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Abstract

Current nonnegative matrix factorization (NMF) deals
with X = FGT type. We provide a systematic analysis
and extensions of NMF to the symmetric W = HHT ,
and the weighted W = HSHT . We show that (1)
W = HHT is equivalent to Kernel K-means cluster-
ing and the Laplacian-based spectral clustering. (2)
X = FGT is equivalent to simultaneous clustering of
rows and columns of a bipartite graph. Algorithms are
given for computing these symmetric NMFs.

1 Introduction

Standard factorization of a data matrix uses singular
value decomposition (SVD) as widely used in principal
component analysis (PCA). However, for many dataset
such as images and text, the original data matrices
are nonnegative. A factorization such as SVD contain
negative entries and thus has difficulty for interpreta-
tion. Nonnegative matrix factorization (NMF) [7, 8] has
many advantages over standard PCA/SVD based fac-
torizations. In contrast to cancellations due to negative
entries in matrix factors in SVD based factorizations,
the nonnegativity in NMF ensures factors contain co-
herent parts of the original data (images).

Let X = (x1, . . . ,xn) ∈ R
p×n
+ be the data matrix of

nonnegative elements. In image processing, each col-
umn is a 2D gray level of the pixels. In text mining,
each column is a document.

The NMF factorizes X into two nonnegative matrices,

X ≈ FGT, (1)

where F = (f1, · · · , fk) ∈ R
p×k
+ and G = (g1, · · · ,gk) ∈

R
n×k
+ . k is a pre-specified parameter. The factoriza-

tions are obtained by the least square minimization. A
number of researches on further developing NMF com-
putational methodologies [12, 11, 10], and applications
on text mining [9, 14, 11].

Here we study NMF in the direction of data cluster-
ing. The relationship between NMF and vector quan-
tization, especially the difference, are discussed by Lee
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and Seung [7] as a motivation for NMF. The clustering
aspect of NMF is also studied in [14, 10].

In this paper, we provide a systematic analysis and ex-
tensions of NMF and show that NMF is equivalent to
Kernel K-means clustering and Laplacian-based spec-
tral clustering.
(1) We study the symmetric NMF of

W ≈ HHT (2)

where W contains the pairwise similarities or the Ker-
nals. We show that this is equivalent to K-means type
clustering and the Laplacian based spectral clustering.
(2) We generalize this to bipartite graph clustering i.e.,
simultaneously clustering rows and columns of the rect-
angular data matrix. The result is the standard NMF.
(3) We extend NMFs to weighted NMF:

W ≈ HSHT. (3)

(4) We derive the algorithms for computing these fac-
torizations.

Overall, our study provides a comprehensive look at
the nonnegative matrix fractorization and spectral clus-
tering.

2 Kernel K-means clustering and
Symmetric NMF

K-means clustering is one of most widely used clus-
tering method. Here we first briefly introduce the K-
means using spectral relaxation [15, 3]. This provides
the necessary background information, notations and
paves the way to the nonnegative matrix factorization
approach in §2.1.

K-means uses K prototypes, the centroids of clusters,
to characterize the data. The objective function is to
minimize the sum of squared errors,

JK =
K∑

k=1

∑
i∈Ck

||xi −mk||2 = c2 −
∑

k

1
nk

∑
i,j∈Ck

xT

i xj ,

(4)
where X = (x1, · · · ,xn) is the data matrix, mk =∑

i∈Ck
xi/nk is the centroid of cluster Ck of nk points,



and c2 =
∑

i ||xi||2. The solution of the clustering is
represented by K non-negative indicator vectors:

H = (h1, · · · ,hK), hT

kh� = δk�. (5)

where

hk = (0, · · · , 0,

nk︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0)T/n

1/2
k (6)

Now Eq.(4) becomes JK = Tr(XTX) − Tr(HTXTXH).
The first term is a constant. Let W = XTX. Thus
min JK becomes

max
HTH=I, H≥0

JW(H) = Tr(HT WH). (7)

The pairwise similarity matrix W = XTX is the stan-
dard inner-product linear Kernel matrix. It can be ex-
tended to any other kernels. This is done using a non-
linear transformation (a mapping) to the higher dimen-
sional space

xi → φ(xi)

The clustering objective function under this mapping,
with the help of Eq.(4), can be written as

min JK(φ) =
∑

i

||φ(xi)||2 −
∑

k

1
nk

∑
i,j∈Ck

φ(xi)Tφ(xj).

(8)
The first term is a constant for a given mapping function
φ(·) and can be ignored. Let the kernel matrix Wij =
φ(xi)Tφ(xj). Using the cluster indicators H , the kernel
K-means clustering is reduced to Eq.(7).

The objective function in Eq.(7). can be symbolically
written as

JW =
∑

k

1
nk

∑
i,j∈Ck

wij = Tr(HT WH). (9)

Kernel K-means aims at maximizing within-cluster sim-
ilarities. The advantage of Kernel K-means is that it
can describe data distributions more complicated than
Gaussion distributions.

2.1 Nonnegative factorization of
Kernel K-means

We show that the optimization of Eq.(7) can be solved
by the matrix factorization

W ≈ HHT , H ≥ 0. (10)

Casting this in an optimization framework, an appro-
priate objective function is

min
H≥0

J1 = ||W −HHT ||2, (11)

where the matrix norm ||A||2 =
∑

ij a2
ij , the Frobeneus

norm.
Theorem 1. W = HHT factorization is equivalent to
Kernel K-means clustering with the strict orthogonality
relation Eq.(5) relaxed.
Proof. The maximization of Eq.(7) can be written as

H = argmin
HTH=I, H≥0

−2Tr(HT WH)

= argmin
HTH=I, H≥0

||W ||2 − 2Tr(HT WH) + ||HT H ||2

= argmin
HTH=I, H≥0

||W −HHT ||2. (12)

Relaxing the orthogonality HTH = I completes the
proof. �–

If the nonnegativity condition is relaxed (ignored), the
solution to H are the k eigenvectors with the largest
eigenvalues and orthogonality is retained. Now we keep
the nonnegativity of H . Will the orthogonality get lost?
Theorem 2. W = HHT factorization retains H or-
thogonality approximately.
proof. One can see that min J1 = ||W − HHT ||2 is
equivalent to

max
H≥0

Tr(HT WH), (13)

min
H≥0
||HT H ||2. (14)

The first objective recovers the original optimization
objective Eq.(7). We concentrate on 2nd term. Note

||HT H ||2 =
∑
�k

(HT H)2�k =
∑
� �=k

(hT

�hk)2 +
∑

k

(hT

khk)2.

Minimizing the first term is equivalent to enforcing the
orthogonality among h�: hT

�hk ≈ 0. Minimizing the
second term is equivalent to

min ||h1||4 + · · ·+ ‖hK‖4. (15)

However, H cannot be all zero, otherwise we would have
Tr(HT WH) = 0. More precisely, since W ≈ HHT ,∑

ij

wij ≈
∑
ij

(HHT )ij =
∑
kij

hikhjk =
∑

k

|hk|2, (16)

where |h| = ∑
i |hi| =

∑
i hi is the L1-norm of vector

h. This means ||h�|| > 0. Therefore, optimization of
Eq.(14) with the nonzero constraint Eq.(16) implies H
has near orthogonal columns, i.e.,

hT

�hk ≈
{

0 if l �= k,
‖hk‖2 > 0 if l = k.

(17)

Furthermore, minimization of Eq.(15) with the nonzero
constraint Eq.(16) leads to the column equalization con-
dition

||h1|| ≈ ||h2|| ≈ · · · ≈ ||hk||. (18)



This assures the approximate balance of cluster sizes.
�–

The near-orthogonality of columns of H is important
for data clustering. An exact orthogonality implies that
each row of H can have only one nonzero element, which
implies that each data object belongs only to 1 cluster.
This is hard clustering, such as in K-means . The near-
orthogonality condition relaxes this a bit, i.e., each data
object could belong fractionally to more than 1 cluster.
This is soft clustering. A completely non-orthogonality
among columns of H does not have a clear clustering
interpretation.

3 Bipartite graph K-means clustering
and NMF

A large number of datasets in today’s applications are in
the form of rectangular nonnegative matrix (a form of a
contingency table), such as the word-document associa-
tion matrix in text mining or the DNA gene expression
profiles. This kind of datasets can be represented by a
bipartitie graph; the input data matrix B is the graph
adjacency matrix contains the association among row
and column objects.

The relation between symmetric NMF and K-means
can be easily extended to bipartitie graph; here we si-
multaneously cluster the rows and columns of B. Let
the rows of B be (y1, · · · ,yk) = BT and the indicator
matrix F = (f1, · · · , fk) for these row-clusters. Let the
columns of B be (x1, · · · ,xk) = B and the indicator
matrix G = (g1, · · · ,gk) for these column-clusters. Ac-
cording Eq.(7), simultaneous row and column K-means
clustering becomes simultaneous optimizations:

max
FTF=I, F≥0

Tr FT BBT F, max
GTG=I, G≥0

Tr GT BT BG.

(19)
This simultaneous clustering can be formulated more
compactly. We combine the row and column nodes

together as W =
(

0 B
BT 0

)
, hk = 1√

2

(
fk
gk

)
, H =

1√
2

(
F
G

)
where the factor 1/

√
2 allows the simultane-

ous normalizations hT

khk = 1, fT

k fk = 1, and gT

kgk = 1.
The K-means type clustering objective function is

max
F T F = I;
GT G = I;
F, G ≥ 0

J2 =
1
2
Tr

(
F
G

)T (
0 B

BT 0

) (
F
G

)
= Tr FT BG.

(20)
The solution of this quadratic optimization is given by

the first K eigenvectors of
(

0 B
BT 0

) (
fk
gk

)
= λk

(
fk
gk

)
which is equivalent to Bgk = λkfk, BT fk = λkgk. Upon

substition, the equations are BT Bgk = λ2
kgk, BBT fk =

λ2
kfk, which define the solutions of optimizations in Eq.(19).

This proves that Eq.(20) is the objective for simultane-
ous row and column K-means clustering.

Standard K-means maximizes the within-cluster sim-
ilarities. For bipartite graph, J2 minimizes the bipartite
within-cluster similarities s(Rk, Ck),

J2 =
∑

k

s(Rk, Ck)
(|Rk| |Ck|)1/2

, s(Rk, Ck) =
∑
i∈Rk

∑
j∈Ck

bij .

(21)
Clearly, without nonnegative constraint, the solution

is given by the first K left and right singular vectors of
the SVD of B. We focus on the nonnegative case.
Theorem 3. The simultaneous row and column K-
means clustering J2 is equivalent to the following opti-
mization problem,

min
F T F = I;
GT G = I;
F, G ≥ 0

||B − FGT ||2. (22)

Proof. We have maxF,G J2 ⇒ minF,G−Tr(FT BG) ⇒
minF,G ||B||2 − 2Tr(FT BG) + Tr(FT FGT G). Here we
add two constants: ||B||2 and Tr(FT FGT G) = TrI =
k. The objective function is identical to ||B − FGT ||2.
�–

Now we relax vigourous orthogonality contraints
FT F = I; GT G = I to the approximate orthogonality.
Therefore, NMF is equivalent to K-means clustering
with relaxed orthogonality contraints.

The orthogonality constraints play an important role.
In the above, we assume both F and G are orthog-
onal. If one of them is orthogonal, we can explicitly
write ||B − FGT ||2 as a K-means clustering objective
function. To show this, we impose the normalization

p∑
i=1

bij = 1,

k∑
r=1

gir = 1,

p∑
j=1

fjk = 1. (23)

For any given data B, column L1 normalization of B
is applied. The second normalization indicates that the
i-th row of G are the posterior probabilities for bi be-
longing to k clusters; they should add up to 1. The
3rd normalization

∑
j(fk)j is a standard length nor-

malize of the vector fk. Since we approximate B ≈
FGT , the normalization of FGT should be consistent
with the normalization of B. Indeed,

∑p
i=1(FGT )ij =∑p

i=1

∑k
r=1 FirGjr = 1, consistent with

∑
i Bij = 1.

Let B = (x1, · · · ,xn) and gT

�gk = 0, � �= k, we have
Theorem 4. NMF with orthogonal G is identical to
K-means clustering of the columns of B.



Proof. We have

J2 = ‖B − FGT‖2 =
n∑

i=1

∥∥∥∥∥xi −
κ∑

k=1

gikfk

∥∥∥∥∥
2

. (24)

Due to the row normalization of G, each term becomes∥∥∥∥∥
κ∑

k=1

gik(xi − fk)

∥∥∥∥∥
2

=
κ∑

k=1

g2
ik||xi − fk||2 =

κ∑
k=1

gik||xi − fk||2

The orthogonality condition of G implies that in each
row of G, only one element is nonzero and gik = 0, 1.
Thus g2

ik = gik. Summing over i, J2 =
∑κ

k=1

∑
i∈Ck

‖xi−
fk‖2, which is the K-means clustering with fk as the
cluster centroid. �

4 Spectral clustering and NMF

In recent years spectral clustering using the Laplacian of
the graph emerges as solid approach for data clustering
(see references in [2]). Here we focus on the spectral
clustering objective functions. There are three objec-
tives: the Ratio Cut [6], the Normalized Cut [13], and
the MinMax Cut [4]. We are interested in the multi-way
clustering objective functions,

J =
∑

1≤p<q≤K

s(Cp, Cq)
ρ(Cp)

+
s(Cp, Cq)

ρ(Cq)
=

K∑
k=1

s(Ck, C̄k)
ρ(Ck)

(25)

ρ(Ck) =

⎧⎨
⎩
|Ck| for Ratio Cut∑

i∈Ck
di for Normalized Cut

s(Ck, Ck) for MinMax Cut
(26)

where C̄k is the complement of subset Ck in graph G,
s(A, B) =

∑
i∈A

∑
j∈B wij , and di =

∑
j wij .

Here we show that the minimization of these objective
functions can be equivalently carried out via the non-
negative matrix factorizations. The proof follows the
multi-way spectral relaxation[5] of NormalizedCut and
MinMaxCut. We focus on Normalized Cut.
Theorem 5. Normalized Cut using pairwise similarity
matrix W is equivalent to Kernel K-means clustering
with the kernel matrix

W̃ = D−1/2WD−1/2. (27)

where D = diag(d1, · · · , dn).
Corallary 5. Normalized Cut using similarity W is
equivalent to nonnegative matrix factorization

min
H≥0

J3 = ||W̃ −HHT ||2. (28)

Proof of Theorem 5. Let hk be the cluster indicators
as in Eq.(6). One can easily see that

s(Ck, C̄k) =
∑
i∈Ck

∑
j∈C̄k

wij = hT

� (D −W )h� (29)

and
∑

i∈Ck
di = hT

�Dh�. Define the scaled cluster in-
dicator vector z� = D1/2h�/||D1/2h�||, which obey the
orthonormal condition zT

�zk = δ�k, or ZT Z = I, where
Z = (z1, · · · , zK). Substituting into the Normalized Cut
objective function, we have

JNC =
K∑

�=1

hT

� (D −W )h�

hT

�Dh�
=

K∑
�=1

zT

� (I − W̃ )z�

The first term is a constant. Thus the minimization
problem becomes

max
ZTZ=I, Z≥0

Tr(ZTW̃Z) (30)

This is identical to the Kernel K-means clustering of
Eq.(7). Once the solution Ẑ is obtained, we can recover
H by optimizing

min
H≥0

∑
�

∥∥∥∥ẑ� − D1/2h�

||D1/2h�||
∥∥∥∥

2

. (31)

The exact solution are hk = D−1/2ẑk, or H = D−1/2Z.
Thus row i of Z is multiplied by a constant d

−1/2
i . The

relative weight across different cluster in the same row
remain same. Thus H represents the same clustering
as Z does. �–

Theorem 5 show the spectral clustering are directly
related to Kernel K-means clustering, which is equiv-
alence to NMF by Theorem 1. Thus NMF, Kernel K-
means clustering and spectral clustering are unified in a
simple way: they are different prescriptions of the same
problem with slightly different constraints.

5 Weighted Nonnegative W = HSHT

In both Kernel K-means and spectral clustering, we as-
sume the pairwise similarity matrix W are semi positive
definite. For kernel matrices, this is true. But a large
number of similarity matrices is nonnegative, but not
s.p.d. This motivates us to propose the following more
general NMF:

min
H

J5 = ||W −HSHT ||2, (32)

When the similarity matrix W is indefinite, W has
negative eigenvalues. HHT will not provide a good
approximation, because HHT can not obsorb the sub-
space associated with negative eigenvalues. However,
HSHT can obsorb subspaces associated with both pos-
itive and negative eigenvalues, i.e., the indefiniteness of
W is passed on to S. This distinction is well-known in
linear algebra where matrix factorizations have Cholesky
factorization A = LLT if matrix A is s.p.d. Otherwise,



one does A = LDLT factorization, where the diagonal
matrix D takes care of the negeative eigenvalues.

The second reason for nonnegative W = HSHT is
that the extra degrees of freedom provided by S allow
H to be more closer to the form of cluster indicators.
This benefits occur for both s.p.d. W and indefinite W .

The third reason for nonnegative W = HSHT is that
S provides a good characterization of the quality of the
clustering. Generally speaking, given a fixed W and
number of clusters K, the residue of the matrix approxi-
mation J

opt
5 = min ||W−HSHT ||2 will be smaller than

J
opt
1 = min ||W − HHT ||2. Futhermore, the K-by-K

matrix S has a special meaning. To see this, let us as-
sume H are vigorous cluster indicators, i.e., HT H = I.
Setting the derivative ∂J5/∂S = 0, we obtain

S = HT WH, or S�k = hT

�Whk =

∑
i∈C�

∑
j∈Ck

wij√
n�nk

(33)
S represents properly normalized within-cluster sum of
weights (� = k) and between-cluster sum of weights
(� �= k). For this reason, we call this type of NMF
as weighted NMF. The usefulness of weighted NMF is
that if the clusters are well-separated, we would see the
off-diagonal elemens of S are much smaller than the
diagonal elements of S.

The fourth reason is the consistency between stan-
dard W = HHT and B = FGT . Since we can de-
fine a kernel as W = BTB. Thus the factorization
W ≈ BTB ≈ (FGT)T(FGT) = G(FTF )GT. Let
S = FTF , we obtain the weighted NMF.

6 Symmetric NMF Algorithms

We briefly outline the algorithms for computing sym-
metric factorizations W = HHT and W = HSHT. For
W = HHT , the updating rule is

Hik ← Hik

(
1− β + β

(WH)ik

(HHTH)ik

)
. (34)

where 0 < β ≤ 1. In practice, we find β = 1/2 is a good
choice. A faster algorithm1

H ← max
(
WH(HT H)−1, 0

)
. (35)

can be used in the first stage of the iteration. Algorith-
mic issues of symmtric NMF is also studied in [1].

For weighted NMF W = HSHT , the update rules are

Sik ← Sik
(HTWH)ik

(HTHSHTH)ik
. (36)

1For the nonsymmetric NMF of Eq.(1), the algorithm is F ←
max

`
BG(GT G)−1, 0

´
, G ← max

`
BT F (F T F )−1, 0

´
. Without

nonnegative constraints, these algorithms converge respectively
to global optimal solutions of J1 in Eq.( 11) and J2 in Eq.( 22).

Hik ← Hik

(
1− β + β

(WHS)ik

(HSHTHS)ik

)
. (37)
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