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Abstract
We combine linear discriminant analysis (LDA)
and K-means clustering into a coherent frame-
work to adaptively select the most discriminative
subspace. We useK-means clustering to gener-
ate class labels and use LDA to do subspace se-
lection. The clustering process is thus integrated
with the subspace selection process and the data
are then simultaneously clustered while the fea-
ture subspaces are selected. We show the rich
structure of the general LDA-Km framework by
examining its variants and their relationships to
earlier approaches. Relations among PCA, LDA,
K-means are clarified. Extensive experimental
results on real-world datasets show the effective-
ness of our approach.

1. Introduction

In many application domains, such as information retrieval,
computational biology, and image processing, the data di-
mension is usually very high. Developing effective cluster-
ing methods for high dimensional datasets is a challenging
problem due to thecurse of dimensionality. It has been
shown that in a high dimensional space, the distance be-
tween every pair of points is almost the same for a wide
variety of data distributions and distance functions (Beyer
et al., 1999).

There are many approaches to address this problem. The
simplest approach is dimension reduction techniques, in-
cluding principal component analysis (PCA) (Duda et al.,
2000; Jolliffe, 2002) and random projections (Dasgupta,
2000). In these methods, dimension reduction is carried
out as a preprocessing step and is decoupled from the clus-
tering process: once the subspace dimensions are selected,
they stay fixed during the clustering process.
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An extension of this approach is the adaptive dimension re-
duction approach (Ding et al., 2002; Li et al., 2004) where
the subspace is adaptively adjusted and integrated with the
clustering process.

A different approach is called subspace clustering (see a
survey (Parsons et al., 2004)) where the focus is on se-
lecting a small number of original dimensions (features) in
some unsupervised way so that clusters become more ob-
vious in this subspace. Focusing on the original features
(dimensions) has the advantage of easy implementation on
a database. However, the rigidity of original dimension do
not have enough flexibility to handle clusters which extends
along a mixture of directions.

Subspace clustering and adaptive dimension reduction at-
tempt to find the subspace where clusters are most well-
separated or well defined in some way. This is different
from co-clustering (simultaneously clustering the features
and data points) (Dhillon, 2001; Zha et al., 2001; Baner-
jee et al., 2004) and biclustering (Cheng & Church, 2000)
(which essentially find blocks in a rectangle data matrix).

If we restrict the subspace to be linear combinations of
original features, the subspace obtained in linear discrim-
inant analysis (LDA) is perhaps the best subspace to do
data clustering, because in LDA subspace, clusters are well
separated. LDA is a very well developed theory (Hastie
et al., 2001), and is getting renewed interest (De la Torre
& Kanade, 2006; Ye & Xiong, 2006; Park & Howland,
2004) with the growth of matrix-based approaches in ma-
chine learning. In (De la Torre & Kanade, 2006), a ma-
trix factorization is proposed that, after one matrix factor is
eliminated, the two remaining matrix factors can be viewed
as the projection directions in a LDA variant and cluster
indicators respectively. They are solved in an alternative
fashion using LDA and a soft-clustering (see§5.3), similar
to adaptive dimension reduction.

In this paper, we further develop the adaptive dimension
reduction approach by explicitly combining LDA andK-
means clustering in a coherent way. Our contributions are
the following: (a) We show that LDA andK-means cluster-
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ing are optimizing the same objective function, i.e., they
both minimize the within-class scatter matrix and maxi-
mize the between-class scatter matrix. (b) Based on the
above theoretical analysis, we show that the objective func-
tion for LDA provides a natural generalization which com-
bine LDA and K-means clustering together. in theK-
means clustering. (c) This adaptive dimension reduction
optimization problem is then solved by standard and well-
established LDA andK-means clustering algorithms. (d)
We show that this new approach reduces to earlier ap-
proaches under various restrictions. Overall, our new ap-
proach provides a generalization that has a solid theoretical
foundation, extremely clear and simple to implement, and
recover earlier approaches as special cases.

Our adaptive dimension reduction approach can be intu-
itively viewed as an unsupervised LDA. We useK-means
clustering to generate class labels and use LDA to do sub-
space selection. The clustering process is thus integrated
with the subspace selection process and the data are then si-
multaneously clustered while the feature subspaces are se-
lected. We make effective use of cluster membership as the
bridge connecting the clusters discovered in the subspace
and those defined in the full space. With this connection,
clusters are discovered in the low dimensional subspace to
avoid the curse of dimensionality, while the subspace are
adaptively re-adjusted for global optimality.

The rest of the paper is organized as follows: Section 2
present theoretical analysis and introduces the LDA-guided
K-means clustering; Section 3 proposes the LDA-Km
learning framework by combining LDA and K-means clus-
tering; Section 4 examines two variants of the LDA-Km
algorithm; Section 5 explores the relations of the LDA-Km
framework to other earlier approaches; Section 6 presents
our experimental results; and finally Section 7 concludes.

2. LDA and K-means

Consider a set of input data vectorsX = (x1, · · · ,xn) in high
dimensional space. For simplicity, the data is centered in
the preprocessing step, so thatx̄ = ∑i xi/n = 0. The stan-
dardK-means clustering is to minimize the clustering ob-
jective function

min
H

JK , JK = ∑
k

∑
i∈Ck

||xi −mk||2 (1)

where the matrixH = {0,1}n×K is the cluster indicator:
Hik = 1 if xi belongs to thek-th cluster, andHik = 0 other-
wise. We use TrM to denote the trace of matrixM.

In linear discriminant analysis (LDA), we use the total scat-
ter, between-class scatter and within-class scatter matrices:

St =
n

∑
i=1

xixT
i , Sb = ∑

k

nkmkm
T
k , (2)

Sw = ∑
k

∑
i∈Ck

(xi −mk)(xi −mk)
T (3)

It is well-known thatSt = Sw + Sb. It is clear that the K-
means clustering objective function is

JK = Tr Sw = Tr (St −Sb)

Therefore,K-means clustering minimizes the within-class
scatter matrixSw, or maximizes the between-class scatter
matrixSb since TrSt is a constant.

On the other hand, given class labels as specified by the
indicator matrixH, the LDA directionsU are determined
by

max
U

Tr
UTSbU
UTSwU

(4)

which can be interpreted as

min
U

Tr(UTSwU) and max
U

Tr(UTSbU) (5)

Indeed another LDA objective function is

max
U

TrUTSbU
TrUTSwU

. (6)

Thus LDA has very similar properties asK-means cluster-
ing: minimizing within-class scatterSw and/or maximizing
between-class scatterSb .

LDA is widely used to select the subspace (feature space)
which has the maximal discriminant power. However, LDA
is a supervised learning method which requires we know
the class label for each data point before-hand.

Since LDA andK-means clustering both minimizesSw and
maximizeSb, there should be ways to combine them into
a single framework. In this paper, we propose to combine
them into a single framework: we useK-means clustering
to generate class labels and use LDA to do subspace selec-
tion. The final results of this learning process is that the
data are clustered while the feature subspaces are selected
simultaneously.

3. Adaptive Subspace Selection Using LDA
and K-means Clustering

We consider clustering in the subspace and adaptively im-
proving the subspace selected simultaneously (Ding et al.,
2002). The key motivation is that the initially chosen sub-
space may not be the optimal subspace, which we defined
as the subspace spanned by the cluster centroids. For clus-
tering purpose, all dimensions orthogonal to this subspace
areirrelevant. This is because the distance computation

||xi −mk||2 =
r

∑
j=1

[xi( j)−mk( j)]2 +
p

∑
j=r+1

[xi( j)−mk( j)]2
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Assuming the cluster centroid subspaceC span the firstr
dimensions. Dimensionsr +1, · · · , p are orthogonal to the
centroid subspace and We call them as irrelevant dimen-
sions. Distances of components in irrelevant dimensions
are independent of the clustering and is merely an additive
constant. Subtracting this irrelevant constants makes the
clustering more well defined: clusters are more well sepa-
rated in the relevant subspace.

Our main goal is to find the most discriminative subspace
in a unsupervised manner. Our framework is to optimize
the LDA objective function

max
U,H

Tr
UTSbU
UTSwU

(7)

We propose an procedure that alternatively optimizesH
andU . We call this algorithm as LDA-guided adaptive sub-
spaceK-means clustering, or LDA-Km algorithm for short.

LDA-Km(1) . Solve forH while fixing U . In this case, we
solve

max
H

Tr UTSbU
Tr UTSwU

=
Tr UT(St −Sw)U

Tr UTSwU

=
Tr UTStU
Tr UTSwU

−1.

Since TrUTStU is independent ofH, this leads to

min
H

Tr UTSwU = Tr∑
k

∑
i∈Ck

UT(xi −mk)(xi −mk)
TU

= ∑
k

∑
i∈Ck

||UTxi −UTmk||2 (8)

This is precisely theK-means clustering in the subspace
Y = UTX. Once the solution forH are obtained, we can
compute the within and between cluster scatter matrices
Sw,Sb.

For completeness, these computation can also be done us-
ing matrix notations. GivenH, we can obtain the cluster
centroidsM = (m1, · · · ,mk) asM = XH(HTH)−1. Then

Sw = (X−MHT)(X−MHT)T ,

Sb = MHTHMT .

LDA-Km(2) . Solve forU while fixing H. U is given by
the standard LDA procedure.

Combining LDA-Km(1) and LDA-Km(2), we see that this
algorithm essentially does the following:

(Initialize U)

→ (K-means in subspace)

→ (LDA in original space)

→ (K-means in subspace)

→ ···

The Algorithm for solving LDA-guided adaptive subspace
K-means clustering of can be summarized as follows:

Algorithm 1 Adaptive LDA-guided K-means Clustering

Step 1: SetK = number of clusters,
Setd = K−1 the dimension of the subspace.

Step 2: Compute PCA onX to obtain initialU .
Step 3: Do step LDA-Km(1) to obtainH.
Step 4: Do step LDA-Km(2) to obtainU .
Step 5: Go to step 3 until convergence.

A unique feature in this approach is switching between the
subspace (for clustering) and the original space (for LDA).
The cluster centroidsUTmk obtained in the subspace can
not uniquely projected back to the original space. In fact,
there are infinite number of points in the original space can
be projected onto a single point in the subspace (e.g., in 3D,
all points along z-axis are projected onto the origin in x-y
plane). The cluster indicatorH enables us to uniquely con-
nect the two spaces. For example, we compute the centroid
for cluster 1 by simply averaging the data points belong-
ing to cluster 1 in the subspace using cluster membership
H. With this connection, clusters are discovered in the low
dimensional subspace to avoid the curse of dimensionality
and are adaptively re-adjusted for global optimality.

Computational complexity. Generally speaking, the algo-
rithm is equivalent tot (LDA + K-means clustering), where
t ≃ 10 is the number of iterations of the algorithm to con-
verge. Thus the computational complexity of the algorithm
is O(pnt) for K-means clustering andO(p2nt) for LDA
clustering wherep is the dimension of data,n is number
of data points.

Finally, we note that when natural clusters in data are either
close to spherical Gaussians or well separated,K-means
clustering is a good model of the data distribution; PCA
is the right subspace for clustering due to the equivalence
between the relaxedK-means clustering and PCA (Ding &
He, 2004; Zha et al., 2002). LDA-Km deals with the data
distributions which deviate from this situation.

3.1. Extension to Nonlinear Case Using Kernels

The basis idea of LDA is to transform data into a
new space/subspace where clusters become most well-
separated. The best linear transformation is LDA. To deal
with nonlinear transformation, we turn to kernels and im-
plement the nonlinear transformation as linear transforma-
tion. This is achieved by the mapping to a higher dimension
space, much like the mapping in Support Vector Machines.
It is well-known that bothK-means clustering and LDA
can be extend to nonlinear kernels. Our adaptive dimen-
sion reduction using LDA andK-means clustering can be
similarly extended to nonlinear kernels.
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3.2. An Illustrative Example

Below we give an example of 2D dataset with 600 data
points. The top panel showsK-means clustering in the full
space. The next panel shows the results ofK-means clus-
tering in PCA subspace. The next 4 panels show iterations
of the LDA-Km algorithm, starting withU=PCA subspace.
The line indicates the direction ofU . One can see that the
LDA-Km algorithm, starting from PCA subspace, adap-
tively adjusted the subspace, and converge to the most dis-
criminant subspace: In the bottom panel, it is clear that data
projections to the subspaceU form well-separated clusters.
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4. Two Variants of the LDA-Km Algorithm

In this section, we describe two variants of the LDA-Km
algorithm. In step LDA-Km(2), we computeU using full
LDA procedure. We may consider two variants using either
one of the two sub-parts of LDA in Eq.(5).

4.1. LDA-Km-B: Using Between-Cluster ScatterSb

In this variant, we use only the between-cluster scatterSb

in step LDA-Km(2). The algorithm procedure is described
below:

LDA-Km-B(1) . Solve forH while fixing U . Do K-means
clustering onY = UTX.

LDA-Km-B(2) . Solve forU while fixing H. U is given by
d eigenvectors associated with thed largest eigenvalues of
the between-cluster scatter matrixSb.

This LDA-Km-B variant of the LDA-Km algorithm can be
cast in the following optimization framework

max
U,H

TrUTSbU (9)

The proof is the following:

1. GivenU , we solve forH by maximizing

Tr UTSbU = Tr UT(St −Sw)U

= Tr(UTSU−UTSwU).

Since UTSU is constant givenU , we minimize
Tr UTSwU , which, by Eq.(8), is exactlyK-means clus-
tering in the subspaceY = UTX.

2. GivenH, U are given by LDA-Km-B(2).

4.2. LDA-Km-W: Using Within-Cluster Scatter Sw

In this variant, we use only the within-cluster scatterSw

in step LDA-Km(2). The algorithm procedure is described
below:

LDA-Km-W(1) . Solve forH while fixing U . Do K-means
clustering onY = UTX.

LDA-Km-W(2) . Solve forU while fixing H. U is given by
d eigenvectors associated with thed smallest eigenvalues
of the with-cluster scatter matrixSw.

It is easy to see the LDA-Km-W variant of the LDA-Km
algorithm [consisting of LDA-Km(1) and LDA-Km(2W)]
can be cast in the following optimization framework

max
U,H

TrUTSwU (10)

The proof is the following:
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1. GivenU , we solve forH by minimizing TrUTSwU
which, by Eq.(8), is theK-means clustering in the sub-
spaceY = UTX.

2. GivenH, U are given by LDA-Km-W(2).

5. Relationships to Earlier Approaches

We discuss the relation of the LDA-Km to earlier
work(Ding et al., 2002; Li et al., 2004; De la Torre &
Kanade, 2006).

We show that LDA-Km algorithm reduces to theadap-
tive dimension reduction(ADM) algorithm (Ding et al.,
2002), where we only optimize the between-class scatter
(rather than the full LDA). LDA-Km algorithm reduces to
theadaptive subspace iterationalgorithm (Li et al., 2004),
where we only optimize the within-class scatter (rather than
the full LDA). We also recap the discriminative cluster
analysis (De la Torre & Kanade, 2006) and show it is equiv-
alent to a variant of LDA.

5.1. Adaptive Dimension Reduction (ADM)

ADM begins with the observation that the PCA subspace is
not necessarily the best subspace to perform data clustering
(we consider the best subspace to be the subspace spanned
by cluster centroids). It proceeds iteratively to find the best
subspace using the following ADM algorithm:

Algorithm 2 Adaptive Dimensional Reduction Algorithm

(ADM-0): Initialize the directionsU using PCA.
(ADM-1): Do K-means clustering in the subspaceY = UTX.
(ADM-2): Using obtained cluster indicatorH to construct

cluster centroidsC = (c1, · · · ,cK) in the
original space. Do SVD ofC: C = UΣVT .
UseU as the new subspace directions.

(ADM-3): Go to (ADM1) and repeat until convergence.

Now in Step (ADM-2), if we replaceC by C̃ =
(
√

n1 c1, · · · ,
√

nK cK) then the basis U (the left singular
vectors ofC̃) are eigenvectors of

C̃C̃T = n1c1cT
1 + · · ·+nKcKcT

K = Sb.

This is exactly to LDA-Km-B variant of LDA-Km (see
§4.1). SinceC andC̃ are close, we conclude that ADM
is effectively equivalent to LDA-Km-B.

Experiments show that ADM can adaptively modifies the
subspace to fit the data distribution; this happens when ei-
ther the natural clusters in the data are close to spherical
Gaussians or natural clusters are well separated.

However, when natural clusters in the data are far away
from spherical distributions, such as the case shown in the

Figure in§3.2, standardK-means clustering is no longer a
good model for the data inthe full space. ADM, starting
from PCA subspace, and does not seem to converge to a
subspace where the natural clusters become more separated
(e.g., see the Figure in§3.2). In this case, starting from
PCA subspace, ADM converges to a local solution which
is in general close to theK-means solution.

Thus the challenge becomes: for datasets where natural
clusters are far away from spherical Gaussians, how to
modify the subspace adaptively to converge to the subspace
where clusters are most separable? This subspace is clearly
the LDA subspace. LDA-Km algorithm is developed along
this direction. In the Figure in§3.2, we see LDA-Km has
the ability to find the appropriate LDA subspace starting
from PCA subspace.

5.2. Adaptive Subspace Iteration (ASI)

In ADM above, we deal explicitly with the between-cluster
scatter matrixSb. In ASI, we deal implicitly with the
within-cluster scatter matrixSw. ASI is proposed in (Li
et al., 2004) to optimize the following objective function

min
C,H,U

||UTX−CHT ||2 (11)

In the initial study,U,H are restricted to{0,1}, andC is
always set to

C = argmin
C

||UTX−CHT ||2 = UTXH(HTH)−1.

H,U are solved by an Iterative Feature and Data (IFD) clus-
tering algorithm (Li & Ma, 2004).

The ASI factorization is interesting for several reasons.
First, assumingY = UTX,C,H are nonnegative. Then
Y ≈ CHT is a nonnegative matrix factorization (NMF).
which is obtained by the optimization

min
C,H

||Y−CHT ||2, s.t.C≥ 0, H ≥ 0,HTH = I , (12)

By a theorem (Ding et al., 2005), the NMF of Eq.(12) is
equivalent to a relaxedK-means clustering (Ding & He,
2004; Zha et al., 2002), the NMF ofC = (c1, · · · ,cK) con-
tains the cluster centroids, andH are cluster indicator. In
fact, let H = {0,1} be the cluster indicator, theK-means
clustering ofY = (y1, · · · ,yn), J = ∑k ∑i∈Ck

||yi − ck||2 =

||Y−CHT ||2 Clearly, letU be the new subspace directions
(the projection matrix), the data points in the new subspace
areyi = Uxi, orY = (y1, · · · ,yn) = UX. Eq.(11) is just the
K-means clustering in the subspace.

Second, we show that the objective function of ASI factor-
ization [cf. Eq.(11) ] is identical to the objective function
of LDA-Km-W [cf. Eq.(10)]. Clearly, considering Eq.(8),
Eq.(10) can be written as

Tr UTSwU = ||UT(X−MHT)||2. (13)
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Let C = UTM be the cluster centroids in the subspace, we
can write Eq.(13) as Eq.(11).

5.3. Discriminative Cluster Analysis

In (De la Torre & Kanade, 2006), they propose to optimize

min
H,V,U

||(HHT)−1/2(HT −VUTX)||2. (14)

using our notationU,H, whereV is a new matrix factor.
After eliminateV, this becomes

max
H,U

Tr (UXXTU)−1(UTXH(HH)−1HTXTU). (15)

They solve this alternatively using soft clustering and a
variant of LDA. This objective can be shown to be equiva-
lent to

max
H,U

Tr
UTSbU
UTStU

, (16)

which is similar to the standard LDA objective of Eq.(4),
with a difference in the denominator. In LDA objective, the
denominator isUTSwU ; this “data sphering” step is a cru-
cial step in LDA (Hastie et al., 2001). However, in Eq.(16)
the denominator isUTStU rather thanUTSbU . In other
word, Eq.(16) is not a full LDA, in contrast to our LDA+K-
means approach.

SinceSt does not depends on class labels, the denomina-
tor UTStU can be ignore at first order approximation. The
maximization of the nominator is essentially identical to
the ADM of §5.1.

6. Experimental Results

6.1. Dataset Descriptions

We use a wide range of datasets in our experiments as sum-
marized in Table 1. The number of classes ranges from 2
to 20, the number of samples ranges from 47 to 8280, and
the number of dimensions ranges from 4 to 1000. In ad-
dition, these datasets represent applications from different
domains such as information retrieval, gene expression data
and pattern recognition. We anticipate they would provide
us with enough insights on our approach.

The descriptions of these datasets are as follows.

• Eight datasets including Digits, Glass, Ionosphere,
Iris, Protein, Soybean, Wine, and Zoo are from UCI
data repository.

• Other datasets including CSTR, Log, Reuters, We-
bACE, WebKB4, WebKB are standard text datasets
that has been frequently used in document clustering.
We give brief descriptions of them below. The docu-
ments are represented as the term vectors using vec-
tor space model. These document datasets are pre-
processed (removing the stop words and unnecessary

tags and headers) using rainbow package (McCallum,
1996).

– CSTR is the dataset of the abstracts of tech-
nical reports (TRs) published in the Depart-
ment of Computer Science at a research uni-
versity between 1991 and 2002. The dataset
contains 476 abstracts, which are divided into
four research areas: Natural Language Process-
ing(NLP), Robotics/Vision, Systems, and The-
ory.

– The Log dataset contains 1367 text messages
of system log from different desktop machines
describing the status of computer components.
These messages are divided into 8 different sit-
uations.

– The Reuters dataset is a subset of the Reuters-
21578 Text Categorization Test collection con-
taining the 10 most frequent categories among
the 135 topics.

– The WebACE dataset contains 2340 documents
consisting of news articles from 20 different
topics in October 1997 collected in WebACE
project (Han et al., 1998).

– The WebKB dataset contains webpages gathered
from university computer science departments.
There are about 8280 documents and they are
divided into 7 categories: student, faculty, staff,
course, project, department and other.

– The WebKB4 dataset is the subset of We-
bKB associating with four most populous entity-
representing categories, i.e., student, faculty,
course and project.

Table 1.Dataset Descriptions.

Datasets # Samples # Dimensions # Class
CSTR 475 1000 4
Digits 7494 16 10
Glass 214 9 7

Ionosphere 351 34 2
Iris 150 4 3

Protein 116 20 6
Log 1367 200 8

Reuters 2900 1000 10
Soybean 47 35 4
WebACE 2340 1000 20
WebKB4 4199 1000 4
WebKB 8280 1000 7
Wine 178 13 3
Zoo 101 18 7
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Table 2.Clustering accuracy table on UCI datasets. The results
are obtained by averaging 5 trials. PCA+Kmeans denotes PCA-
based clustering algorithm.

Kmeans PCA+Kmeans LDA-Km
Digits 0.706 0.768 0.772
Glass 0.472 0.453 0.510

Ionosphere 0.710 0.710 0.712
Iris 0.893 0.887 0.980

Protein 0.483 0.526 0.595
Soybean 0.681 0.723 0.766

Wine 0.702 0.702 0.826
Zoo 0.762 0.792 0.842

Figure 1.Clustering accuracy comparison on text datasets.

6.2. Results Analysis

All the above datasets have labels. We view the labels of
the datasets as the objective knowledge on the structure
of the datasets. We use accuracy as the clustering perfor-
mance measure. Accuracy discovers the one-to-one rela-
tionship between clusters and classes and measures the ex-
tent to which each cluster contains data points from the cor-
responding class and it has been used as performance mea-
sures for clustering analysis. Accuracy can be described
as:

Accuracy= Max( ∑
Ck,Lm

T(Ck,Lm))/n, (17)

wheren is the number of data points,Ck denotes thek-th
cluster, andLm is them-th class.T(Ck,Lm) is the number
of data points that belong to classm are assigned to clus-
ter k. Accuracy is then computed as the maximum sum
of T(Ck,Lm) for all pairs of clusters and classes, and these
pairs have no overlaps.

On the eight datasets from UCI data repository, we com-
pare our LDA-Km algorithm with standard K-means algo-
rithm. We also compare it with PCA-based clustering al-

gorithm: PCA is first applied to reduce the data dimension
followed by K-means clustering. Table 2 shows the exper-
imental results.

On the text datasets, we compare our subspace clustering
algorithm with the following algorithms: (i) standard K-
means algorithm; (ii) Non-negative Matrix Factorization
(NMF) method (Lee & Seung, 2001); (iii) Tri-Factorization
Method (Ding et al., 2006); and (iv) Adaptive Subspace
Clustering (ASI). The results are shown in Figure 1. Note
that Tri-Factorization method is based on the decomposi-
tion X ≈ FStGT where the orthogonality ofFTF = I ,GG =
I is imposed to ensureF,G can be viewed as cluster indica-
tors for rows and columns. It gives a good framework for
simultaneously clustering the rows and columns ofX.

We note that on all the UCI datasets, LDA-Km clustering
has the best clustering accuracies. On many datasets (e.g.,
Iris, Glass, Protein, soybean, wine, zoo), LDA-Km yields
improvements over K-means and PCA-based clustering.
On text datasets, the subspace clustering algorithm has the
best accuracy on CSTR, Log and Reuters datasets. In sum-
mary, our subspace clustering is always either the winner
or very close to the winner. This shows that LDA-Km clus-
tering is viable and competitive. The subspace clustering
is able to perform the subspace selection and data reduc-
tion at the same time, thus offering the capability of dis-
covering subspace structures and yielding good clustering
performances.

To get more insights on our approach, Figure 2 plots the
clustering accuracy across iterations of one trial of the
LDA-Km algorithm on several datasets. We observe that
LDA-Km clustering is able to adaptively perform subspace
section for global optimality and thus generally leads to
better clustering performance. Note that LDA-Km is also
able to discover clusters in the low dimensional subspace
to overcome the curse of dimensionality.

7. Summary

In this paper, we first point out the close relationship be-
tween linear discriminant analysis (LDA) andK-means
clustering. We then propose to combine LDA andK-means
clustering into the LDA-Km algorithm for adaptive dimen-
sion reduction. In this algorithm,K-means clustering is
used to generate class labels and LDA is utilized to per-
form subspace selection. The clustering process is thus in-
tegrated with the subspace selection process; and the learn-
ing algorithm performs data clustering and subspace selec-
tion simultaneously. We clarify the relations among LDA,
PCA andK-means clustering. We also examine variants
of the LDA-Km algorithm and discuss its relations to other
earlier approaches. Encouraging experimental results are
obtained showing the effectiveness of our approach.
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Figure 2.Clustering accuracy evolution as a function of iterations.
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