
Biclustering Protein Complex Interactions with a Biclique Finding Algorithm

Chris Ding
Lawrence Berkeley Nat’l Lab

Berkeley, CA94720
chqding@lbl.gov

Ya Zhang
University of Kansas
Lawrence, KS 66045
yazhang@ittc.ku.edu

Tao Li
Florida International University

Miami, FL 33199
taoli@cs.fiu.edu

Stephen R. Holbrook
Lawrence Berkeley Nat’l Lab

Berkeley, CA 94720
SRHolbrook@lbl.gov

Abstract

Biclustering has many applications in text mining, web
clickstream mining, and bioinformatics. When data entries
are binary, the tightest biclusters become bicliques. We pro-
pose a flexible and highly efficient algorithm to compute
bicliques. We first generalize the Motzkin-Straus formal-
ism for computing the maximal clique from L1 constraint
to Lp constraint, which enables us to provide a generalized
Motzkin-Straus formalism for computing maximal-edge bi-
cliques. By adjusting parameters, the algorithm can fa-
vor biclusters with more rows less columns, or vice verse,
thus increasing the flexibility of the targeted biclusters. We
then propose an algorithm to solve the generalized Motzkin-
Straus optimization problem. The algorithm is provably
convergent and has a computational complexity of O(|E|)
where |E| is the number of edges. Using this algorithm, we
bicluster the yeast protein complex interaction network. We
find that biclustering protein complexes at the protein level
does not clearly reflect the functional linkage among protein
complexes in many cases, while biclustering at protein do-
main level can reveal many underlying linkages. We show
several new biologically significant results.

1 Introduction

Biclustering refers to finding sub-blocks in a rectangu-
lar data matrix, such as a word-document matrix, a web
clickstream matrix (users vs websites), DNA microarray
expression profiles, or the protein - protein complex inter-
action network. Biclustering can be viewed as simultane-
ous data clustering and feature selection, i.e., detection of
significant clusters and the features that are uniquely as-
sociated with them. This is because not all features are

relevant to certain clusters, for example, only a subset of
websites are responsible for a subset of web users in the
clickstream problem. Thus one needs to combine feature
selection and clustering together. The definition of biclus-
ters varies significantly[19], but the most intuitive notion of
biclusters are dense regions in the rectangle data matrix.

In many applications, such as web clickstream, phylo-
genetic tree dataset, frequent itemset finding, data entries
are binary. In these cases, biclustering becomes biclique
finding, because the simplest and most dense sub-blocks are
bicliques. Li et al [18] show there is a correspondence be-
tween biclique and frequent closed itemset.

At present, the most fruitful application of biclustering
is in bioinformatics. In the following, we will focus on the
protein interaction network problem as the target applica-
tion. The algorithms developed for cliques and bicliques
are completely general and can be applied to all bipartite
graphs.

Maximal-edge Biclique

A bipartite graph has two types of nodes, a set R of r-
nodes and a set C of c-nodes. In the adjacency matrix of the
bipartite graph, r-nodes are represented by the rows and c-
nodes are represented by the columns. A biclique is a subset
(R1, C1) where R1 ⊂ R and C1 ⊂ C such that every r-node
in R1 is connected to every c-node in C1.

Let B be the adjacency matrix of the bipartite graph. B
is a rectangle matrix of |R| rows (r-nodes) and |C| columns
(c-nodes). A biclique Z1 = (R1, C1) implies that the ma-
trix sub-block BR1,C1 is a block of all 1’s. A biclique Z1

is a maximal biclique if there exists no larger bicliques of
which Z1 is a subset. A biclique (R1, C1) has |R1| + |C1|
nodes (the sum of the number of rows and columns of the
subblock) and |R1| ∗ |C1| edges (the area of the subblock).

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00 © 2006

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 12, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

Thus, there are two types of maximum bicliques: (a) max-
imum edge bicliques where the number of edges is maxi-
mum/complete, and (b) maximum node bicliques where the
number of node is maximum/complete. From the adjacency
matrix point of view, the maximum node biclique selects
the sub-block with the largest perimeter, while the maxi-
mum edge biclique selects the sub-block with the largest
area (see Figure 2 for illustration). From the application
point of view, the maximum edge bicliques are the interest-
ing subgraphs that we wish to compute.

Biological meaning of Bicliques/Biclusters

Biclustering is used to find a subblock in the 2D gene
expression data (a rectangle matrix), where rows represent
genes and columns represent either tissue samples or exper-
imental conditions. The rationale is that a protein is only ex-
pressed in (or changes expression in) a set of tissues (pheno-
types). Therefore, when clustering tissues, there is no need
to include all genes. Another motivation is that a protein
may participate in several functions, and thus a mutually
exclusive partitioning of proteins (as occurring in standard
clustering) is not appropriate.

Clique and Biclique Finding

It is known that the maximum clique finding and the
maximum edge biclique finding are NP-hard[10]. It is also
known that the maximum clique problem is hard to approx-
imate: there exists an ε > 0 such that no polynomial time
algorithm can approximate the size within a factor of n1−ε

[9, 4, 14, 5]). Clique and biclique detecting algorithms typ-
ically enumerate all clique/bicliques[6, 8, 20, 1, 18] making
use of the fact that a subset of a clique/biclique is still a
clique/biclique. These algorithms typically have high order
complexity.

Outline of the paper

In this paper, we use the algorithmic approach of the
Motzkin-Straus theorem that relates clique finding to the
optimization of a quadratic function with L1 constraints
(see §5).

Our main contributions are described in §5 - §6. We first
generalize the Motzkin-Straus formalism to use Lp con-
straints (see §5). We then generalize the Motzkin-Straus
formalism with Lp constraints to bipartite graphs and de-
rive an iterative algorithm to compute the solution (see §6).
We prove the correctness and convergence of the algorithm.

For presentation purpose, we first describe the new bi-
clique finding algorithm in §2. We give an illustrative ex-
ample to show how the algorithm works in §3 and show that

the algorithm can effectively find large bicliques in random
graphs in §4.

In §8, we apply the biclique algorithm to protein complex
interactions and discuss the data, procedure, and results in
detail. Our results in protein complex interaction biclus-
tering show that biclustering protein complexes at the pro-
tein domain level is able to reveal many functional linkages
among protein complexes which are not observed when bi-
clustering the protein complex data at protein level.

2 Biclique finding algorithm

In this section we outline the main biclique finding algo-
rithm. In §3 - §4, we give an illustrative example and show
the algorithm can find large bicliques in random graphs. De-
tailed analysis of the algorithm is explained in §5 - §6.

Let B be the adjacency matrix of the bipartite graph (the
input data matrix). B is a rectangle matrix of n = |R| rows
and m = |C| columns. Define the n-vector x on the r-nodes
and the m-vector x on the c-nodes.
Computing one biclique.

Given initial (x(0),y(0)). [e.g., x(0) = (1 · · · 1)T and
y(0) = (1 · · · 1)T .] Set α = β = 1.1. The iterative algo-
rithm updates x,y using:

x
(t+1)
i =

(
x

(t)
i

(By(t))i

[x(t)]TBy(t)

)1/α

, (1)

y
(t+1)
j =

(
y
(t)
j

(BT x(t))j

[x(t)]TBy(t)

)1/β

. (2)

Let x∗ = (x∗
1, · · · , x∗

n)T and y∗ = (y∗
1 , · · · , y∗

m)T be
the converged solution. Let R be the subset correspond-
ing to nonzero elements in x: R = {i | x∗

i > 0}. Let
C be the subset corresponding to nonzero elements in y:
C = {j | y∗

j > 0}. Then (R, C) is a maximal biclique.
We can set α �= β to favor different shapes of the com-

puted maximal biclique. For example , if we set α > β,
this favors maximal bicliques which has larger row sizes. In
general, setting α, β = 1.05 ∼ 1.1 gives very tight cliques
(perfect cliques). Setting α, β = 1.2 or larger gives loose
cliques, i.e., cliques with some edges missing. This could
be useful for some applications.

The algorithm is extremely simple to implement. The
most time consuming part is matrix-vector multiplication
which fit cache-based microprocessor architecture and thus
runs very efficiently (in comparison to many graph algo-
rithms which constantly encounter pointer-chasing and runs
much less efficently due to cache miss).
Computing multiple bicliques.

Computing different bicliques are achieved by setting
different initial starts: (x(0),y(0)). We have two ap-
proaches. (1) random starts. Setting (x(0),y(0)) to random

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00 © 2006

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 12, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

nz = 490

Figure 1. The adjacency matrix B for the bi-
partite graph. Each solid point at (i, j) rep-
resent an edge exists between r-node i and
column-node j. The maximum biclique is at
the lower-right corner.

Figure 2. Enlarged lower-right corner of the
adjacency matrix in Fig.1. There are 6 maxi-
mal bicliques overlapping in this region as in-
dicated by different rectangle boxes. The al-
gorithm correctly picks up the the maximum-
edge biclique A.

uniform distributions. (2) Masking. After a clique (R, C)
is detected, we set the corresponding entries of B to a small
value.

3 An Illustrative Example

In all experiments/applications in this paper, we set β =
α for simplicity.

The proposed algorithm is easily implemented. Here we
report experiments on random graphs and bipartite graphs
up to order of 1000. We first uses a bipartite graph of or-
der 30x50 to illustrate some of concepts and features of the
solution. In Figure 1, we show the adjacency matrix of the
bipartite graph. The nonzero elements in B represent edges.

In Figure 2, we show the maximum-edge biclique which
is at the lower-right corner: RA = (28, 29, 30), CA =
(43, · · · , 50) and |R||C| = 24. The algorithm correctly
picks up this maximum-edge biclique. This is not a triv-
ial task (even in this simple example), because there are 6
maximal bicliques overlapping in this region. We can easily
verify that all other 5 maximal bicliques have |R||C| < 24.

We note in this region, the maximum-node biclique is
clique B: RB = 30, CB = (39, · · · , 50). Thus |RB | +
|CB| = 13. In comparison, the maximum-edge biclique A
has |RA|+ |CA| = 11. Typically, maximum-node bicliques
are long and narrow blocks, and thus not interesting from
genomics point of view. Fortunately, our algorithm detects
the more interesting maximum-edge bicliques.

In Figure 3, we show the the solution vector x∗ at β =
1.1. The curve arise sharply at R1 = (28, 29, 30), indi-
cating a maximal biclique there. The solution vector y∗ at
different β = 1.1 is shown in Figure 4. Clearly the curve
arise sharply at C1 = (39, · · · , 50), indicating a maximal
biclique.

In Figure 4 we also show how the solution vector y∗

varies at different β = 1.1, 1.2, 1.3, 2 . Starting at β = 2, y∗

varies with no significant peak region. But at β = 1.3, 1.2,
the solution becomes sharper and sharper, as expected. At
β = 1.1 the solution is sharp enough to define the clique.
At β = 1.05 the solution converges to the step function, the
ideal solution. These can be seen from the enlarged detailed
part at bottom panel.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

β=1.1

Solution vector x*

Figure 3. Solution vector x∗ at β = 1.1.

It is important to note that the maximum biclique
(R1, C1) overlaps with maximal biclique (R2, C2). In Fig-
ures 1 and 2, the solution vectors converges to (R1, C1)
sharply, indicating the capability of the algorithm to iden-

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00 © 2006

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 12, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

tify the maximal cliques in overlapped situations.

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

β=2

β=1.3

β=1.1

β=1.2

35 40 45 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

β=1.05

β=1.1

β=1.2

Figure 4. Upper: Solution vector y∗ at β =
2, 1.3, 1.2, 1.1. Lower: Details of solution vec-
tor y∗ at β = 1.2, 1.1, 1.05.

4 Detect Embedded Cliques

Next, we test the ability of the algorithm to detect max-
imum bicliques. We embed a known biclique into the stan-
dard random graphs (two nodes are joined with an edge
with fixed probability p = 0.3). We vary the size of the
embedded cliques, while fixing the rectangle matrix to be
500x1000. We set α = β = 1.05. We tested on 20 bi-
partite graphs with randomly generated adjacency matrices.
The embedded maximum bicliques are readily detected in
all cases.

5 Motzkin-Straus formalism for clique find-
ing

We approach the problem of detecting cliques through a
theorem due to Motzkin and Straus [21] which relates maxi-
mal cliques to the optimization of a quadratic function. The
use of the Motzkin and Straus theorem has been in a number
of studies [22, 12].

Let A be the adjacency matrix of an unweighted undi-
rected graph. Computing the maximal cliques can be refor-
mulated as the solution to the following optimization prob-
lem:

max
x

xTAx s.t.
n∑

i=1

xi = 1, xi ≥ 0, (3)

where Aii = 0.
Theorem 1 [Motzkin and Straus]. Let G be an unweighted
graph. and x∗ the optimal solution for the problem of
Eq.(3). Let C = {i | x∗

i > 0} be the subset correspond-
ing to nonzero elements. If nonzero elements have the same
values, x∗

i = 1/|C| for ∀i ∈ C (in this case x∗ is called a
characteristic vector of a subset C), C is a maximal clique
in G.

Note that the feasibility constraint is the L1 norm. We
generalize the Motzkin-Straus formulation in two direc-
tions. First we generalize the the feasibility constraint to
use Lp norm. For a vector x, it is governed by

||x||pp =
n∑

i=1

|xi|p.

As long as p � 1, the optimal solution vector is sparse, i.e.,
many elements in x∗ are zero. Using L1 constraint to en-
force sparsity is well-known in statistics as used in LASSO
[23, 15].

Second, we generalize the Motzkin-Straus formulation
to bipartite graph. This enables us to use it to compute bi-
cliques.

6 Generalized Motzkin-Straus Formalism
for bicliques

Let G(B) be a bipartite graph with a set R of r-nodes
and a set C of c-nodes. Let B be the adjacency matrix of
G(B). B is a rectangle matrix of n = |R| rows (r-nodes)
and m = |C| columns (c-nodes).

A maximal biclique is computed via the solution to the
following optimization problem:

max
x∈F α

x , y∈F β
y

xTBy (4)

where the feasible regions of x is defined by

Fα
x = {x ∈ Rn|

n∑
i=1

xα
i = 1, xi ≥ 0}. (5)

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00 © 2006

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 12, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

where α = 1 + ε, 0 < ε	 1, and the feasible regions of y
is defined by

F β
y = {y ∈ Rm|

m∑
j=1

yβ
i = 1, yj ≥ 0}. (6)

Let (x∗,y∗) be an optimal solution, R1 = {i | x∗
i > 0}

be the subset of nonzero elements in x∗, and C1 = {j | y∗
j >

0} be the subset of nonzero elements in y∗.
Theorem 2 [Generalized Motzkin-Straus Theorem for bi-
partite graph]. Let α = 1 + ε1, 0 < ε1 	 1. and
β = 1 + ε2, 0 < ε2 	 1. For an optimal solution (x∗,y∗),
if nonzero elements of x∗ have same values, and if nonzero
elements of y∗ have same values, then (R1, C1) is a max-
imum edge biclique in B. The objective function has the
optimal value J = |R1|1−1/α|C1|1−1/β .
Proof. Assume subblock BR1,C1 is a maximal biclique. x∗

must have the form

x∗ = (1/|R1|1/α)(1 · · · 1, 0 · · · 0)T ,

if we index the r-nodes of R1 first. y∗ must have the form

y∗ = (1/|C1|1/β)(1 · · · 1, 0 · · ·0)T ,

if we index the c-nodes of C1 first. The objective becomes

J = (x∗)T By∗ = |R1|1−1/α|C1|1−1/β .

Because 1 − 1/α > 0 and 1 − 1/β > 0, |C1| and |R1| are
simultaneously maximized. �
Remark. We can adjust α, β to favor different shapes of
the computed maximal biclique. For example , if α > β,
then 1 − 1/α > 1 − 1/β. This favors maximal bicliques
which has larger row sizes1. For example, if there exists
two maximal cliques A, B in the graph with same num-
ber of edges, i.e., |RA||CA| = |RB||CB |. But if A has
large row size: |RA| > |RB|, then |RA|1−1/α|CA|1−1/β >
|RB|1−1/α|CB |1−1/β . This implies A will be computed
first.

Algorithm for computing biclique

We provide an iterative algorithm to compute the max-
imum biclique. We prove its feasibility, correctness, and
convergence. Given initial (x(0),y(0)), the iterative algo-
rithm updates x,y using:

[
x

(t+1)
i

]α

= x
(t)
i

(By(t))i

[x(t)]TBy(t)
, (7)

[
y
(t+1)
j

]β

= y
(t)
j

(BT x(t))j

[x(t)]TBy(t)
, (8)

1In DNA gene expressions, this means favoring biclusters with more
genes instead of tissue samples. We may also set α < β to favor biclusters
with more tissue samples than genes.

This is the same update rules of Eqs.(1,2).

Feasibility

Clearly, (x(t),y(t)) remain in feasible region for all t >
0, because

∑
i

[x(t+1)
i]α =

∑
i

x
(t)
i (By(t))i

[x(t)]TBy(t)
= 1.

and ∑
i

[y(t+1)
i]β =

∑
i

y
(t)
i BT x(t))i

[x(t)]TBy(t)
= 1.

Correctness

We solve the constraint optimization problem. The La-
grangian function incorporating constraint is

L2 = xTBy − λ(
∑

i

xα
i − 1)− ζ(

∑
j

yβ
j − 1) (9)

where the Lagrangian multiplier λ is for enforcing x in F β
x ,

and the Lagrangian multiplier ζ is for enforcing y in F β
y .

The nonnegativity of x is enforced by the complementarity
condition, ∂L

∂xi
xi = 0, which leads to

[
(By∗)i − λα[x∗

i]α−1
]
x∗

i = 0. (10)

Summing over index i, we obtain

λ = [x∗]TBy∗/α. (11)

The nonnegativity of y is enforced by the complementarity
condition, ∂L

∂yj
yj = 0, which leads to

[
(BT x∗)i − ζβ[y∗

j]β−1
]
y∗

j = 0. (12)

Summing over index j, we obtain

ζ = [x∗]TBy∗/β. (13)

We can easily verify that (a) the converged solution for
x from Eq.(1) satisfies the KKT condition Eq.(10), using
Eq.(11). (b) the converged solution for y from Eq.(2) satis-
fies the KKT condition Eq.(12). These ensure the correct-
ness of the algorithm.

Convergence

Theorem 3. Under the update rule for x,y, the Lagrangian
function L2 of Eq.(9) is monotonically increasing (non-
decreasing),

L2(x(0),y(0)) ≤ L2(x(1),y(1)) ≤ L2(x(2),y(2)) ≤ · · · .
Since J is bounded from above, the convergence of the it-
erative algorithm is thus established.

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00 © 2006

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 12, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

Proof. We use the auxiliary function approach. A function
G(x,x′) is an auxiliary function of L(x) if

G(x,x′) ≤ L(x); G(x,x) = L(x). (14)

Now, we define

x(t+1) = argmax
x

G(x,x(t)). (15)

By construction, we have L(x(t)) = G(x(t),x(t)) ≤
G(x(t+1),x(t)) ≤ L(x(t+1)). This proves the monotonic-
ity of L(x(t)). under the iterative updating rule of Eq.(15).

We first note that

xTBy =
∑
ij

xiBijyj ≥
∑
ij

x′
iSijy

′
j(1 + log

xiyj

x′
iy

′
j

)

because xiyj

x′
iy

′
j
≥

(
1 + logxiyj

x′
iy

′
j

)
, for xi, yj , x

′
i, y

′
j > 0 using

the inequality of z ≥ 1 + log(z) for any positive z. There-
fore,

G(x,y,x′,y′) =
∑
ij

x′
iSijy

′
j(1+ log

xiyj

x′
iy

′
j

)−λ(
∑

i

xα
i −1)− ζ(

∑
j

yβ
j −1)

is a auxiliary function of L2(x,y), because G(·, ·) satisfies
the condition Eq.(14): The first term in L2 is always greater
than or equal to the first term in G. The equality holds when
x = x′,y = y′. The second and third terms are identical in
G and L2.

The maximum for Eq.(15) is obtained by setting the gra-
dient to zero,

∂G(x,x′,y,y′)
∂xi

=
x′

i(By′)i

xi
− λαxα−1

i = 0. (16)

and

∂G(x,x′,y,y′)
∂yi

=
y′

i(B
T x′)i

yi
− ζβyβ−1

i = 0. (17)

These two equations can be re-written as

[xi]β = x′
i

(B[y′](t))i

λα
,

[yi]β = y′
i

(BT [x′](t))i

ζβ
,

According to Eq.(15), the variable relations for x are
x(t) ← x′ and x(t+1) ← x. Substituting the Lagrangian
multiplier λ value of Eq.(11), we recover the update rule
Eq.(1). Similarly, the variable relations for y are y(t) ← y′

and y(t+1) ← y. Substituting the Lagrangian multiplier ζ
value of Eq.(13), we recover the update rule Eq.(2).

To ensure the solution gives a maxima, we show that the
second order derivatives (Hessian matrix) of G are negative
definite. We have

∂2G(x,x′,y,y′)
∂xi∂xj

= −[
x′

i(By′)i

x2
i

+ λα(α − 1)xα−2
i]δij .

∂2G(x,x′,y,y′)
∂yi∂yj

= −[
y′

i(B
T x′)i

y2
i

+ ζβ(β − 1)xβ−2
i]δij .

∂2G(x,x′,y,y′)
∂xi∂yj

= 0.

Because α ≥ 1 and β ≥ 1, this Hessian matrix is a
diagonal matrix with negative quantities on the diagonals.
Therefore G(x,x′,y,y′) is a concave function in x,y and
has a unique global maximum. This complete the proof of
Theorem 3. �
Case β = 2.
Theorem 4. For α = β = 2, the optimal solution (x∗,y∗)
are given by the first singular vector pair of B. Let the
singular value decomposition B =

∑
k=1 σkukvT

k . Then
x∗ = u1,y∗ = v1.
Proof. Restricting to α = β = 2. In this case, from
Eqs.(11,13), λ = ζ. Eqs.(10,12), become

x∗
i (By∗)i = 2λ[x∗

i]
2, y∗

i (BT x∗)i = 2ζ[y∗
i]2

Clearly, setting x∗ = u1,y∗ = v1 and λ = ζ = σ1/2 sat-
isfy these KKT conditions. Furthermore, according to Per-
ron Theorem, the elements of u1,v1 must be nonnegative
since B is nonnegative. �

7 Generalized cliques on weighted graphs

Cliques are only defined for unweighted graphs. For a
weighted graph with edge weight W , we may threshold the
weights with a threshold h: setting Aij = 1 if Wij ≥ h;
Aij = 0 otherwise. We run the algorithm to compute
cliques on A(h).

We may compute cliques for several threshold h’s: h1 >
h2 > · · · > hk. The thresholded graphs A(h) clearly
satisfy A(h1) ⊂ A(h2) ⊂ · · · ⊂ A(hk). Let C(h) rep-
resents the set of cliques on graph A(h). Then we have
C(h1) ⊂ C(h2) ⊂ · · · ⊂ C(hk).

A natural question then arise: which h we should set?
Fortunately, using Motzkin-Straus Formalism, the edge
weights in A are not required to be either 0 or 1. Thus we
can directly set A = W and run the algorithm; and the
nonzero entries correspond to the generalized cliques. This
provides a definition of the generalized or pseudo-cliques
on weighted graphs. We can similarly define generalized
bicliques on weighted bipartite graphs.

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00 © 2006

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 12, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

8 Biclustering the Protein Complex - Protein
Domain Network

Proteins interact with other proteins in many cellular
processes, including metabolism, endocrine and exocrine,
signaling, synthesis and transport. A protein complex is
formed by two or more proteins that physically interact with
each other, and is often called molecular machines of life. A
systematic identification, characterization and understand-
ing of these molecular machines will provide an essential
knowledge base, and link proteome dynamics and architec-
ture to cellular function and phenotype.

A number of experimental approaches provide genomic
scale protein interaction data. The two-hybrid genetic
screen [17, 24] yields binary interaction data. High through-
put mass spectrometry methods [11, 16] combine tagged
proteins and protein-complex purification schemes with
mass spectrometric measurements to yield physiologically
relevant data on intact multi-protein complexes.

However, these high-throughput experiments are often
associated with large false-positive rates (30-50%). Protein
interaction data obtained in two independent two-hybrid
screening experiments [17] and [24] overlap by less than
4%. The overlap between two mass spectrometry methods
[11, 16] is also around 5%. Therefore, using computational
methods to predict protein interaction modules from these
data is an important way to extract additional information.

The nature of protein complexes can be easily expressed
as a bipartite graph, where p-nodes refer to protein com-
plexes, and r-nodes refer to proteins. We are interested
in discovering densely connected subgraphs in the bipar-
tite graph which are likely candidates for protein interaction
modules. In graphs, the most densely connected objects are
cliques. Thus we wish to detect bicliques in the bipartite
graph.

Previous analysis [16, 2, 7], of protein complex data
were largely performed on the protein level, i.e., discov-
ering protein functional modules etc. on the network of
protein complex - protein. However, comparison of com-
plexes at protein level is not able to reflect the function
linkage among protein complexes in many cases. For ex-
ample, the protein composition of the cytoplasmic riboso-
mal large subunit and the mitochondrial ribosomal large
subunit both function for protein synthesis. When compar-
ing the protein composition of the two complexes, no sin-
gle protein is found to present in both complexes. When
we compare the two protein complex at domains level, 14
domains are found to share between the two complexes Be-
cause different proteins with similar activities are likely to
contain similar/same domains, there are multiple instances
of the domains dispersed in the data sets, while there might
be only a few copies of each protein. Analyzing com-
plexes at the domain level has the advantages of provid-

ing an enriched functional information[26, 25]. This also
eliminates the need to model internal complex-protein and
protein-domain connectivity. The domain-complex associ-
ation demonstrates connections between the biological pro-
cesses and what the domains facilitate.

Complex #Protein #Domain
Cytoplasmic RLS 81 50

Mitochondrial RLS 44 29
Shared unit 0 14

Table 1. Protein domain composition of cy-
toplasmic and mitochondrial ribosomal large
subunits.

8.1 Bipartite Graph Model

The relationship between protein complexes and do-
mains is naturally modeled with a bipartite graph. A bi-
partite graph has two types of nodes, and edges connect-
ing nodes of different types. Let G(C, D, E) be the bi-
partite graph representing protein complexes and their con-
stitutional proteins, with C-type nodes representing protein
complex ci and D-type nodes representing protein domain
dk. The adjacency matrix E is

Eik =
{

1 if protein complex ck contain domain di

0 otherwise
(18)

This simple graph model assign binary weights to the edges,
i.e. 1 if a domain is present in the protein, 0 otherwise.

8.2 Data sources

Protein complex data were obtained from MIPS Com-
prehensive Yeast Genome Database [13]. The main part
of the complex data consists of manually annotated pro-
tein complexes derived from literatures. But it also includes
several hundred of complexes identified by high through-
put experiments. The latter set of complex data are biased
by bait selection and purification method. These complexes
may only represent a population of different biological com-
plexes with which the bait protein is associated. Therefore,
for this task, we only use the protein complexes identified
from literature. As a result, 267 complexes were used and
1237 unique proteins are contained in the set of complexes.

The domain definitions of the yeast proteins are accord-
ing to Pfam [3], which contains hidden Markov model based
profiles (HMM-profiles) of many common protein domains
based on multiple sequence alignments. The Pfam database
contains two parts: one is the curated part called Pfam-A
and the other is automatically generated supplement called

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00 © 2006

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 12, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

Pfam-B which represents small families taken from the
PRODOM database that do not overlap with Pfam-A. Only
Pfam-A families are used here. In total, 709 Pfam domains
are defined on the set of complexes. Proteins without de-
fined domains are disregarded.

8.3 Result

We apply the biclique finding algorithm to the adjacent
matrix E. Significant bicliques obtained are listed in Table
3. Complete results are available upon request.

The bicliques in the domain-complexes bipartite graph
define modules in protein complexes, as domains in a bi-
clique are highly affiliated with each other.

To see the importance of biclustering protein complex
interactions at domain level, we define a score ρ to measure
the ratio of the shared domains that are attributed to shared
proteins.

ρ =
#D −#Dp

#D
,

where #D is the number of domains in the biclique pat-
tern, #Dp is the number of domains resulted from shared
proteins among the set of complexes in the biclique pattern.
The ratio ρ ranges from 0 to 1, with ρ=1 indicating no pro-
tein is shared among the set of complexes but they do share
the set domains. About half of the bicliques discovered have
ρ=1, suggesting/confirming the importance of analyzing the
protein complexes at the domain level.

8.4 Biological Examples

The bicliques represent groups of functionally-related
domains as well as functionally-related protein complexes.
For example, RNA polymerase I, RNA polymerase II,
and RNA polymerase III are all DNA-dependent RNA
polymerases responsible for the polymerization of ribonu-
cleotides into a sequence complementary to the template
DNA. These three forms of RNA polymerases transcribe
different sets of genes and synthesize different RNAs. RNA
polymerase I is located in the nucleoli and it synthesizes
precursors of most ribosomal RNAs. RNA polymerase II
occurs in the nucleoplasm and it synthesizes mRNA precur-
sors. RNA polymerase III also occurs in the nucleoplasm
and it synthesizes the precursors of 5S ribosomal RNA,
the tRNAs, and a variety of other small nuclear and cy-
tosolic RNAs. One discovered biclique contains the three
RNA polymerases and a set of 19 domains, all of which
are annotated as DNA-directed RNA polymerase activity
(GO:0003899) by gene ontology. These 19 domains con-
sist of a core set of domains necessary for RNA synthesis.

Another instance is the biclique of two types of riboso-
mal large subunit and 14 domains. As discussed before,
the two types of ribosomal large subunits share no proteins.

The domain level analysis allows us to functionally link the
cytoplasmic ribosomal large subunit and mitochondrial ri-
bosomal large subunit based on their 14 shared domains.
The set of 14 shared domains are mostly annotated by gene
ontology for protein biosynthesis (GO:0006412). Similarly,
we found 11 shared domains (annotated as protein biosyn-
thesis) in the cytoplasmic ribosomal small subunit and mito-
chondrial ribosomal small subunit. This allows us to func-
tionally link the two types of ribosomal small subunit al-
though they share no common proteins.

The replication complexes, DNA polymerase alpha (I) -
primase complex, DNA polymerase epsilon (II), and DNA
polymerase delta (III) are linked in a biclique together with
their shared domains DNA pol E B, DNA pol B exo, and
DNA pol B. These complexes all involves DNA synthesis
and these three domains all have DNA-directed DNA poly-
merase activity (GO:0003887).

The above examples show that the biclique finding
method is able to simultaneously group domains as well as
protein complexes. This grouping clearly indicates func-
tional linkage among the set of protein complexes and do-
mains.

9 Summary

In this paper, we propose a new algorithm for comput-
ing bicliques in bipartite graphs. The algorithm is based on
generalized Motzkin-Straus formalism for cliques. It has
the flexibility to favor different shapes of targeted bicliques.
The algorithm can be easily implemented; it can effectively
and efficiently compute maximal bicliques.

We also show that biclique finding is similar to bicluster-
ing of a bipartite graph. We provide a detailed case study on
finding bicliques on the protein complex interactions. We
show that biclustering at the protein domain level provides
many more functional linkages than biclustering at the pro-
tein level.

Acknowledgement

This work is supported in part by U.S. Department of
Energy, Office of Science, through a MAGGIE project in
the GTL Program, under contract DE-AC02-05CH11231.

References

[1] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. Hammer, and
B. Simeone. Consensus algorithms for the generation of all
maximal bicliques. Discrete Applied Mathematics, 145:11–
21, 2004.

[2] G. D. Bader and C. W. V. Hogue. Analyzing yeast protein-
protein interaction data obtained from different sources. Na-
ture Biotechnology, 20:991–997, 2002.

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00 © 2006

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 12, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

[3] A. Bateman, L. Coin, R. Durbin, et al. The Pfam pro-
tein families database. Nucleic Acids Res. (Database Issue),
33:D138–D141, 2004.

[4] M. Bellare, M. Goldreich, and M. Sudan. Free bits, pcps and
non-approximability — towards tight results. Proc. IEEE
Symp. on Foundations of Computer Science, pages 422–431,
1995.

[5] I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The
maximum clique problem. In D.-Z. Du and P. M. Parda-
los, editors, Handbook of Combinatorial Optimization, vol-
ume 4. Kluwer Academic Publishers, Boston, MA, 1999.

[6] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques
of an undirected graph. Communications of the ACM,
16:575–577, 1973.

[7] C. Ding, X. He, R. Meraz, and S. Holbrook. A unified repre-
sentation for multi-protein complex data for modeling pro-
tein interaction networks. Proteins: Structure, Function, and
Bioinformatics, 57:99–108, 2004.

[8] D. Eppstein. Arboricity and bipartite subgraph listing algo-
rithms. Information Processing Letters, 51:207–211, 1994.

[9] U. Feige, S. Goldwasser, L. Lov’asz, M. Safra, and
M. Szegedy. Approximating clique is almost np-complete.
Proc. IEEE Symp. on Foundations of Computer Science,
pages 2–12, 1991.

[10] M. Garey and D. Johnson. Computers and Intractability: A
guide to the theory of NP Completeness. Freeman, 1979.

[11] A.-C. Gavin, M. Bosche, R. Krause, et al. Functional or-
ganization of the yeast proteome by systematic analysis of
protein complexes. Nature, 415:141–147, 2002.

[12] L. Gibbons, D. Hearn, P. Pardalos, and M. Ramana. Con-
tinuous characterizations of the maximum clique problem.
Mathematics of Operations Research, 22:754–768, 1997.

[13] U. Guldener, M. Munsterkotter, G. Kastenmuller, et al.
Cygd: the comprehensive yeast genome database. Nucleic
Acids Res. (Database Issue), 33:D364–D368, 2005.

[14] J. Hastad. Clique is hard to approximate within n1−ε. Acta
Mathematica, 182:105–142, 1999.

[15] T. Hastie, R. Tibshirani, and J. Friedman. Elements of Sta-
tistical Learning. Springer Verlag, 2001.

[16] Y. Ho, A. Gruhler, A. Heilbut, et al. Systematic identifi-
cation of protein complexes in saccharomyces cerevisiae by
mass spectrometry. Nature, 415:180–193, 2002.

[17] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and
Y. Sakaki. A comprehensive two hybrid analysis to ex-
plore the yeast protein interactome. Proc. Natl. Acad. Sci.,
98(8):4569–4574, 2001.

[18] J. Li, H. Li, D. Soh, and L. Wong. A correspondence be-
tween maximal complete bipartite subgraphs and closed pat-
terns. 9th European Conf. on Principles and Practice of
Knowledge Discovery in Databases (PKDD), Porto, Portu-
gal, October 2005, pages 146–156, 2005.

[19] S. C. Madeira and A. L. Oliveira. Biclustering algorithms
for biological data analysis: A survey. IEEE/ACM. Trans.
on Computational Biology and Bioinformatics, 1:25 – 45,
2004.

[20] K. Makino and T. Uno. New algorithms for enumerating
all maximal cliques. Proc Scandinavian Workshop on Algo-
rithm Theory, pages 260–272, 2004.

[21] T. Motzkin and E. Straus. Maxima for graphs and a new
proof of a theorem of turan. Canad. J. Math., 17:533–540,
1965.

[22] M. Pelillo. Relaxation labeling networks for the maxi-
mum clique problem. Journal of Artificial Neural Networks,
2(4):313–328, 1995.

[23] R. Tibshirani. Regression shrinkage and selection via the
LASSO. J. Royal. Statist. Soc B., 58:267–288, 1996.

[24] P. Uetz., L. Cagney, G. Mansfield, et al. A comprehensive
analysis of protein-protein interactions in saccharomyces
cerevisiae. Nature, 403(6770):623–627, 2000.

[25] Y. Zhang, J.-M. Chandonia, C. Ding, and S. Holbrook. Com-
parative mapping of sequence-based and structure-based
protein. BMC Bioinformatics, page 77, 2005.

[26] Y. Zhang, H. Zha, C. Chu, and X. Ji. Protein interaction
inference as a max-sat problem. Proc. of IEEE CVPR 2005
Workshop on Computer Vision Methods for Bioinformatics,
2005.

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00 © 2006

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 12, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

Table 2. Computed bicliques from the domain-complex bipartite graph.
Domain Complex ρ

RNA pol Rpb1 1; RNA pol Rpb1 2; RNA pol Rpb1 3;
RNA pol Rpb1 4; RNA pol Rpb1 5; RNA pol L;
RNA pol A bac; RNA pol Rpb2 1; RNA pol Rpb2 2;
RNA pol Rpb2 3; RNA pol Rpb2 5; RNA pol Rpb2 6;
RNA pol Rpb2 7; RNA pol Rpb5 N; RNA pol Rpb5 C;
DNA RNApol 7kD; RNA pol N; RNA pol Rpb8;
RNA pol Rpb6

RNA polymerase I (510.10); RNA polymerase II
(510.40.10); RNA polymerase III (510.120)

0.68

Ribosomal L14; Ribosomal L1; Ribosomal L5; Riboso-
mal L5 C; Ribosomal L23; Ribosomal L11 N; Riboso-
mal L11; KOW; Ribosomal L2; Ribosomal L2 C; Riboso-
mal L6; L15; Ribosomal L3; Ribosomal L13

cytoplasmic ribosomal large subunit (500.40.10); mito-
chondrial ribosomal large subunit (500.60.10)

1

Ribosomal S17; Ribosomal S9; S4; Ribosomal S5; Ri-
bosomal S5 C; Ribosomal S14; Ribosomal S10; Riboso-
mal S15; Ribosomal S2; Ribosomal S7; Ribosomal S19

mitochondrial ribosomal small subunit (500.60.20); cyto-
plasmic ribosomal small subunit (500.40.20)

1

TFIID-18kDa; TFIID 90kDa; TFIID 20kDa; TFIID 30kDa;
TAF; DUF1546; TFIID-31kDa

SAGA complex (230.20.20); SAGA complex
(510.190.10.20.10); TAFIIs (510.70.20)

0.14

Actin; Bromodomain; SNF2 N; Helicase C; SNF5;
Myb DNA-binding; SWIRM; YEATS

SWI/SNF transcription activator complex(510.190.50);
RSC complex (Remodel the structure of chromatin) (400)

0.88

Transket pyr; Pyr redox 2; Pyr redox; Biotin lipoyl; 2-
oxoacid dh; E1 dh; GIDA Pyr redox dim

Pyruvate dehydrogenase (390); 2-oxoglutarate dehydroge-
nase (20)

1

Adaptin N; Adap comp sub; Clat adaptor s AP-2 complex (260.20.20); AP-3 complex (260.20.30);
AP-1 complex (260.20.10)

1

DNA pol E B; DNA pol B exo; DNA pol B Replication complex (410.35); DNA polymerase alpha (I)
- primase complex (410.40.60); DNA polymerase epsilon
(II) (410.40.100); DNA polymerase delta (III) (410.40.90)

1

Pyr redox 2; DAO; FAD binding 2; Succ DH flav C other respiration chain complexes (420.60); Succinate de-
hydrogenase complex (complex II) (420.20)

0

MutS I; MutS II; MutS III; MutS IV; MutS V MSH2/MSH3 complex (510.180.50.10); MSH2/MSH6
complex (510.180.50.20)

0

GTP EFTU; GTP EFTU D2 eEF1(500.20.10); eRF3(500.30.30); eEF2 (500.20.20);
eIF2 (500.10.20)

1

XPG N; XPG I NEF3 complex (510.180.10.30); Exonucleases
(410.40.120)

1

RNase P Rpp14; RNase P p30; RNase P pop3; POP1;
POPLD

RNase P (440.14.10); RNase MRP (440.12.20) 0

WD40; Helicase C; DEAD; RRM 1 CCR4 complex (510.190.110); mRNA splicing
(440.30.10); rRNA splicing (440.30.20)

1

HATPase c; DNA gyraseB; DNA topoisoIV Synaptonemal complex (SC) (490); Topoisomerases
(410.40.140)

0

ATP-synt ab N; ATP-synt ab; ATP-synt ab C; ATP-
synt C

F0/F1 ATP synthase (complex V) (420.50); H+-
transporting ATPase, vacuolar (220)

1

Prenyltrans; PPTA Farnesyltransferase (FTase) (180.10); Geranylgeranyl-
transferase I (GGTase I) (180.20); Geranylgeranyltrans-
ferase II (GGTase II) (180.30)

0

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00 © 2006

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 12, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

