinceV (Q) is just a scaled version df,.i. (Q), the
tlvely_t_he vectors co_rr_espoqdmg to test patté}_ramd OVA sameH,, that maximized/,,;,(Q) - V(H,) also maximizes
classifierH,,. In defining this mapping, we will explicitly :

: V(Q)-V(H,y).
ensure that all resulting vectors have the same norm. Ensur- oo o 0 o dditional step, to show that max-

ing that allV(H,) andV(Q) have the same norm will be imizing the dot product betwee¥i(H,) and V(Q) is the

“Sed.'T‘ reducing the problem of flndmg the winning OVA same as minimizing the Euclidean distance betwiégH )
cla_55|f|er for eachf) to the problem of finding the nearest andV(Q). That can be easily shown, by using the fact that
neighbor O.fV(Q) among allv (1, ). . bothV(Q) andV'(H,) are vectors of norniV,,.., because

We begin by deff.mmg. the vectdr (H,) corresponding the dot product and the Euclidean distance for vectors of
to each OVA classifiefd,: norm N,,. are related as follows:

V(Hy) = (ay1,---qyd, ky,cy) - 3)
v e IV(Q) = V(H,)|? = 2N2 —2(V(Q) - V(H,)) . (12)
In the above equationy, ,,, andk, are the weights and

class-bias terms used in Equation 1, andis a class-  The above equation can be easily derived as follows:
specific quantity that ensures that €l{,)) have the same

Euclidean norm. IV(Q) — V(Hy)|* = (13)

4. Reduction to Nearest Neighbor Search

Quantityc, can be determined as follows: first, we need = (V(Q) -~ V(H,)) - (V(Q) — V(H,)) (14)
to identify what the maximum norm of arly(H,) would = (V(Q)-V(Q)) + (V(H,) - V(H,)) — (15)
be if we set alk,, to zero: 2V(Q) - V(H,)) (16)
=2N2.. —2(V(Q) - V(H,)), 17
. J SSeim @ 2= 2V(Q) V(1) (a7)
m=1 using the fact thatV (Q) - V(Q)) = (V(Hy) - V(Hy)) =

Then, we define, as: Niax-

By combining this result with that of Equation 11, it fol-
lows readily that:

— k2] .
J o Z& " v i (18)

H(Q) = argmin, ey ([[V(Q) — V(Hy)|) -




This result means that, given a test pattérnfinding the 5.1. Guarantees of Accuracy
strongest-responding OVA classifi, is reduced to find-
ing the nearest neighbor &%(Q)) among all vector¥ (H,,).
The next section describes how to use that fact for speedin

up multiclass recognition.

We should note that the simple filter-and-refine method
outlined above does not guarantee achieving the same ac-
gcuracy as brute-force search. In other words, it does not
guarantee that théf, retrieved at the refine step will be
truly the one that we would have identified if we had simply
evaluatedH, (@) for all y. However, our filter-and-refine
method can be easily modified to guarantee achieving the
same accuracy as brute-force search.

More specifically, we can utilize the fact that PCA is
vectorsV(H,) can be computed off-line and stored in a a contractive mapping, meaning thaF the Euclidean dis-
database.( ?'Jl')he importance of reducing JointBoost—basec}ance betweed(V(Q))) an.d@(V(Hy)) Is guaranteed to be
classification to nearest neighbor search is that a vast ar—nOt greater than the Euclidean distance betwiééq) and

ray of vector indexing methods can be used to speed up thisV(Hy)' When the filter step estimates distances based on

search, such as, e.g., the methods in [4, 11, 13, 19, 24]. a contractive mapping, it is well-known that the refine step

. . . can be defined in a way that guarantees finding the true near-
In order to illustrate the computational savings that can y 9 9

be obtained by treating JointBoost-based classification aseSt ne|ghpor. Details on that topic can be found at' [12]. In
. . our experiments we found that, although we use a filter-and-
a nearest neighbor search problem, we have implemented a

) : : . efine version that does not guarantee finding the nearest
simple and easy-to-use vector indexing method that is based_ . . .
s . : neighbor 100% of the time, the accuracy that we obtained
on principal component analysis (PCA) [14]. Since the set

. . in practice was so high that it was not worth implementin
of vectorsV (H,) is computed off-line, we can use those P 9 P 9

vectors for an additional off-line step, where PCA is used amore complicated version. . .
X . o We should note that a large variety of vector and metric
to identify the principal components of those vectors and . . o
: . : indexing methods also guarantee finding the correct nearest
the corresponding projection matrix. Given a test pat- . .

. . neighbor, e.g., the methods in [19, 24, 25]. Such methods
ternQ, its vectorV'(@Q) can be projected t@(V(Q)) on- can easily be integrated into the filter step of our method
line, and thenP(V(Q)) can be compared to the projections y 9 P '
®(V(H,)) of the vectors corresponding to classifiéfg.

PCA can easily be used within a filter-and-refine retrieval
framework [12]: given a user-defined integer paramepter
filter-and-refine works as follows:

5. A Simple Vector Indexing Scheme

So far we have established that, in order to classify via
JointBoost a test patter®, it suffices to find the near-
est neighbor of’(Q) among all vectord’(H,). Clearly,

6. Classification Time Complexity

Given a test patterry, the time that it takes to classify
Q using the proposed method can be decomposed to the

. . following costs:
e Input: A test patterny, and its vector representation 9

V(Q). e Weak classifier cost: The cost of computing,,, (Q)
for each weak classifiek,,,. This takes timeO(d),
whered is the number of weak classifiers. For Joint-

Boost, it is empirically observed in [22] thattends

e Filter step: Compute the projectio®(V (Q)) to the
lower-dimensional space, and find the nearest neigh-

bors of ®(V(Q)) among the set of allb(V(H,)).
Keep the topp nearest neighbors, whegeis a user-
defined parameter, as mentioned above.

e Refine step: For each of the top nearest neighbors,
computeH, (Q).

e Output: Return theH, yielding the strongest re-
sponseH, (@), among theH,’'s evaluated during the
refine step.

Aslong as!’ < d (whered’ is the number of dimensions
of ®(V(Q)), andd is the number of weak classifiers), the
filter step is significantly faster than simply applying A,
to Q. At the refine step we do evaluate some classifiéys
but, if p <« d, these classifiers are only a small subset of the
entire set of OVA classifiers.

to increase logarithmically with the number of classes,
so this time cost should become a negligible fraction
of total time as the number of classes increases.

Projection cost: The cost of computing the PCA pro-
jection®(V(Q)). If ® projects fromd + 2 dimensions

to d’ dimensions, this takes tim@(d?), and becomes

a negligible fraction of total time as the number of
classes increases, assuming that, as mentioned earlier,
d scales logarithmically with the number of classes.

Filter cost: The cost of measuring Euclidean dis-
tances betwee®(V (Q)) and®(V (H,)) for eachH,,.
This takes time)(d’|Y]), where|Y| is the number of
classes. This is still linear to the number of classes,
but we can obtain a big constant factor of savings if
d" < d. We should also note that several methods



exist for sublinear nearest neighbor search in vector not. JointBoost selected 3,000 weak classifiers after-train

spaces, including the popular LSH method [11], and ing on this dataset.

such methods can be easily integrated into our method  For evaluation, we used a synthetic test set, disjoint from

to achieve time sublinear to the number of classes.  the training set, and consisting of 281 synthetic hand image

(chosen randomly among images from all 48,600 classes).

¢ Refine cost: The cost of evaluatind?, (Q) for each In addition to the synthetic hand images, we also used a

H, selected at the filter step. This takes tifié&ip), second test set of 992 real hand images, collected from 7

wherep is the number of classifier#/, selected at  subjects and with cluttered background. Because of the dif-

the filter step. As shown in our experiments, typically ficulties in visually estimating the 3D hand orientation on

p < |Y], so the refine cost is much smaller than simply an image, we assigned to each hand image three different

evaluatingH,, (Q) for eachH,,. class labels (out of the 48,600 possible class labels). Each
of those three class labels corresponded to the same hand-
7. Experiments shape and a 3D orientation within 30 degrees of the manu-

ally labeled orientation. The classification result is ¢dns
The datasets used in our experiments were generateered correct iff it is equal to one of those three labels.
from two original datasets: a dataset of hand images, where
the task is to estimate_ t_he handshape and the 3D orientat_ion7'1_2 The Face Dataset
and the Face Recognition Grand Challenge (FRGC) Version
2 dataset [16] of 2D face images. Using these datasets, welhis dataset contains all 2D face images in the FRGC-2
compare the proposed method to brute-force search, whictdataset [16], amounting to 36817 face images from 535
is the standard way of classifying patterns using OVA clas- subjects (i.e., 535 classes). The original resolution ef th
sifiers, not only for JointBoost, but in general for meth- face images was either 17642272, or1200 x 1600. All
ods based on boosting and support vector machines [2, 18]images were converted to gray images and normalized to
We also compare our method with ClassMap [3], a method 100 by 100 pixels. A PCA space was learned from 4,000
that can be used to speed up OVA-based classification. Weuniformly sampled training faces of all the subjects. The
only used ClassMap embeddings trained using AdaBoost,features of face images were their projections on the top
as specified in [3], because these embeddings were shown i2,509 PCA components, which accounts for 99.9% of the
[3] to outperform other versions of ClassMap embeddings. variance. JointBoost selected 10,000 weak classifiers afte
training on this dataset. Each weak classifigris a feature

7.1. Datasets stump, completely specified by parametérsandt,,, that
checks whether thé,,-th PCA dimension is greater than
7.1.1 The Hand Dataset t,» or not. For evaluation, we used 300 face images, that

This dataset contains hand images of 81 basic hand shapevsvere chosen randomly, and excluded from the training set.

defined in American Sign Language (ASL). There are 30 7 2 Results
different out-of-plane view angles for each shape, and 20 "™
in-plane rotations for each out-of-plane view, for a tothl o Performance is measured in terms of speed-up factor
81 x 30 x 20 = 48,600 hand pose classes. The training with respect to brute force, and classification accuracg Th
examples used for each class were 150 synthetic imagesspeed-up factor is the ratio between classification time us-
generated using Poser 5 [5]. ing our method (or ClassMap) and classification time using
For each synthetic hand image, cluttered backgroundbruote-force search. By definition, brute force achieves a
from random real images was added to the regions outsidespeed-up factor of 1. For the proposed method, the param-
the hand silhouette. From each hand image, a histogram-eters that need to be chosen dfgi.e., the dimensionality
of-oriented-gradient (HOG) feature vector [6] of dimemsio  of the lower-dimensional PCA space, and.e., the num-
2,025 was extracted. The image was normalized to 48 byber of OVA classifiers to be evaluated at the refine step. To
48 pixels, which was divided into cells of size 6 by 6, with reduce the number of free parameters to one, we decided to
neighboring cells overlapping by half. For each cell, nine set for our method, in all experiments,= "Td', wheren
edge orientation bins were evenly spaced between 0 to 180s the number of classes. This constraint is a simple choice
degrees. Bins in each cell were normalized with the sur- that forces the filter and the refine step to have the same
rounding 3 by 3 cells. All the bins from all the cells were running time. The PCA projection matrix, for each dataset,
vectorized into a feature vector of 2025 feature componentswas computed based solely on the vect@ig?,) of the
for a hand sample. Each weak classifigf is a feature OVA classifiers obtained for each dataset.
stump, completely specified by parametégfsandt,,, that In presenting the results we refer to the proposed method
checks whether thg¢,,-th HOG feature is greater thap, or as OVA-VS, an acronym for OVA-based classification using
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Figure 1. Accuracy vs. speed-up factor obtained by the proposedFigure 3. Accuracy vs. speed-up factor obtained by the proposed
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Figure 2. Accuracy vs. speed-up factor obtained by the proposed

OVA-VS method, ClassMap, and brute force, on the test set of real 19Ureé 4. Accuracy vs. speed-up factor (ignoring the projection

hand images. The brute force accuracy, which is a single value€0St of OVA-VS and ClassMap) obtained by the proposed OVA-

equal to 4.9%, is shown as a horizontal line. VS method, ClassMap, and brute force, on the test images of the
FRGC-2 face dataset. The brute force accuracy, which is a single
value equal to 87.0%, is shown as a horizontal line.

vector search.

p parameters for ClassMap. OVA-VS gave a speed-up
factor of 290 over brute-force search for a classification
Figure 1 compares the performance of the proposed OVA-accuracy of 6.85%. The highest accuracy obtained for
VS method, ClassMap, and brute-force search on the testlassMap was 5.3%, for a speedup factor of 105. We note
set of 281 synthetic hand images. In Figure 1, we plotted that both ClassMap and OVA-VS attained accuracies higher
a single performance curve for OVA-VS, obtained by con- than brute-force search for the real images. This is a some-
strainingd’ andp as specified above, and varyiag In what curious result, that was also reported in the original
contrast, for ClassMap, we plotted a family of curves, each ClassMap paper [3]. Intuitively, the lower-dimensionad-pr
curve corresponding to a different embedding dimensional-jection of OVA-VS and embedding of ClassMap can be seen
ity, ranging from 1 to 90 dimensions, and to varyingThe as new features extracted from the output of the weak clas-
single OVA-VS curve corresponds to much better accuracysifiers, and according to our results these new features lead
vs. efficiency trade-offs than any of the results obtained fo to higher accuracy than the original weak classifiers.
ClassMap. As a highlight, OVA-VS gave a speed-up factor ~ Additionally, on the real hand images, OVA-VS yields
of 120 over brute-force search for a classification accuracyan accuracy of 5.35%, still slightly better than that of brut
of 90.75% (equal to that of brute-force search), whereasforce search, for a speedup factor of 365. ClassMap pro-
ClassMap gave a speed-up factor of only 29 for that accu-duces accuracies better than or equal to that of brute force
racy. OVA-VS yielded this result fai’ = 12 andp = 194. search only for speedup factors less than or equal to 127.
Figure 2 shows results for the test set of 992 real hand It is worth noting that, even using brute force, classifica-
images. Once again, the single OVA-VS curve correspondstion accuracy drops significantly from 90.75% for the syn-
to much better accuracy vs. efficiency trade-offs than any thetic test images to 4.9% for the real hand images. The
of the results obtained using different dimensionality and relatively low accuracy for the real hand images simply re-

7.2.1 Results on the Synthetic Hands Dataset



flects the difficulty of estimating hand pose from a single plications require face recognition in the presence of tens
image, due to the very large number of possible classes.of thousands of classes or more (especially in homeland se-
Since there are 48,600 classes, a classification accuracy ofurity and surveillance domains), security and privacy-con
4.9% is still 2381 times higher than the accuracy of a ran- cerns make it difficult for such datasets to be made publi-
dom classifier. We should also note that even with this ac- cally available.

curacy, the proposed hand pose estimation system can be

useful for initializing a hand tracker based on particlefit 723 Summary of results

ing, where temporal integration can be used to significantly

improve overall tracking accuracy. On both synthetic and real hand images, the proposed OVA-
VS method significantly outperformed ClassMap and led
7.2.2 Results on the FRGC-2 Dataset to speedups of two orders of magnitude compared to brute

force with no losses in classification accuracy. On the face
Figure 3 plots the results attained with the proposed OVA- dataset, the performance of OVA-VS was hampered by the
VS method, ClassMap, and brute force on the FRGC-2 pyrgjection cost, which was relatively high due to the rela-
dataset. We note that for an accuracy of 84.2%, which tjely small number (535) of classes. When we excluded
is 2.8% lower than that of brute-force search, OVA-VS tne projection cost from the overall running time, to get a
achieved a speedup factor of only 1.6. As seen on the samgjicture of the expected performance when the number of
figure, ClassMap achieved a speedup of 3.0 for the same;|asses reaches 10000 or more, OVA-VS again significantly
accuracy of 84.2%, and a speedup of 1.8 for an accuracy ofpytperformed ClassMap, and gave speedups of over one or-
87%, which is equal to the accuracy of brute-force search. yer of magnitude compared to brute force, with very little

The main reason for the relatively small improvement in reduction (from 87% to 86%) in classification accuracy.
classification time attained by both OVA-VS and ClassMap

is the relatively small number of classes in this datasdy: on ; :
535, compared to the 48,600 classes of the synthetic handg' Discussion
dataset. As a result, generating a single dimension ofa PCA  We have shown that multiclass recognition using Joint-
projection, or a single dimension of a ClassMap embedding,Boost can be reduced, at runtime, to a nearest neighbor
are operations that incur 1/535 of the cost of brute-force search problem in a vector space. This reduction allows the
search, compared to 1/48600 for the hands dataset. In otheuse of a wide array of vector indexing methods for speed-
words, the relatively small number of classes makes the pro-ing up multiclass recognition. In our experiments, we have
jection cost defined in Section 6 more pronounced. As dis-shown that a very simple indexing method, that uses PCA
cussed in Section 6, the projection cost for our method be-to select a few candidate nearest neighbors, works very well
comes negligible as the number of classes becomes largan practice and achieves, for the hands dataset, speedups of
and this is also true for ClassMap. two orders of magnitude with no loss in classification ac-
Figure 4 plots classification accuracy vs. speedup fac-curacy, compared to brute-force search. Our method out-
tor, but ignores, in computing running times, the projettio performs ClassMap in the hands dataset, and if we ignore
cost of generating PCA projections and ClassMap embed-the projection cost (which would be negligible if we had
dings for the queries. This curve is representative of the a significantly larger number of classes), our method also
performance we could expect if we had a much larger num- outperforms ClassMap on the faces dataset.
ber of classes, that would make the projection costs neg- In comparing our method with ClassMap, it is worth not-
ligible. In that case we see that the proposed OVA-VS ing that ClassMap defineslassyvector representation of
method performs better than ClassMap, obtaining, for ex- OVA classifiersH, and patterns). Therefore, ifVcy is
ample, a speedup factor of 12.9 for a classification accu-the vector mapping defined by ClassMap, the nearest neigh-
racy of 86.0%. For that same accuracy, ClassMap gives abor of Vo (Q) among allVen (H,) is not guaranteed to
speedup factor of 4.6. correspond to théf,, maximizing H,(Q). In contrast, the
The results that exclude the projection cost are promis-method proposed in this paper defindessless/ector rep-
ing, and indicate that we can expect significant classificati  resentation, where the nearest neighbor always correspond
time improvements from using our method in face recogni- to the strongest-responding classifier.
tion domains with tens of thousands of classes or even more. We should emphasize that, instead of PCA, any other
Unfortunately, we are not aware of any publically available vector indexing method can also be integrated in the fil-
face dataset with such a large number of classes. To thder step of the proposed method. Several vector indexing
best of our knowledge, no public dataset of 2D face im- methods guarantee finding the correct nearest neighbor for
ages contains more classes than the FRGC-2 dataset, whileach query. Using such methods for the filter step of our
still providing a sufficient number of training examples per algorithm guarantees that classification accuracy usimg ou
class to learn OVA classifiers. While several important ap- method will always equal that of brute-force search.



Naturally, an interesting topic for future explorationdst [12] G. Hjaltason and H. Samet. Properties of embedding
try a larger number of vector indexing methods, in order to methods for similarity searching in metric spacefEEE
identify methods that tend to work well in practice within Transactions on Pattern Analysis and Machine Intelligence
the proposed framework. Also, as the proposed method  25(5):530-549, 2003.
is only applicable to JointBoost-based classification,iit w  [13] G.R.Hjaltason and H. Samet. Index-driven similarity search
be interesting to investigate whether similar methods can N Metric spacesACM Transactions on Database Systems
also be designed for other types of large margin classifiers, 28(4)f517_5§o’, 2003. .
such as support vector machines. Progress in this area cal?! |1.gJ;éI|ffe. Principal Component AnalysisSpringer-Verlag,
lead to a broader theory of how to integrate database index- )

ina methods with general large marain methods. so as t0[15] E. J. Ong and R. Bowden. A boosted classifier tree for hand
9 9 9 9 ’ shape detection. IfFace and Gesture Recognitiopages

achieve scalable classification time complexity in domains 889-894, 2004.
with a very large number of classes. [16] P.J.Phillips, P.J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek. Overview
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