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Abstract
Density-based clustering has the advantages for (i) allowing
arbitrary shape of cluster and (ii) not requiring the number
of clusters as input. However, when clusters touch each
other, both the cluster centers and cluster boundaries (as
the peaks and valleys of the density distribution) become
fuzzy and difficult to determine. In higher dimension, the
boundaries become wiggly and over-fitting often occurs.

We introduce the notion of cluster intensity function
(CIF) which captures the important characteristics of clus-
ters. When clusters are well-separated, CIFs are similar to
density functions. But as clusters touch each other, CIFs
still clearly reveal cluster centers, cluster boundaries, de-
gree of membership of each data point to the cluster that
it belongs, and, whether a certain data point is an outlier
or not. Clustering through bump hunting and valley seeking
based on these functions are more robust than that based on
kernel density functions which are often oscillatory or over-
smoothed. These problems of kernel density estimation are
resolved using level set methods and related techniques.

Keywords: Clustering Algorithms, Level Set Methods,
Cluster Intensity Functions, Unsupervised Learning.

1 Introduction

Recent computer, internet and hardware advances pro-
duce massive data which are accumulated rapidly. Ap-
plications include sky surveys, genomics, remote sens-
ing, pharmacy, network security and web analysis. Un-
doubtedly, knowledge acquisition and discovery from
such data become an important issue. One common
technique to analyze data is clustering which aims at
grouping entities with similar characteristics together
so that main trends or unusual patterns may be discov-
ered. See [9, 7] for examples of clustering techniques.

Among various classes of clustering algorithms,
density-based methods are of special interest for their
connections to statistical models which are very useful
in many applications. Density-based clustering has the
advantages for (i) allowing arbitrary shape of cluster
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and (ii) not requiring the number of clusters as input,
which is usually difficult to determine. Examples of
density-based algorithms can be found in [5, 2, 8, 1].

There are several basic approaches for density-based
clustering. (A1) The most common approach is so-
called bump-hunting, i.e., first find the density peaks
or “hot spots” and then expand the cluster boundaries
outward, until they meet somewhere, presumably in the
valley regions (local minimums) of density contours [1].

(A2) Another direction is to start from valley re-
gions and gradually work uphill to connect data points
in low-density regions to clusters defined by density
peaks [6, 8].

(A3) A recent approach is to compute reachability
from some seed data and then connect those “reachable”
points to their corresponding seed [5, 2].

When clusters are well-separated, density-based
methods work well because the peak and valley regions
are well-defined and easy to detect. When clusters touch
each other, which is often the case in real situations,
both the cluster centers and cluster boundaries (as the
peaks and valleys of the density distribution) become
fuzzy and difficult to determine. In higher dimension,
the boundaries become wiggly and over-fitting often
occurs.

Level Set Methods We recognize that the key issue in
density-based approach is how to advance the boundary
either from peak regions outward towards valley regions,
or the other way around.

In this paper, we introduce level set methods to re-
solve the boundary advancing problem. Level set meth-
ods are widely used in applied mathematics community.
They are originally introduced to solve the problem of
front propagation of substances such as fluids, flame and
crystals where an elegant representation of boundaries is
essential [13]. Level set methods have well-established
mathematical foundations and have been successfully
applied to solve a variety of problems in image process-
ing, computer vision, computational fluid dynamics, op-
timal design and material science, see [15, 12] for details.

In image processing, one typically interested in
detecting sharp edges in an image; a smooth front
advanced via level set methods can easily capture these
edges. The methods can be modified [Chan and Vese



in [3]] to detect not-so-sharp boundaries which is close
to clustering 2-dimensional data points. However, these
methods are mainly designed for image segmentation
which is not suitable for data clustering in general.

An important advantage of level set method is that
the boundaries in motion can be made smooth conve-
niently and smoothness can be easily controlled by a
parameter that characterizes surface tension. Further-
more, the advancing of boundaries is achieved naturally
within the framework of partial differential equation
(PDE) which governs the dynamics of the boundaries.
Using level set methods, boundary advancing, especially
when boundaries need to be split or merged , can be
easily done in a systematical way. This feature is very
important in data clustering as clusters can be merged
or split in an automatic fashion.

We may use level set methods strictly as an effective
mechanism for advancing boundaries. For example, in
the above approach (A1), once the density peaks are
detected, we may advance cluster boundaries towards
low-density regions using level set methods. This would
be a level set-based bump hunting approach.

However, it turns out that utilizing level set meth-
ods we can further develop a new and useful concept of
cluster intensity function. A suitably modified version
of level set methods becomes an effective mechanism
to formulate cluster intensity functions in a dynamic
fashion. Therefore our approach goes beyond the three
approaches described earlier.

Cluster Intensity Functions We introduce the no-
tion of “cluster intensity function” (CIF) which captures
the important characteristics of clusters. When clus-
ters are well-separated, CIFs become similar to density
functions. But as clusters touch each other, CIFs still
clearly describe the cluster structure whereas density
functions and hence cluster structure become blurred.
In this sense, CIFs are a better representation of clus-
ters than density functions.

A number of clustering algorithms are based on ker-
nel density functions (KDFs) obtained through kernel
density estimation [4]. KDFs possess many nice prop-
erties which are good for clustering purposes. However,
they also have some drawbacks which limit their use for
clustering (see the subsection Kernel Density Estima-
tion).

CIFs, however, resolve the problems of KDFs while
advantages of KDFs are inherited. Although CIFs are
also built on the top of KDFs, they are cluster-oriented
so that only information contained in KDFs that is
useful for clustering is kept while other irrelevant in-
formation is filtered out. We have shown that such a
filtering process is very important in clustering espe-

cially when the clusters touch each other. On the other
hand, it is well-known that when the clusters are well-
separated, then valley seeking on KDFs results in very
good clusterings. Since the valleys of CIFs and KDFs
are very similar, if not identical, when the clusters are
well-separated, clustering based on CIFs is as good as
that based on KDFs. However, advantages of CIFs over
KDFs become very significant when the clusters touch
each other.

Kernel Density Estimation In density-based ap-
proach, a general philosophy is that clusters are high
density regions separated by low density regions. We
particularly consider the use of kernel density estima-
tions [4, pp.164–174] (also known as the Parzen-window
approach), a non-parametric technique to estimate the
underlying probability density from samples. More pre-
cisely, given a set of data {xi}N

i=1 ⊂ Rp, the KDF used
to estimate density is defined to be

f̂N (x) :=
1

Nhp
N

N∑

i=1

K

(
x− xi

hN

)
(1.1)

where K(x) is a positive kernel and hN is a scale
parameter. Clusters may then be obtained according to
the partition defined by the valleys of f̂N (x). Efficient
valley seeking algorithm is also available [6] which does
not require finding the valleys explicitly.

There are a number of important advantages of ker-
nel density approach. Identifying high density regions
is independent of the shape of the regions. Smooth-
ing effects of kernels make density estimations robust to
noise. Kernels are localized in space so that outliers do
not affect the majority of the data. The number of clus-
ters is automatically determined from estimated density
functions.

Despite the numerous advantages of kernel density
methods, there are some drawbacks which deteriorate
the quality of the resulting clusterings. KDFs are very
often oscillatory (uneven) since they are constructed by
adding many kernels together. Such oscillatory nature
may lead to the problem of over-fitting, for instance,
when clusters touch each other, a smooth cluster bound-
ary between the clusters are usually preferred than an
oscillatory one. Last but not least, valleys and peaks
of KDFs are often very vague especially when clusters
touch each other.

In Figure 1, we show a data set drawn from a mix-
ture of three Gaussian components and the estimated
KDF f̂N (x). We observe that the valleys and peaks
correspond to the two smaller large clusters of the KDF
are very vague or may even not exist. It is non-trivial
to see that three large clusters exist. Thus, the perfor-



mance of applying valley seeking algorithm based on the
KDF is poor.
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Figure 1: (a) Data set consisting of a mixture of three
Gaussian distributions. (b) Estimated density function
f̂N (x) using Gaussian kernel with window size h = 1. In
(b), peaks and valleys corresponding to the two smaller
large clusters are very vague that it is non-trivial to see
that three large clusters exist.

The organization of the rest of the paper is as
follows. In §2, we outline our method. In §3, some
theoretical results are presented to justify our method.
Finally, experiments are presented in §4.

2 Cluster Formation

In this section, we describe our methodology to con-
struct clusters using level set methods.

We start by introducing some terms that will be
used throughout the rest of the paper. A cluster
core contour is a closed surface surrounding the core
part/density peak of a cluster at which density is rela-
tively high. A cluster boundary refers to the interface
between two clusters, i.e., a surface separating two clus-
ters. A cluster core contour is usually located near a
density peak while a cluster boundary is located at the
valley regions of a density distribution. Here, a point

x is said to belong to a valley region of f̂N (x) if there
exists a direction along which f̂N (x) is a local minimum.

Our method consists of the following main steps
which will be elaborated in details in the next subsec-
tions:

1. Initialize cluster core contours to obtain a rough
outline of density peaks;

2. Advance the cluster core contours using level set
methods to find density peaks;

3. Apply valley seeking algorithm on the CIF con-
structed from the final cluster core contours to ob-
tain clusters.

2.1 Initialization of Cluster Core Contours In
this subsection, we describe how to construct an initial
cluster core contours Γ effectively. The basic idea is
to locate the contours at which f̂N (x) has a relatively
large (norm of) gradient. In this way, regions inside Γ
would contain most of the data points — we refer these
regions as cluster regions. Similarly, regions outside Γ
would contain no data point at all and we refer them as
non-cluster regions.

To construct an interface which divides the space
into cluster regions and non-cluster regions reasonably,
we construct the initial cluster core contours Γ as
follows.

Definition 2.1. An initial cluster core contours Γ is
defined to be the set of zero crossings of ∆f̂N (x),
the Laplacian of f̂N (x). Here, a point x is a zero
crossing if ∆f̂N (x) = 0 and within any arbitrarily small
neighborhood of x, there exist x+ and x− such that
∆f̂N (x+) > 0 and ∆f̂N (x−) < 0.

We note that Γ often contains several closed sur-
faces. The idea of using the set of zero crossings of
∆f̂N (x) is that it outlines the shape of data sets very
well and that for many commonly used kernels (e.g.
Gaussian and cubic B-spline) the sign of ∆f̂N (x) in-
dicates whether x is inside or outside Γ.

Reasons for using zero crossings of ∆f̂N (x) to
outline the shape of data sets are several folds: (a)
the solution is a set of surfaces at which ‖∇f̂N (x)‖ is
relatively large; (b) the resulting Γ is a set of closed
surfaces; (c) Γ well captures the shape of clusters;
(d) the Laplacian operator is an isotropic operator
which does not bias towards certain directions; (e) the
equation is simple and easy to solve; (f) it coincides with
the definition of edge in the case of image processing.
In fact, zero crossings of Laplacian of image intensity
functions are often used for edge detection to outline an
object in image processing [10].



In Figure 2, we show the cluster core contour
defined based on zero crossings of ∆f̂N (x) juxtaposed
with the underlying data set (the data set in Figure
1(a)). We observe that the set of zero crossings of
∆f̂N (x) captures the shape of the data set very well.
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Figure 2: Cluster core contours defined based on zero
crossings of ∆f̂N (x) capture the shape of the data set
very well.

2.2 Advancing Cluster Core Contours Next, we
discuss how to advance the initial cluster core contours
to obtain peak regions through hill climbing in a smooth
way. We found that this is a key issue in density-based
approaches and this is also how ideas from level set
methods come into play. More precisely, we employ
PDE techniques to advance contours in an elegant way.

Since each cluster core contour Γi in the initial set
of cluster core contours Γ changes its shape when we
evolve it, we parameterize such a family of cluster core
contours by a time variable t, i.e., the i-th cluster core
contour at time t is denoted by Γi(t). We also define
the mean curvature κ of a contour Γi to be

κ(x, t) = ∇ ·
( ∇φ(x, t)
‖∇φ(x, t)‖

)

=
φ2

yφxx − 2φxφyφxy + φ2
xφyy

(φ2
x + φ2

y)3/2
.

In level set methods, if we want to evolve a closed
surface Γ embedded in a level set function φ(x, t) with
speed β(x, t), then the equation is given by

∂φ

∂t
= β‖∇φ‖

which is known as the level set equation [12]. Our
equation also takes this form.

Given an initial contour Γi(0), the time dependent
PDE that we employ for hill climbing on density func-

tions is given by

∂φ

∂t
=

(
1

1 + ‖∇f̂N‖
+ ακ

)
‖∇φ‖(2.2)

with initial condition given by a level set function con-
structed from Γi(0). This equation is solved indepen-
dently for each component cluster core contour in Γ(t).
Evolution is stopped when a stopping criterion is sat-
isfied. In fact, we stop evolution if a contour becomes
convex or if a contour becomes stable in sense that it is
not split.

The aim of the factor 1/(1 + ‖∇f̂N‖) is to perform
hill climbing to look for density peaks. Moreover, the
factor also adjusts the speed of each point on the cluster
core contour in such a way that the speed is lower if
‖∇f̂N‖ is larger so that cluster core contours stays in
steep regions of f̂N (x) where peak regions are defined
better. In the limiting case where f̂N has a sharp jump,
the cluster core contour actually stops moving at the
jump. We remark that in traditional steepest descent
methods for solving minimization problems, the speed
(step size) is usually higher if ‖∇f̂N‖ if larger, which is
opposite to what we do. This is because our goal is to
locate steep regions of f̂N rather than local minimums.

The curvature term κ exerts tension to the cluster
core contour such that the contour is smooth. This
mechanism resolves the problem of over-fitting of KDFs.
In fact, if φ(x, t) is kept to be a signed distance function
for all t, i.e., ‖φ(x, t)‖ ≡ 1, then κ = ∆φ(x, t) so
that φ(x, t) is smoothed out by Gaussian filtering. In
variational point of view, the curvature term exactly
corresponds to minimization of the length (surface area)
of the cluster core contour.

The scalar α ≥ 0 controls the amount of tension
added to the surface and will be adjusted dynamically
during the course of evolution. At the beginning of
evolution of each Γi(0), we set α = 0 in order to prevent
smoothing out of important features. After a contour
is split into pieces, tension is added and is gradually
decreased to 0. In this way, spurious oscillations can be
removed without destroying other useful features.

In summary, the PDE simply (i) moves the initial
cluster core contour uphill in order to locate peak
regions; (ii) adjusts the speed according to the slope
of the KDF; (iii) removes small oscillations of cluster
core contours by adding tension so that hill climbing is
more robust to the unevenness of the KDF. Of course,
the use of level set methods allows the initial cluster
core contour to be split and merged easily.

In the following, we apply the PDE to the cluster
core contours in Figure 2. In Figure 3, we show the
cluster core contours during the course of evolution un-
til the contours become nearly convex and the evolution



terminates. In fact, before evolution starts, the two clus-
ter core contours correspond to outliers are convex and
hence they are freezed. We observe that the contours
are attracted to density peaks. Moreover, when a con-
tour is split into several contours, the pieces are not very
smooth near the splitting points. Since tension is added
in such cases, the contours are straighten out quickly.

2.3 Cluster Intensity Functions In non-
parametric modelling, one may obtain clusters by
employing valley seeking on KDFs. However, as
mentioned in §1, such methods perform well only when
the clusters are well-separated and of approximately
the same density in which case peaks and valleys of
the KDF are clearly defined. On the other hand, even
though we use the density peaks identified by our PDE
(2.2) as a starting point. If we expand the cluster cores
outward according to the KDF, we still have to face the
problems of the KDF; we may still get stuck in local
optimum due to its oscillatory nature.

In this subsection, we further explore cluster inten-
sity functions which are a better representation of clus-
ters than that by KDFs. Due to the advantages of CIFs,
we propose to perform valley seeking on CIFs to con-
struct clusters, rather than on KDFs. Here, CIFs are
constructed based on the final cluster cluster cores ob-
tained by solving the PDE (2.2).

CIFs capture the essential features of clusters and
inherit advantages of KDFs while information irrelevant
to clustering contained in KDFs is filtered out. More-
over, peaks and valleys of CIFs stand out clearly which
is not the case for KDFs. The principle behind is that
clustering should not be done solely based on density,
rather, it is better done based on density and distance.
For example, it is well-known that the density-based al-
gorithm DBSCAN [5] cannot separate clusters that are
closed together even though their densities are different.

CIFs, however, are constructed by calculating
signed distance from cluster core contours (which are
constructed based on density). Thus, CIFs combine
both density and distance information about the data
set. We remark that signed distance functions have been
widely used as level set functions in level set methods for
they are meaningful physically and possess many prop-
erties that make computations efficient and accurate,
see [12, 15].

The definition of a CIF is as follows. Given a set
of closed hypersurfaces Γ (zero crossings of ∆f̂N (x) or
its refined version), the CIF φ(x) with respect to Γ is
defined to be the signed distance function

φ(x) =





min
y∈Γ

‖x− y‖ if x lies inside Γ

−min
y∈Γ

‖x− y‖ if x lies outside Γ .(2.3)
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Figure 3: Evolution of Γ in Figure 2 using bump
hunting PDEs (2.2). (a) Initial boundary. (b) After
400 iterations. (c) After 800 iterations (converged). We
observe that the resulting boundaries capture the hot
spots of the data set very well.
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Figure 4: CIF constructed from the contours in Figure
3(c). Peaks corresponding to the three large clusters are
clearly seen.

The value of a CIF at x is simply the distance
between x and Γ with its sign being positive if x lies
inside Γ and negative if x lies outside Γ. Roughly
speaking, a large positive (respectively negative) value
indicates that the point is deep inside (respectively
outside) Γ while a small absolute value indicates that
the point lies close to the interface Γ.

In Figure 4, the CIF constructed from the cluster
core contours in Figure 3(c) is shown. The peaks
correspond to the three large clusters can be clearly seen
which shows that our PDE is able to find cluster cores
effectively.

2.4 Valley Seeking The final step to obtain clusters
is to apply valley seeking (see [6]) on the new CIF
constructed based on the final cluster core contours
according to (2.3). Essentially, we partition the space
according to the valleys of the CIF.

The use of signed distance functions as CIFs has a
property that their valleys are nothing but the equidis-
tance surfaces between the cluster core contours. More-
over, cluster core contours play a similar role as cluster
centers in the k-means algorithm. Thus, our method
may be treated as a generalization of the k-means al-
gorithm in the sense that a “cluster center” may be of
arbitrary shape instead of just a point.

In Figure 5, we show the valleys of the CIF juxta-
posed with the data set and the final cluster core con-
tours. We observe that the three large clusters are well-
discovered and the outliers are also separated. We may
also observe that the value of a CIF indicates the degree
of membership (cluster intensity) of a point to the clus-
ter to which it belongs (measured based on distance).

Under level set methods framework, valleys and

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

6

8

x
1

x 2

Figure 5: Valleys of the CIF in Figure 4. We observe
that the three core clusters are well-discovered.

peaks are easily obtained. The valleys are just the
singularities of the level set function (i.e. CIF) having
negative values. On the other hand, the singularities
of the level set function having positive values are the
peaks or ridges of the CIF (also known as skeleton).

We remark that (i) when applying the valley seeking
algorithm, we do not need to find the valleys explicitly
— the valleys are shown for visualization purposes only;
(ii) the valleys are independent of the choice of the
kernel at all — different choices of kernel may result
in a slightly different shape of the cluster core contours
but the valleys will be quite stable; (iii) one may imagine
that if the outliers are removed, then the valleys away
from the three large clusters in Figure 4 will be very
different, however, the valleys in between the three
large clusters will remain the same and hence the final
clusterings will be the same (except for the outliers of
course).

We now further illustrate how the problem of over-
fitting (or under-fitting) of KDFs is resolved using our
method. In Figure 6, we show the clustering results of
applying valley seeking algorithm on the KDF directly,
using the scale parameter h = 0.6 and h = 0.7. As
expected, one can hardly discover the three large cluster
using such a method because the valleys are either too
vague or too oscillatory. In contrast our method resolves
these problems by (i) outlining the shape of the data set
well while keeping the cluster core contours smooth; (ii)
using curvature motion to smooth out oscillations due
to unevenness of KDFs.

3 Theoretical Results of the Method

In this section, we present some mathematical results
to justify our method.

First, we state some fundamental properties of the
cluster core contours constructed to justify that the use
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Figure 6: (a) Clustering result of applying valley seeking
algorithm on the KDF with scale parameter h = 0.6. (b)
Clustering result of applying valley seeking algorithm on
the KDF with scale parameter h = 0.7. We observed
that in (a), due to over-fitting, 18 clusters are discovered
with the three large clusters split into pieces. In (b),
11 clusters are found, under-fitting causes some of the
regions of the KDF between the three large clusters have
no valleys. Hence, two large clusters are merged into
one.

of zero crossings of ∆f̂N (x) as cluster core contours. To
begin, some assumptions on K(x) are needed:

A1. K(x) is at least two times continuously differen-
tiable;

A2. there exist 0 < L1 < L2 such that K(x) is strictly
concave for all ‖x‖ < L1, strictly concave for all
L1 < ‖x‖ ≤ L2 and concave for all ‖x‖ ≥ L2.

We remark that Gaussian kernel possesses all these
properties with L1 = 1 and L2 = ∞. The following
proposition follows from the assumptions A1 and A2.

Proposition 3.1. If the data set X ⊂ Rp is non-empty
and the kernel satisfies the above assumptions, then

zero crossings of ∆f̂N exist. Moreover, the set of zero
crossings of ∆f̂N (x) is a set of bounded closed surfaces
in Rp.

The following proposition states that the zero cross-
ings of ∆f̂N (x) contain all edges in the infinite samples
case.

Proposition 3.2. If N →∞ (infinite samples) and if
f̂N (x) is discontinuous on Γ̃, then the zero crossings Γ
of ∆f̂N (x) contains Γ̃.

It is well-known that if the clusters are well-
separated, then applying valley seeking algorithm on the
KDF will give the correct clustering. Our next proposi-
tion states that this is also true for the CIF constructed
from the zero crossings of ∆f̂N (x). We remark that
if the clusters touch each other, then valley seeking on
KDFs may result in poor clusterings while our method
performs better.

Proposition 3.3. If all clusters are well-separated,
then the valleys of the CIF constructed from the zero
crossings of ∆f̂N (x) give the correct clustering.

The above proposition follows from the fact that
if clusters are well-separated, then each cluster will be
roughly surrounded by one cluster core contour. Since
these cluster core contours are also well-separated, the
valleys of the CIF defined on the top of them will
correctly partition the data set.

4 Experiments

In addition to the examples shown in Figures 1–6, we
give examples to further illustrate the usefulness of the
cluster intensity function and the level set techniques.
For visualization of cluster intensity functions which is
one dimension higher than the data sets, two dimen-
sional data sets are used while the theories presented
above apply to any number of dimensions. The PDE
(2.2) is solved on a regular grid using finite difference
methods. An upwind scheme is used, see [14, pp.80–
81] for details. When moving the cluster core contours,
we also employ the narrow band version [15, pp.77–85]
of level set methods so that only a band of few grid
points wide around the cluster core contours is consid-
ered. Time step is chosen according to the CFL condi-
tion [12, p.44]. CIFs are built by using fast marching
methods [15] efficiently (fast sweeping methods [11] may
also be used).

Example 1. We illustrate the valleys of CIFs having
complicated shape. In the figure, we may see that the
zero crossings of ∆f̂N (x) capture the shape of the data



very well while the use of the valleys of the CIF allows
us to separate clusters of complicated shape.
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Figure 7: (a) Two “C” shape clusters juxtaposed with
the zero crossings of ∆f̂N (x) and the valleys of the
cluster intensity function. (b) The cluster intensity
function constructed from the zero crossings of ∆f̂N (x).
In (a), the valleys of cluster intensity function clearly
separate the two clusters.

Example 2. In this experiment, we show that our
method when applying to the data set in Figure 1(a) re-
covers the underlying mean of the Gaussian component
very well. The true means of the three Gaussian com-
ponents are (1.7, 0), (−1.7, 0) and (0, 2.9445) while the
ones estimated by our algorithm are (1.6775,−0.0005),
(−1.8056,−0.2209) and (0.0294, 2.8979). This shows
that each peak of the final CIF is very close to the center
of the corresponding Gaussian component. Thus, CIFs
describe clusters very well.

Example 3. Our next example uses text documents
data from three newsgroups. The results are shown in
Figure 8. We observe that the clustering results agree

with the true clustering very well.

5 Concluding Remarks

In the paper, we introduced level set methods to identify
density peaks and valleys in density landscape for data
clustering. The method relies on advancing contour
to form cluster cores. One key point is that during
front advancement, smoothness is enforced via level set
methods. Another point is that important features
of clusters are captured by cluster intensity functions.
The usual problem of roughness of density functions is
overcome. The method is shown to be much more robust
and reliable than traditional methods that perform
bump hunting or valley seeking on density functions.

Our method can also identify outliers effectively.
After the initial cluster core contours are constructed,
outliers are clearly revealed and can be easily identified.
In this method, different contours evolv independently.
Thus outliers do not affect normal cluster formation via
contour advancing; This nice property does not hold for
clustering algorithms such as the k-means where several
outliers could skew the clustering.

Our method for front advancement (2.2) is based on
the dynamics of front propagation in level set methods.
A more elegant approach is to recast the cluster core
formation as a minimization problem where the from
advancement can be derived from first principles which
will be presented in a later paper.
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Figure 8: Clustering results of a newsgroup data set.
(a) Data set obtained from three newsgroups having
size 100, 99 and 99 respectively. Data points (articles)
in the same newsgroup are displayed with the same
symbol. (b) The set of zero crossings of ∆f̂N (x). (c)
Clustering results where the lines are valleys of the final
CIF and the closed curves are the final cluster core
contours enclosing the core part of the clusters. (d)
Cluster intensity function.


