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Abstract

Most datasets in real applications come in from multiple
sources. As a result, we often have attributes informa-
tion about data objects and various pairwise relations
(similarity) between data objects. Traditional cluster-
ing algorithms use either data attributes only or pair-
wise similarity only. We propose to combine K-means
clustering on data attributes and normalized cut spec-
tral clustering on pairwise relations. We show that these
two methods can be coherently integrated together to
make use of different data sources to obtain good clus-
tering results. We also show that our integrated KL
(K-means - Laplacian) clustering method can be natu-
rally extended to semi-supervised clustering, data em-
bedding and metric learning. Finally the experimental
results on benchmark data sets are presented to show
the effectiveness of our method.

1 Introduction

The problem of clustering data arises in many disci-
plines and has a wide range of applications. Intuitively,
clustering is the problem of partitioning a finite set of
points in a multi-dimensional space into classes (called
clusters) so that (i) the points belonging to the same
class are similar and (ii) the points belonging to differ-
ent classes are dissimilar.

Conventional clustering techniques assume that the
input data objects are homogeneous and not relational.
As a result, a data object is usually represented as a
fixed-length vector of attribute values. For example, a
document is represented as a vector of term values (e.g.,
TF-IDF weights) using the vector space model. Objects
are grouped into clusters based on their attribute values:
two objects are similar if they have similar attributed
values. In many traditional applications, conventional
clustering techniques are sufficient [1].

Recently, with the advancement of science and

∗School of Computer Science, Florida International University
†Comp. Sci & Eng. Dept, University of Texas ar Arlington
‡School of Computer Science, Florida International University

technology, especially the popularization of Internet,
the majority of data routinely captured by business
and organizations are rich in structure and relational in
nature. In particular, many data sets include relation
information as well as independent object attributes,
possibly from different data sources.

Relation information provides graph structure in
the data and induces pairwise similarity between ob-
jects while attribute values provide inherent character-
istic information about the data objects [35]. For exam-
ple, a webpage can be represented as a vector of term
values. In addition, there are hyper-links between web-
pages. If webpage i links to webpage j, this indicates a
similarity relationship between two webpages [16, 23].
In other words, links confer a relationship between two
webpages in the same way that similar attribute values
indicate a relationship. As another example, in bioin-
formatics applications, gene expression profiles provides
attribute information about the molecular aspects of
genes while protein-protein interaction reveals the com-
position of protein complex and induce pairwise rela-
tionships among genes. In such situations, both rela-
tion information and attribute values can be used to
cluster data objects: conventional clustering algorithms
such as K-means can identify group of similar data ob-
jects based on their attribute values and graph-based
partitioning approaches such as spectral clustering can
identify highly connected components from the graph
structure or using pairwise similarity.

Although both the relation information and at-
tribute values can be used independently to cluster data
objects, clustering algorithms that make use of them
simultaneously should be able to generate more mean-
ingful clustering structures. Recently, many clustering
algorithms have been developed using both the attribute
and relation information [22, 13]. For instance, Neville
et al. adapted graph partitioning algorithms to incor-
porate both relationship structure and attribute infor-
mation by weighting the existing relational graph with
an attribute similarity metric [23]. He et al. [16] com-
bined the similarity matrices of attributes and relations
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and used a spectral graph partitioning algorithm for
webpage clustering. Bhattacharya and Getoor [5] used
the linear combination of graph similarity and attribute
similarity for relational clustering for entity resolution in
graphs. Taskar [29] proposed to use probabilistic mod-
els to cluster relational data with attributes and rela-
tionships. Yin et al. [40] proposed a relational table
clustering algorithm by producing a single object type
that is a compound of features from other objects.

Most of the existing relational clustering algorithms
can be categorized into the following two types: (1) Fea-
ture Integration: This approach enlarges the feature
representation to incorporate all data and produces a
unified feature space. In particular, the relation infor-
mation is viewed as additional features/attributes. The
advantage of feature integration is that the unified fea-
ture representation is often more informative and also
allows many different data mining methods to be ap-
plied and systematically compared. One disadvantage
is the increased learning complexity and difficulty as
the data dimension becomes large. (2) Kernel Inte-
gration: The data is kept in their original form and
they are integrated at the similarity computation or
the Kernel level [19]. In other words, graph similarity
and attribute similarity are combined directly. Differ-
ent weights can be used for different types of similarity.
One drawback of the kernel integration is that it does
not fully explore the correlation between the attribute
information and the relation information.

In this paper, we propose a new clustering frame-
work by combining K-means clustering on attribute val-
ues and spectral clustering on relation information. Our
proposed framework can be viewed as a kind of seman-
tic integration, which avoids the limitations of feature
integration and it also implicitly learns the correlation
structure between attribute information and relation in-
formation. The rest of the paper is organized as fol-
lows: Section 2 introduces our integrated KL clustering
method by combining K-means clustering on data at-
tributes and spectral clustering on pairwise relations;
Section 3 extends our KL clustering method to semi-
supervised clustering, data embedding and metric learn-
ing; Section 4 presents experimental results on bench-
mark datasets; and finally Section 5 concludes.

2 Clustering by Integrating Attribute and
Pairwise Relations

Given a data matrix X ∈ Rd×n (each column corre-
sponds to a data point) together with their pairwise re-
lationship matrix W ∈ Rn×n such that Wij represents
the relationship between xi and xj . The problem is how
to obtain good clustering result by incorporating both
the attribute information X and the pairwise relation

information W.
K-means [12] and spectral clustering [27] are two

types of representative clustering methods. The inputs
of the K-means algorithm is the attribute data set X,
and the inputs of the Spectral Clustering method is the
relationship matrix W. We can construct a clustering
objective as

(2.1) J = αJK−means + (1− α)JNcut

where α > 0 is a tradeoff parameter. Therefore we can
seek clustering results to minimize the above criterion.

2.1 An Intuitive Solution Here we first present a
simple and intuitive algorithm to solve the integrated
KL clustering problem.

Denote the scaled cluster membership matrix H ∈
Rn×C as

H =




1 0 · · · 0
...

...
. . .

...
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




·




n1

. . .
nC




−1/2

such that

(2.2) Hij =
{

1/
√

nj , if xi ∈ πj

0, otherwise

where πj represents the j-th cluster and nj is the size
of πj , and C is the total number of clusters. Clearly
HT H = I. Then through some derivations we can
obtain that [12][42]

JK−means = ‖X‖2F − tr(HT XT XH)

and
JNcut = tr(HT L̂H)

where L̂ = I − D−1/2WD−1/2 is the
Normalized Laplacian matrix with D =
diag(

∑
j W1j ,

∑
j W2j , · · · ,

∑
j Wnj) being the

degree matrix. Then

J = α‖X‖2F − αtr(HT XT XH) + (1− α)tr(HT L̂H)

Since ‖X‖2F is a constant, then the minimization of
the above criterion is equivalent to solve the following
optimization problem

minH tr(HT [(1− α)L̂− αXT X]H)(2.3)
s.t. HT H = I

39 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



Note here we relax the constraint on H as in tradi-
tional clustering approaches [42]. Following the Ky
Fan theorem [42], we can derive that the solutions to
the above problem are the eigenvectors of the matrix
(1−α)L̂−αXT X corresponding to its smallest C eigen-
values. In practice, we can treat the C eigenvectors as
the C-dimensional embedding of the n data points, and
then applying the K-means algorithm to cluster them
into C clusters [24].

The problem with the above formulation is that
there is a hyperparameter α which controls the relevant
importance of K-means and spectral clustering. How-
ever in practice it is hard to set an optimal α. Although
we can apply gradient based methods, they may easily
get trapped in a local optimum which will make the
results suboptimal.

2.2 A Trace Quotient Formulation We seek a
clustering formulation which does not contain the hy-
perparameter α.

Now let us revisit the formulation in Eq.(2.3), which
is actually a trace difference formulation composed of
two terms:

(2.4) min
H

Tr(HT L̂H), max
H

Tr[HT (XT X)H],

• The first term, tr(HT L̂)H) reflects the cost of “cut-
ting” the data graph into different groups, in other
words, it reflects the between-cluster scatterness of
the data set after clustering. The smaller this value,
the better the clusters are discriminated with each
other.

• The second term, tr(HT (XT X)H) reflect how com-
pact the clusters are. The larger this value, the
compacter the clusters are.

The above analysis shows that our algorithm here
has a close relationship with the Linear Discriminant
Analysis (LDA) [12] formulation, which is trace quotient
rather than trace difference. Therefore we can use a
similar formulation to our problem as

maxH
tr(HT XT XH)

tr(HT L̂H)

s.t. HT H = I(2.5)

One advantage of the above formulation is that
there is no hyperparameter to control the relevant
importance of the two trace terms. However, the
constraint HT H = I strictly restricts that the data
clusters are non-overlap (since the cluster indicator
vectors for every two different clusters are orthogonal
to each other, which indicates that each data point

can only belong to one cluster). Therefore we remove
such constraint to allow overlapping clusters, then our
problem becomes

(2.6) max
H

tr(HT XT XH)

tr(HT L̂H)

2.3 A Quotient Trace Formulation Generally the
trace quotient formulation Eq.(2.6) is not easy to solve,
and people can resort to gradient descent methods,
which may result in an iterative process with heavy
computational burden. A common tradeoff is to solve
the following quotient trace problem instead:

(2.7) max
H

tr
(
(HT L̂H)−1(HT XT XH)

)
.

To solve the above optimization problem, we have the
following theorem:

Theorem 2.1. Let H∗ ∈ Rn×K be the optimal solution
to problem 2.7, then H∗ is composed by the largest K
eigenvectors of the matrix L̂+XT X

Here L̂+ denotes the pseudo inverse of L̂.

Proof. Since for ∀a ∈ Rn×1, we have

aT L̂a =
∑

ij

Wij

(
ai√
Dii

− ai√
Dii

)2

≥ 0

Thus L̂ is positive semi-definite. Let

L̂ = U
[

Σ
0

]
UT

be the eigenvalue decomposition of L with the diagonal
line of Σ being the positive eigenvalues of L̂, then

L = U1ΣUT
1

where U1 is composed of the eigenvectors of L corre-
sponding to its positive eigenvalues. Let

F = L̂1/2H = (U1Σ1/2UT
1 )H

then
FT F = HT L̂H

Note that FT F is also positive semi-definite thus we can
similarly decompose it as

FT F = V
[

ΣF

0

]
VT = V1ΣF VT

1

where ΣF is a diagonal matrix with the positive eigen-
values on its diagonal line, and V1 is composed of the
corresponding eigenvectors. Then we can define

(FT F)−1/2 = V1Σ−1/2VT
1

40 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



So

J(H) = tr
(
(HT L̂H)−1(HT XT XH)

)

= tr
(
(FT F)−1/2(HT XT XH)(FT F)−1/2

)

= tr
(
(FT F)−1/2(FT L̂−1/2XT XL̂−1/2F)(FT F)−1/2

)

= tr
(
QT L̂−1/2XT XL̂−1/2Q

)

where Q = F(FT F)−1/2 subject to

QT Q = I

Following the Ky-Fan theorem we know that the solu-
tion to the above problem is just

Q = [q1,q2, · · · ,qK ]

where qi is the eigenvector of L̂−1/2XT XL̂−1/2 corre-
sponding to its i-th largest eigenvalues. That is,

L̂−1/2XT XL̂−1/2Q = QΛ

where Λ is the eigenvalue matrix of L̂−1/2XT XL̂−1/2,
and

J(H) =
∑

j

Λjj

Therefore to maximize J(H), we should select Q con-
stituted by the eigenvectors of L̂−1/2XT XL̂−1/2 corre-
sponding to its largest K eigenvalues. Furthermore, let
R = L̂−1/2Q, then

• RT XT XR = Λ

• RT LR = I

So R can simultaneously diagonalize XT X and L, which
makes

J(H) = J(R)

and

L̂−1/2XT XL̂−1/2Q = L̂−1/2XT XR = L̂1/2RΛ

=⇒ XT XR = L̂RΛ

Therefore R are constituted by the eigenvectors of
L+XT X, where

L̂+ = U1Σ−1UT
1

The maximization of J(H) is equivalent to the maxi-
mization of J(R), and the optimal

H∗ = R∗ = [r1, r2, · · · , rK ]

where ri is the eigenvector of L̂+XT X corresponding to
its i-th largest eigenvalue. ¤

3 Discussions and Extensions

In the previous section we have introduced a novel
clustering method that can make use of both attribute
and relation information, which might be obtained from
different sources. In this section we provide several
extensions of the proposed algorithm and discuss their
relationships with traditional approaches.

3.1 Semi-supervised Clustering Semi-supervised
clustering refers to a class of clustering methods making
use of some prior knowledge. Typically, the knowledge
that indicates the two points belong to the same class
is referred to as must-link constraints M, and the
knowledge that indicates the two points belong to
different classes is referred to as cannot-link constraints
C. This type of information can be incorporated into
traditional partitional clustering algorithms by adapting
the objective function to include penalties for violated
constraints. For instance, the Pairwise Constrained
KMeans (PCKM) algorithm [2] modifies the standard
sum of squared errors function in traditional kmeans
to take into account both object-centroid distortions in
a clustering π = {π1, π2, · · · , πC} and any associated
constraint violations, i.e.

Js−km = JK−means +
∑

xi,xj∈M
s.t. li 6=lj

θij +
∑

xi,xj∈C
s.t. li=lj

θ̃ij ,

where {θij > 0} represent the penalties for violating the
must-link constraints, and {θ̃ij > 0} denote the penal-
ties for violating the cannot-link constraints. Following
[18], we can change the penalties of violations in the
constraints in M into the awards as

Js−km = JK−means −
∑

xi,xj∈M
s.t. li=lj

θij +
∑

xi,xj∈C
s.t. li=lj

θ̃ij

= JK−means +
∑

c

∑

i,j

HicHjcΘij

where

(3.8) Θij =





√
ninj θ̃ij , (xi,xj) ∈ C

−√ninjθij , (xi,xj) ∈M
0, otherwise

where ni is the size of πi, nj is the size of πj . Therefore

Js−km = ‖X‖2F − tr(HT XT XH) + tr(HT ΘH)

Hence we can solve the semi-supervised clustering prob-
lem by solving

(3.9) min
H

tr
(
(HT L̂H)−1(HT (XT X−Θ)H

)
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From theorem 2.1 we know that the optimal H∗ can
be solved by the eigenvectors of Ĥ+(XT X −Θ) corre-
sponding to its largest K eigenvalues.

However, this formulation is, although straightfor-
ward, not very natural since the prior knowledge on M
and C are also relational information of the data set.
Therefore it would be more reasonable to incorporate
such information into the spectral clustering part. Thus
we can construct a semi-supervised spectral clustering
objective as

Jspectral = tr
(
HT (L̂ + Θ)H

)

Then we can solve the semi-supervised clustering prob-
lem by solving

(3.10) min
H

tr
(
(HT (L̂ + Θ)H)−1(HT XT XH)

)

Then the optimal H∗ can be solve by the eigenvectors
of (L̂ + Θ)+(XT X) corresponding to its largest K
eigenvalues.

3.2 Embedding by Integrating Multiple Infor-
mation Sources Another problem that is closely re-
lated to clustering is embedding, which seeks to project
the data set into low-dimensional spaces such that the
data can be better visualized/discriminated. Most of
the state-of-the-art embedding methods use either at-
tribute data information (such as Principal Component
Analysis (PCA) [17], Locally Linear Embedding (LLE)
[25] and Isomap) [30] or pairwise distance information
(such as Multidimensional Scaling) [9]. It is known
[42, 11]) that the spectral relaxation of K-means clus-
tering gives identically the PCA. However, there are
not many developments on how to embedding the data
points by integrating different information sources. In
the following, we introduce an embedding method that
is closely related to our KL clustering method.

Two most popular principles used in data embed-
ding are:

• Maximizing the data variances in the embedded
space as in PCA, this may retain most information
contained in the data set [43][37][32].

• Maximizing the smoothness of the data set with re-
spect to their intrinsic manifold in their embedded
space. Usually this can be implemented by pre-
serving the localities (i.e. pairwise relationships)
contained in the data set.

Assuming the data set has been centralized, then we
can compute the data covariance matrix as C = XT X.
Considering linear embeddings, the variance maximiza-
tion principle aims to find the projection directions

P ∈ Rd×K by maximizing

max JPCA = tr(PT XXT P)

For the second criterion, if we know some pairwise
relationships W and we want the embedding to preserve
such relationships, then we can use the following graph-
Laplacian based criterion [4]

minJLap = tr(PT XL̂XT P)

where L̂ is just the normalized Laplacian matrix as
we introduced in the previous section. The smaller
JLap is, the better the data locality is preserved, and
the smoother the embeddings would be with respect to
the intrinsic data manifold. Therefore a natural choice
would be to maximize the following criterion to get the
optimal P

(3.11) max
P

tr

((
PT XL̂XT P

)−1

PT XXT P
)

Using theorem 2.1 we know that the optimal P can
be obtained by the eigenvectors of (XT L̂X)+XT X
corresponding to its largest K eigenvalues.

Comparing Eq.(3.11) with Eq.(2.7), we observe that
the two expressions are very similar: their nominators
are exactly the same, and the denominators only dif-
fer in the multiplication of XT and X in both sides
of L̂. In fact, the mathematical formulation of spec-
tral clustering [27] and Laplacian eigenmaps [4] are also
similar. However, their solutions have different physi-
cal meanings: the solution to spectral clustering is the
cluster membership matrix, while the solution to Lapla-
cian embedding is the low dimensional data embed-
dings. Therefore, the result of spectral clustering can
also be viewed as the data embeddings in K-dimensional
space and this implicitly explains why we can apply the
K-means algorithm to discover the data clusters in the
embedded space [24]. Moreover, if we linearize Lapla-
cian embedding, we can obtain exactly the same formu-
lations as the denominator in Eq.(3.11).

3.3 Distance Metric Learning Distance metric
learning is also an important problem in data mining
and machine learning. As we know that for vector-
ized data, Euclidean distance is the most commonly
used distance measure for comparing the difference be-
tween pairwise data points. However, the Euclidean
distance has a homogeneous assumption on all the di-
mensions. Therefore in the last decades people began to
seek for a proper Mahalanobis distance to compare pair-
wise points. More concretely, the Mahalanobis distance
between xi and xj is defined as [26][36][38]

(3.12) dM(xi,xj) =
√

(xi − xj)T A(xi − xj)
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Table 1: Descriptions of the document datasets
Datasets # doc # classes
CSTR 476 4

WebKB4 4199 4
Reuters 2900 10

WebACE 2340 20
Newsgroup4 3970 4

where A is a d × d square matrix. To ensure that
dA(x, y) be a metric, d(x, y) should satisfy the symme-
try, non-negativity and triangle inequality, i.e, A must
be symmetric and positive semi-definite.

If we decompose A as A = PPT using Cholesky
decomposition, then

dM(xi,xj) =
√

(PT (xi − xj))T PT (xi − xj)

= ‖PT (xi − xj)‖F(3.13)

where ‖ · ‖F is used to denote the Frobenius norm.
Therefore, if we treat P as a projection matrix as in
last section, then the Mahalanobis distance is just the
Euclidean distance in the projected space. In this sense,
learning a good Mahalanobis distance is equivalent to
find a good embedding space. Thus the Embedding by
Intergrating Multiple Information Sources (EIMIS) can
also be applied to distance metric learning.

4 Experiments

4.1 Clustering We use a variety of document
datasets, most of which are frequently used in the data
mining research. These datasets include

• CSTR. This is the dataset of the abstracts of tech-
nical reports (TRs) published in the Department of
Computer Science at a research university. The
dataset contained 476 abstracts, which were di-
vided into four research areas: Natural Language
Processing(NLP), Robotics/Vision, Systems, and
Theory.

• WebKB. The WebKB dataset contains webpages
gathered from university computer science depart-
ments. There are about 8280 documents and they
are divided into 7 categories: student, faculty, staff,
course, project, department and other. The raw
text is about 27MB. Among these 7 categories,
student, faculty, course and project are four most
populous entity-representing categories. The asso-
ciated subset is typically called WebKB4.

• Reuters. The Reuters-21578 Text Categorization
Test collection contains documents collected from

the Reuters newswire in 1987. It is a standard
text categorization benchmark and contains 135
categories. In our experiments, we use a subset
of the data collection which includes the 10 most
frequent categories among the 135 topics and we
call it Reuters-top 10.

• WebACE. The WebACE dataset was from We-
bACE project and has been used for document clus-
tering [14][8]. The WebACE dataset contains 2340
documents consisting news articles from Reuters
new service via the Web in October 1997. These
documents are divided into 20 classes.

• News4. The News4 dataset used in our experi-
ments are selected from the famous 20-newsgroups
dataset1. The topic rec containing autos, motor-
cycles, baseball and hockey was selected from the
version 20news-18828. The News4 dataset contains
3970 document vectors.

Table 1 summarizes the characteristics of the datasets.
To pre-process the datasets, we remove the stop

words using a standard stop list, all HTML tags are
skipped and all header fields except subject and orga-
nization of the posted articles are ignored. In all our
experiments, we select the top 1000 words by mutual in-
formation with class labels and represent all documents
in TF-IDF form. Finally all documents are normalized
to unit form.

In the experiments, we set the number of clusters
equal to the true number of classes C for all the
clustering algorithms. To evaluate their performance,
we compare the clusters generated by these algorithms
with the true classes by computing the following two
performance measures.

• Clustering Accuracy (Acc). The first perfor-
mance measure is the Clustering Accuracy, which
discovers the one-to-one relationship between clus-
ters and classes and measures the extent to which
each cluster contained data points from the cor-
responding class. It sums up the whole matching
degree between all pair class-clusters. Clustering
accuracy can be computed as:

(4.14) Acc =
1
N

max


 ∑

Ck,Lm

T (Ck,Lm)


 ,

where Ck denotes the k-th cluster in the final
results, and Lm is the true m-th class. T (Ck,Lm)
is the number of entities which belong to class m

1http://people.csail.mit.edu/jrennie/20Newsgroups/
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are assigned to cluster k. Accuracy computes the
maximum sum of T (Ck,Lm) for all pairs of clusters
and classes, and these pairs have no overlaps.
The greater clustering accuracy means the better
clustering performance.

• Normalized Mutual Information (NMI). An-
other evaluation metric we adopt here is the Nor-
malized Mutual Information NMI [28], which is
widely used for determining the quality of clusters.
For two random variable X and Y, the NMI is de-
fined as:

(4.15) NMI(X,Y) =
I(X,Y)√
H(X)H(Y)

,

where I(X,Y) is the mutual information between
X and Y, while H(X) and H(Y) are the en-
tropies of X and Y respectively. One can see that
NMI(X,X) = 1, which is the maximal possible
value of NMI. Given a clustering result, the NMI
in Eq.(4.15) is estimated as
(4.16)

NMI =

∑C
k=1

∑C
m=1 nk,mlog

(
n·nk,m

nkn̂m

)
√(∑C

k=1 nklog nk

n

)(∑C
m=1 n̂mlog n̂m

n

) ,

where nk denotes the number of data contained in
the cluster Ck (1 6 k 6 C), n̂m is the number of
data belonging to the m-th class (1 6 m 6 C),
and nk,m denotes the number of data that are in
the intersection between the cluster Ck and the
m-th class. The value calculated in Eq.(4.16)
is used as a performance measure for the given
clustering result. The larger this value, the better
the clustering performance.

We have conducted comprehensive performance
evaluations by testing our method and comparing it
with 8 other representative data clustering methods us-
ing the same data corpora. The algorithms that we
evaluated are listed below.

1. Traditional k-means (KM) [12].

2. Spherical k-means (SKM). The implementation is
based on [10].

3. Gaussian Mixture Model (GMM). The implemen-
tation is based on [21].

4. Spectral Clustering with Normalized Cuts (Ncut).
The implementation is based on [41], and the
variance of the Gaussian similarity is determined
by five-fold cross validation.

Table 4: Descriptions of the datasets
Datasets Sizes Classes Dimensions
Balance 625 3 4

Iris 150 3 4
Ionosphere 351 2 34
Soybean 562 19 35
Wine 178 3 13
Sonar 208 2 60

5. Nonnegative Matrix Factorization (NMF). The im-
plementation is based on [39].

For our integrated KL clustering, (IKL), we con-
struct the pairwise relationship matrix by Wij =
exp

(−‖xi − xj‖2/(2σ2)
)
, where σ is a manually defined

scale parameter which is equivalent to the medium value
of all pairwise document distance. The clustering accu-
racies comparison results are shown in table 2, and the
normalized mutual information comparison results are
summarized in table 3.

4.2 Semi-supervised Clustering The data sets
used in our experiments including six UCI data sets [7].
In the following we will briefly introduce the basic infor-
mation of those data sets and Table 4 summarizes the
basic information of those data sets.

• Balance. This data set was generated to model
psychological experimental results. There are to-
tally 625 examples that can be classified as having
the balance scale tip to the right, tip to the left, or
be balanced.

• Iris. The data set contains 3 classes of 50 instances
each, where each class refers to a type of iris plant.

• Ionosphere. It is a collection of the radar signals
belonging to two classes. The data set contains 351
objects in total, which are all 34-dimensional.

• Soybean. It is collected from the Michalski’s
famous soybean disease databases, which contains
562 instances from 19 classes.

• Wine. The purpose of this data set is to use
chemical analysis for determining the origin of
wines. It contains 178 instances from 3 classes.

• Sonar. This is the data set used by Gorman
and Sejnowski in their study of the classification
of sonar signals using a neural network, which
contains 208 instances from 2 classes.

In our experiments, the constraints were generated
as follows: for each constraint, we picked out one pair
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Table 2: Clustering accuracies of the various methods

CSTR WebKB4 Reuters WebACE News4
KM 0.4256 0.3888 0.4448 0.4001 0.3527
SKM 0.4690 0.4318 0.5025 0.4458 0.3912
GMM 0.4487 0.4271 0.4897 0.4521 0.3844
NMF 0.5713 0.4418 0.4947 0.4761 0.4213
Ncut 0.5435 0.4521 0.4896 0.4513 0.4189
IKL 0.5931 0.4977 0.5134 0.5188 0.4697

Table 3: Normalized mutual information results of the various methods
CSTR WebKB4 Reuters WebACE News4

KM 0.3675 0.3023 0.4012 0.3864 0.3318
SKM 0.4027 0.4155 0.4587 0.4003 0.4085
GMM 0.4034 0.4093 0.4356 0.4209 0.3994
NMF 0.5235 0.4517 0.4402 0.4359 0.4130
Ncut 0.4833 0.4497 0.4392 0.4289 0.4231
IKL 0.5673 0.4748 0.4833 0.4695 0.4453

of data points randomly from the input data sets (the
labels of which were available for evaluation purpose but
unavailable for clustering). If the labels of this pair of
points were the same, then we generated a must link. If
the labels were different, a cannot link was generated.
The amounts of constraints were determined by the size
of input data. In all the experiments, the penalties for
violating the must-link and cannot link constraints are
set to 1 manually, and the results were averaged over 50
trials to eliminate the difference caused by constraints.

For comparison, we also implemented
1) the constrained kmeans (CKmeans) algorithm [31],
2) the MPC-Kmeans (MPCKmeans) [6] algorithm,
3) the PMF algorithm [34] and
4) the CMM algorithm [33].
We denote two methods presented in this paper as
5) SKMSC: semi-supervised clustering with penaliza-
tion on K-means objective, Eq.(3.9)
6) SSCKM: semi-supervised clustering with penaliza-
tion on spectral clustering objective, Eq.(3.10)

The F-score [20] is used to evaluate the performance
of each algorithm.

Figure 1 shows the F-scores(in percentages) of the
four algorithms on the six UCI data sets under different
amounts of constraints respectively. We can find that
the our SSCKM and SKMSC algorithms perform con-
sistently better than (at leat competitive with) existing
methods.

4.3 Face Recognition In this section we will present
the experimental results of applying our method to
face recognition. First let’s briefly introduce the basic

information of each data set:

• Yale2. Contains 165 grayscale images of 15 indi-
viduals. There are 11 images per subject, one per
different facial expression or configuration: center-
light, w/glasses, happy, left-light, w/no glasses,
normal, right-light, sad, sleepy, surprised, and
wink.

• ORL3. Contains 10 different images of each of 40
distinct subjects. For some subjects, the images
were taken at different times, varying the lighting,
facial expressions (open / closed eyes, smiling / not
smiling) and facial details (glasses / no glasses). All
the images were taken against a dark homogeneous
background with the subjects in an upright, frontal
position (with tolerance for some side movement).

• PIE4. Contains 41,368 images of 68 people, each
person under 13 different poses, 43 different illumi-
nation conditions, and with 4 different expressions.
In our experiments, we only use a subset contain-
ing 5 near frontal poses (C05, C07, C09, C27, C29)
and all the images under different illuminations and
expressions. So, there are 170 images for each in-
dividual.

In our experiments, all the face images are resize
to 32x32. Besides our method, we also implement the
following methods for comparisons:

2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
3http://www.uk.research.att.com/facedatabase.html
4http://www.ri.cmu.edu/projects/project_418.html
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Figure 1: F-score comparisons of different methods for semi-supervised clustering. Dataset: Top row from left:
balance, iris, ionsphere; bottom row from left: soybean, wine, sonar.

• Nearest Neighbor Classifier (NN): This method is
implemented as the baseline method for compari-
son, where all the computations are performed in
the original data space.

• Eigenface: The face images are first projected
by PCA and then the recognition procedure is
implemented in the projected space with the NN
classifier. The projected dimension is set using
exhaustive search by 5-fold cross validation.

• Fisherface: The implementation is the same as in
[3].

• Laplacianface: The implementation is the same as
in [15].

For our method (which is denoted as EIMIS), we first
use the training data to train the projection directions P
of Eq.(3.11) and then use them to project the whole data
sets, and the recognition process will be implemented
in the projected space using the NN classifier. The
relation matrix W is computed by Gaussian function
as Wij = exp

(−‖xi − xj‖2/(2σ2)
)
, and the optimal σ

is set by 5 fold cross validation.
In our experiments, we first randomly select a

certain number of face images from each subject for
each data set. Those selected images will be used as
training set and the remaining images will be used
for testing. The recognition error averaged over 50
independent runs are shown in Fig.2. For all the figures,

the x-axis represents the number of randomly selected
training faces, and the y-axis represents the averaged
recognition error. From the figures we can clearly see
the effectiveness of our method.

5 Conclusions

In this paper, We propose a new integrated clustering
approach by combine K-means clustering on data at-
tributes and spectral clustering on pairwise relations.
This is an effective way to make use of multiple infor-
mation sources. This KL clustering does not require ex-
tra parameters and can be extended to semi-supervised
clustering, data embedding and metric learning.

We perform extensive experiments on 4 document
sets, 6 UCI data sets, and 3 image data sets, for
clustering, classification and semi-supervised learning
tasks. Our methods consistently outperform existing
methods.
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