
IN
TE

R
N

ET
 S

EA
R
CH

Traditional search engines do

not consider document quality

in ranking search results. The

Hyperlink Vector Voting

method adds a qualitative

dimension to its rankings by

factoring in the number and

descriptions of hyperlinks to

the document.

TOWARD A
QUALITATIVE
SEARCH
ENGINE

YANHONG LI

GARI Software/IDD Information Services

Hypertext is fundamentally a database system that provides a
unique, nonsequential method of accessing information. Its essen-
tial features are nodes and hyperlinks. Nodes contain text, graph-

ics, audio, video, and other media. Hyperlinks connect the nodes and sup-
port the nonlinear organization of information. The most extensive and
popular hypertext system today is the World Wide Web. However, unlike
a traditional document database, where each document is selected or
authored for its relevance to the whole, the Web exists in the open envi-
ronment of the Internet where everyone can post documents. The fact that
a resource exists on the Internet is no guarantee of its importance, accu-
racy, utility, or value.1

Most Internet searches are launched by casual users making simple
queries on popular topics.2 Because such queries can generate tens of thou-
sands of hits, the ranking of a document’s relevance to a query is a core
technology for search engines. Traditional information retrieval theory
offers models for measuring the similarity between user-defined keywords
and document contents. These models include the Vector Space Model,
probabilistic models, and fuzzy logic models.3 Almost all models depend
on the frequency of query terms in a given document (there are ways to
normalize the weighting of terms to account for document length4). How-
ever, this approach assumes an integrity among the documents in a data-
base that is not at all the case on the Internet. On the contrary, “keyword
spamming” is a common technique used by Web-site marketers to increase
their ranking in search results. In any case, the frequency with which a
word appears in a document is no guarantee of content quality.

This article describes the Hyperlink Vector Voting method, a new method
of indexing and retrieving hypertext documents. HVV uses the content of
hyperlinks to a document to rank its relevance to the query terms. Thus,

24 JULY • AUGUST 1998 h t tp ://computer.org/ in te rne t/ 1089-7801/ 9 8 /$10.00 ©1998 IEEE IEEE INTERNET COMPUTING

.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 24, 2009 at 11:31 from IEEE Xplore. Restrictions apply.

A Q U A L I T A T I V E S E A R C H E N G I N E

25IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1998

HVV operates somewhat like the Science Citation
Index, where the number of papers that cite a given
paper has proved an effective tool for measuring the
quality of its content and its relevance to a topic. In
HVV, the hyperlinks to a site are the “citations” to it.

After introducing some basic information
retrieval concepts and their relation to a hypertext
implementation, I describe the HVV method in
some detail, followed by experimental results for
Rankdex, a simple search engine I developed that
uses the HVV method.

INFORMATION RETRIEVAL
In an information retrieval system, documents are
preprocessed (inverted) to create an inverted index
that records for each term its postings in the collec-
tion. A posting is a tuple consisting of a term, a doc-
ument id (a unique document identifier, typically
an integer), and the weight of that term in that doc-
ument. The postings associated with a term are
sorted by document id. Similarity-based search
algorithms consult the postings of each query term
to compute the relevance scores of documents that
have terms in common with the query.

The Vector Space Model5 is widely used in infor-
mation retrieval to quantify the similarity between
two documents, or a query and a document. In this
model, a document is represented by a vector with
one component for each unique term in the vocab-
ulary of the collection. The value of each compo-
nent is the weight for that term in that document,
often a function of the frequency of the term in that
document. Terms that do not occur in the docu-
ment have zero weight. Queries are also represent-
ed as vectors. The similarity between a query and a
document is then calculated as the inner-product of
their term vectors. This measure is equal to the
cosine of the angle between the two vectors, and
hence is sometimes called “cosine similarity.”

For example, in the vector-space model, the user
query Q

r
is a vector and each keyword in the query

represents a dimension of the query vector; m is the
number of keywords in the query. For Internet search
engines, 70 percent of all queries have an m value of
one or two, but m could be very large in some cases.

Q
r

= (q1, q2, … , qm)

A document, D
r
, is also represented by a vector,

with each keyword as a dimension, where n is typ-
ically the number of keywords in D

r
.

D
r

= (d1, d2, … , dm)

The relevance score is then calculated by the dot
product of Q

r
and D

r
after Q

r
and D

r
are normalized

to have the same dimension. (If a keyword appear-
ing in D

r
does not belong to Q

r
, the corresponding

dimension will have a value of 0 in Q
r

and vice versa.)

R = Q
r

⋅ D
r

(1)

The calculation of a dimension’s value in Q
r

or D
r

is
called term weighting. The most popular term
weighting formula is

Wx,t = fx,t ⋅ log(N /ft) (2)

where fx,t is the number of occurrences of word t in
x, which could be either a query or document; N is
the number of documents in the collection; and ft
is the number of documents containing term t.

This function allots high weights to rare words on
the assumption that these words are more discrimi-
nating than common words; in other words, the pres-
ence of a rare word in both a query and a document
is assumed to be a good relevance indicator.

This assumption is not valid in a hypertext sys-
tem like the Web where the documents have high-
ly variable qualities and purposes. However, hyper-
text systems do offer another option for
determining relevancy in that hypertext documents
express not only their semantic content but also
their hyperlinks to other documents (see the side-
bar, “Hyperlink Structure”).

IR research in the context of hypertext has there-
fore focused on the user-specified links between
nodes. This research includes efforts to integrate

.

HYPERLINK STRUCTURE

A hyperlink connects two anchors on different nodes: the hyperlink’s
head (at the destination node) and its tail (at the source). An anchor
is identified by an absolute Uniform Resource Identifier, such as
http://www.w3.org/hypertext/Book.html. A fragment identifier can
also be added, indicated by a “#” and a sequence of characters:
http://www.w3.org/hypertext/Book.html#chapter1.

In HTML, hyperlinks are formatted with different options:
<a option1 , . . . , optionN> anchor-text .
The most important option is HREF, which defines a hyperlink:

 anchor-text , where the URL is a Uniform
Resource Locator for the head (destination) anchor and “anchor-text”
is the tail (source) anchor, which typically describes the document spec-
ified by the URL.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 24, 2009 at 11:31 from IEEE Xplore. Restrictions apply.

I N T E R N E T S E A R C H

26 JULY • AUGUST 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

query-based retrieval strategies with browsing in
hypertext networks6,7 and experiments to improve
retrieval performance using hyperlinks and con-
nected nodes.8 There has also been work on
improving retrieval effectiveness by combining the
evidence represented by different types of links in
a network representation.9

These hypertext projects, however, follow tradi-
tional IR in ranking the retrieval result primarily
according to document content. They consider
hyperlinks as additional information and usually
give them lower weight in relevance ranking. Fur-
thermore, hypertext IR research usually factors in
the content of documents at connected nodes in its
ranking. These additional documents complicate
the ranking to the point where it is ineffective in
general, even though it can be very effective in spe-
cific situations. For example, using connected
nodes for additional information can improve
retrieval quality when the collection is small and its
documents belong to a specific field, such as med-
icine or computer science.

THE HYPERLINK VECTOR
VOTING METHOD
The HVV method ranks a document on the basis of
the number of hyperlinks to it and uses the hyperlink
anchor-text as the semantic content for the docu-
ment. In essence, when the database is large enough,
the search results are similar to “voting” results: a doc-
ument’s content is selected based on how others
describe it, rather than how the author describes it.
The HVV method uses link vectors to represent a

document. Each link vector represents a hyperlink
pointing to the document; in other words, the hyper-
link’s head anchor is the document’s URL. The
hyperlink’s tail—its anchor-text—is treated as its con-
tent, and the weighting of each term in the anchor-
text defines one link vector for the document.

During indexing, the index engine traverses the
whole document database using a Spider, collects
hyperlink information for each document, and cre-
ates a list in the form

Doc.ID: anchor-text

where Doc.ID refers to a hyperlink’s head anchor.
The search engine can generate an inverted index
from this information, typically in the form

Term: DF, Doc1, Doc2, … , Doci, … , DocDF

where Term is a term from the anchor-text, DF is
Term’s document frequency (defined as the num-
ber of documents that are referred as the head
anchor in any hyperlink with anchor-text that con-
tains Term), and Doci is the ith document hyper-
linked to by anchor texts with Term.

Finally, a hypertext document is represented by
link vectors

(3)

where Dj is a document ID, and L
r

i is the ith hyper-
link vector whose head anchor is Dj. The value of
each link-vector dimension is calculated using a
term weighting method.

Figure 1 shows a small hypertext system with
four nodes (DocA, DocB, DocC, and DocD) and
three hyperlinks (from DocA to DocB, DocC to
DocB, and DocC to DocD). During the traversing
process, the link information is extracted as

DocB: “good tutorial on Java”; “Java Tutorial”
DocD: “Sun’s Java Site”

The inverted file produced from the link informa-
tion will be (assume it is case insensitive):

good 1 DocB
tutorial 1 DocB
on 1 DocB

D

L
L

L

j

i

=



















r

r

Lr

1

2

.

DocA

Robin's list
…
Here is a
good tutorial on Java.

Trail map: the Java
language tutorial
…

DocB

DocC DocD

JavaSoftJoe's home page

Interesting stuff …
 Java tutorial
 Sun's Java site

Figure 1. A simple hypertext system. In DocA, the hyperlink’s head
anchor is the URL to DocB; the tail anchor (and hyperlink content) is
“good tutorial on Java.”

Authorized licensed use limited to: Zhejiang University. Downloaded on December 24, 2009 at 11:31 from IEEE Xplore. Restrictions apply.

A Q U A L I T A T I V E S E A R C H E N G I N E

27IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1998

java 2 DocB, DocD
sun’s 1 DocD
site 1 DocD

and the hyperlink vector representation for the doc-
uments are:

good tutorial on java
DocB: < 2, 2, 2, 1 >

java tutorial
< 1, 2 >
Sun’s java site

DocD: < 2, 1, 2 >

As with most search engines, during information
retrieval, the HVV method matches query words
against the inverted index to locate relevant docu-
ments. HVV then ranks the documents based on the
hyperlink vector representations. Like link descrip-
tions, queries are also represented as vectors. The
ranking score is defined as the sum of all dot prod-
ucts between the query vector and each hyperlink
vector for a given document. The summation process
is like voting: more links will typically result in high-
er scores. However, the voting is weighted; it also
depends on similarities between the link and query
vectors. Equation 4 shows the ranking formula.

(4)

where R is the ranking score, Q
r

is the query vector,
and L

r
i is the link vector. For example, in the hyper-

text system in Figure 1, if the query is “Java Tutor-
ial,” it is represented as vector

java tutorial
Query: < 1, 2 >

Similarly, we can calculate the
document link vectors for DocB:
ranking scores for DocB and
DocD are 1.62 and 0.149,
respectively.

Because no hyperlinks point
to document A or C, their rank-
ing scores for the query “Java
tutorial” are zero, even though
both documents contain the
words “Java” and “tutorial.”
When HVV assigns the same rat-
ing to two documents, conven-

tional indexing and retrieval methods can be used
for further distinction. In this case, conventional rel-
evance scores for documents A and C would be 0.6
and 0.8, respectively, giving a final relevance ranking
of DocB, DocD, DocC, and DocA.

EXPERIMENTAL RESULTS
In 1997, we conducted tests using Rankdex,10 an
experimental HVV-based Web search engine avail-
able at http://rankdex.gari.com. Our spider col-
lected about 5.3 million hypertext documents on
the Internet and indexed them according to the
HVV index structure. The total size of the index is
100 Mbytes (much smaller than a conventional
index, which is typically around 500 Mbytes).

Because we do not have a truth value for a query
set for the Web documents, we conducted experi-
ments in an ad hoc way. In general, documents
reviewed by people and judged as relevant are
accepted as close to the truth value of a user query.
Therefore, for our experiments we collected a set
of popular queries and sent them to a search engine
that manually reviews and categorizes Web docu-
ments, what we call the “editor’s search engine.” We
sent the same queries to Rankdex and counted how
many of Rankdex’s top 10 hits were returned by the
editor’s search engine and selected as relevant. For
comparison, we sent the queries to other major
search engines and counted how many of their top
10 hits were selected by the editor’s search engine.

Because the average number of keywords speci-
fied in user queries is 1.5,11 we used a small but rep-
resentative set of 10 short search queries. Finally,
many search engines have their own team of edi-
tors and collection of editors’ choices. Because we
were comparing Rankdex with many major search

R Q Li

i

n

= ⋅()
=

∑
r r

1

.

Table 1. Search results comparison.

Query LookSmart Rankdex AltaVista Excite Infoseek Lycos
Wallpaper 10 2 0 1 0 0
Skiing 10 2 0 1 0 0
Real estate 10 1 0 1 0 0
Sandra Bullock 5 3 0 0 2 0
Yahoo 8 2 1 0 1 0
Microsoft 10 1 0 0 0 0
Las Vegas 9 1 0 0 0 0
Airlines 4 2 0 1 0 0
Stock quotes 10 2 1 0 0 0
Java tutorial 3 2 0 1 1 0
TOTAL 79 18 2 5 4 0

Authorized licensed use limited to: Zhejiang University. Downloaded on December 24, 2009 at 11:31 from IEEE Xplore. Restrictions apply.

I N T E R N E T S E A R C H

28 JULY • AUGUST 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

engines, for our editor’s engine we chose one that
was lesser known but well regarded: LookSmart
(http://www.looksmart.com) from Reader’s Digest.

Table 1 shows the search results. We used 10
queries on six search engines, examining the top 10
results for each. LookSmart editors chose 79 Web
sites for the 10 queries. Rankdex matched 18 of
LookSmart’s search results, roughly 22.7 percent.
The closest commercial search engine, Excite,
matched five (6.3 percent). Of the remaining
engines, Infoseek matched four (5.0 percent),
AltaVista matched one (1.2 percent), and Lycos
matched none. HVV most closely simulated
human editors’ efforts and could therefore pre-
sumably meet users’ information needs better than
the other search engines evaluated.

Not all of the 79 documents returned by Look-
Smart were completely relevant. For example, for the
query “real estate,” the home page for Arthur Ander-
sen (a consulting company) was among the top 10.
Clearly, it is not a good match. On the other hand,
Rankdex and other search engines did return some
good matches not reviewed or returned by Look-
Smart. Thus, the low matching percentage does not
mean the search engines are much worse than Look-
Smart. Nevertheless, all of the overlapped documents
are relevant to the queries and of good quality.

Because the Rankdex index was significantly
smaller than the other search engine indexes—5.3
million pages as compared with 20–50 million—
we did another test to verify that HVV benefits also
apply to larger hypertext systems. In our “meta-
engine test,” we took the first N search results from
a major search engine and applied HVV indexing
and retrieval: We indexed the N pages, extracted
the hyperlinks and anchor texts, and computed the

relevance scores using the HVV method. We then
reranked the N documents and compared the over-
lap with the new top-10 list and the LookSmart
search results.

As a base search engine, we used Excite with
N = 500. Table 2 shows the results, using the same
query set as before. The Excite-HVV column shows
the overlap with LookSmart when HVV is applied
to the first 500 hits from an Excite query. For com-
parison, Rankdex and Excite alone are also listed.

Excite-HVV achieved a total of 15 overlaps, a
300 percent increase over Excite alone. This is still
less than Rankdex alone, possibly because only the
top 500 hits of Excite were counted. If N is large
enough, we might see even better results: the larg-
er the database, the more the votes, and hence the
more objective the results.

BENEFITS AND DRAWBACKS
OF HVV
Because the hyperlink vector and link-based invert-
ed index contain only link information, ranking
does not depend on the words appearing in the
documents themselves. Rather, rankings are based
only on hyperlinks—how many there are to a given
document and the document description the links
provide. This solves several problems common to
traditional ranking systems. Documents that use
“keyword spamming” will rank high only if they
meet the description and popularity standard as
well. Document size is no longer a factor in rele-
vance ranking and thus shorter documents that
may be more relevant but do not use a term as often
as a long document are more likely to be selected.
Thesaurus or knowledge bases might also be less
important. For example, even if the word “lawyer”
never appeared in a document titled “California
Immigration Attorneys,” the word might be used
in a hyperlink pointing to this document.

There are other advantages as well. Images,
graphics, and sounds—which are not searchable by
conventional methods—are searchable by hyper-
link descriptions pointing to them. The same is true
of foreign-language documents if there are hyper-
links to them in the user’s native language. In cases
where images, graphics, and so on serve as anchor
text, the index engine simply substitutes an applic-
able image or graphic with the tail anchor’s docu-
ment title.

The HVV model can also derive applications,
such as one that automatically selects the “Best of
the Web” in any particular area. Also, by compar-
ing different descriptions of hyperlinks pointing to

.

Table 2. Excite-HVV search results comparison.

Query LookSmart Rankdex Excite Excite-HVV
Wallpaper 10 2 1 1
Skiing 10 2 1 2
Real estate 10 1 1 1
Sandra Bullock 5 3 0 3
Yahoo 8 2 1 1
Microsoft 10 1 0 1
Las Vegas 9 1 0 1
Airlines 4 2 1 2
Stock quotes 10 2 0 1
Java tutorial 3 2 1 2
TOTAL 79 18 6 15

Authorized licensed use limited to: Zhejiang University. Downloaded on December 24, 2009 at 11:31 from IEEE Xplore. Restrictions apply.

A Q U A L I T A T I V E S E A R C H E N G I N E

29IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1998

the same document, you can discover synonyms,
extract new concepts, and build a thesaurus.

A potential problem is that HVV-based engines
can also be spammed. In experiments so far, we
have counted duplicate hyperlinks and link descrip-
tions on the same Web site as multiple links. Given
this, people could construct documents whose con-
tents are nothing but repeated links to get a high
rank for the links’ head document. However, the
potential for “link spamming” is easily thwarted:
we simply count each link only once, no matter
how many times it appears on a Web site. Getting
multiple Web sites to include links to a certain site
with the intent to spam is clearly a more difficult
project.

FUTURE WORK
We are currently investigating many issues, includ-
ing when best to use HVV in place of traditional
relevance ranking. Because HVV is kind of “vot-
ing,” if there are not many query-related docu-
ments, voting results might be random. Even in a
large hypertext system such as the Web, HVV
would probably work better in combination with
traditional retrieval methods. Whenever the confi-
dence score of HVV is low, traditional relevance
ranking should be used.

Because of the dynamic nature of the Web,
hyperlinks often point to bad URLs. Therefore,
detecting bad links is a practical next step. Also,
because different URLs might point to the same
document, detecting duplicate URLs and combin-
ing them into a single document ID is a challeng-
ing task.

Given the different ways HVV and traditional
IR methods define document frequency, it would
be interesting to compare the actual distribution of
words on the Internet according to each method.
Finally, HVV is derived from the Vector Space
Model; it would be interesting to see how the spir-
it of hyperlink indexing could be adopted by prob-
abilistic and other retrieval models. ■

ACKNOWLEDGMENTS
I thank Larry Rafsky for his strong support of this research,

Doran Howitt for his effort in deploying a real-world search ser-

vice based on Rankdex, and Ron Katriel for his constructive sug-

gestions. Many other members of GARI Software provided

important feedback after using Rankdex. I also thank William

Chang of Infoseek for beneficial discussions and the anonymous

reviewers for their suggestions. This research is funded by IDD

Information Services.

REFERENCES
1. H. Berghel, “Cyberspace 2000: Dealing with Information

Overload,” Comm. ACM, Vol. 40, No. 2, 1997, pp. 19-24.

2. E. Selberg and O. Etzioni, “Multi-Service Search and Com-

parison Using the MetaCrawler,” Proc. Fourth Int’l WWW

Conf., 1995; available online at http://www.w3.org/Con-

ferences/WWW4/Papers/169.

3. D. Harman, “Ranking Algorithms,” in Information

Retrieval Data Structures and Algorithms, W.B Frakes and

R. Baeza-Yates, eds., Prentice Hall, Upper Saddle River,

N.J., 1992, pp. 363-392.

4. G. Singhal, A. Salton, and C. Buckley, “Length Normal-

ization in Degraded Text,” Fifth Symp. Document Analysis

and Information Retrieval, 1996; available online at

http://www.research.att.com/~singhal/ocr-norm.ps.

5. G. Salton, The SMART Retrieval System, Prentice-Hall,

Upper Saddle River, N.J., N..J., 1971.

6. M.E. Frisse, “Searching for Information in a Hypertext

Medical Handbook,” Comm. ACM, Vol. 31, No. 7, 1988,

pp. 880-886.

7. R. Thompson and W.B. Croft, “Support for Browsing in

an Intelligent Text Retrieval System,” Int’l J. Man-Machine

Studies, Vol. 30, No. 6, 1989, pp.639-668.

8. H.P. Frei and D. Stieger, “The Use of Semantic Links in

Hypertext Information Retrieval,” Information Processing

& Management, Vol. 31, No. 1, 1995, pp. 1-13.

9. W.B. Croft and H. Turtle, “A Retrieval Model for Incor-

porating Hypertext Links,” Hypertext 89 Proc., ACM Press,

Pittsburgh, 1989, pp. 213-224.

10. Y. Li, “Beyond Relevance Ranking: Hyperlink Vector Vot-

ing,” RIAO 97: Computer-Assisted Information Searching on

Internet, 1997, McGill University, Montreal, Canada, pp.

648–650. Also available at http://ciir.cs.umass.edu/nir97/

li.ps.gz.

11. B. Pinkerton, “Finding What People Want: Experiences

with the WebCrawler,” Proc. Second Int’l WWW Conf.,

1994; available online at http://info.webcrawler.com/bp/

www94.html.

Yanhong Li is a staff software engineer for Infoseek Corpora-

tion’s core technology group. His research interests include

Internet search engines, information retrieval, document

analysis, and new media management. From 1994 to 1997,

he was a senior consultant at GARI Software, IDD Infor-

mation Services. He received a BS degree in information

science from Peking University, China, in 1991 and an MS

degree in computer science from the State University of

New York at Buffalo in 1993.

Readers may contact the author at Infoseek Corporation, 1399

Moffett Park Drive, Sunnyvale, CA 94089; yanhong@

infoseek.com.

.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 24, 2009 at 11:31 from IEEE Xplore. Restrictions apply.

