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Abstract

Nonnegative matrix factorization (NMF) is a versatile
model for data clustering. In this paper, we propose sev-
eral NMF inspired algorithms to solve different data min-
ing problems. They include (1) multi-way normalized cut
spectral clustering, (2) graph matching of both undirected
and directed graphs, and (3) maximal clique finding on both
graphs and bipartite graphs. Key features of these algo-
rithms are (a) they are extremely simple to implement; and
(b) they are provably convergent. We conduct experiments to
demonstrate the effectiveness of these new algorithms. We
also derive a new spectral bound for the size of maximal
edge bicliques as a byproduct of our approach.

keywords: Nonnegative matrix factorization, clustering,
graph matching, clique finding

1 Introduction

A large number of data mining tasks can be formu-

lated as optimization problems. Examples include K-means

clustering, support vector machines (SVM), linear discrimi-

nant analysis (LDA), and semi-supervised clustering. Non-

negative matrix factorization (NMF) has been shown to

be able to solve several data mining problems including

classification and clustering. In this paper, we show that

NMF provides an optimization frameworkwhich has a much

broader applicability and can solve a variety of data mining

problems.

NMF has been a significant success story in the machine

learning literature. Originally proposed as a method for find-

ing matrix factors with parts-of-whole interpretations [17],

NMF has been shown to be useful in a variety of applied

settings, including environmetrics [26], chemometrics [34],

pattern recognition [20], multimedia data analysis [5], text

mining [35, 27], and DNA gene expression analysis [3].

Algorithmic extensions of NMF have been developed to

accommodate a variety of objective functions [6, 10, 21]

and a variety of data analysis problems, including classifi-

cation [29] and collaborative filtering [31]. A number of

studies have focused on further developing computational

methodologies for NMF [15, 1, 22, 36, 23]. Researchers

have also begun to explore some of the relationships be-

tween matrix factorizations and clustering [11, 9, 10], open-

ing up a variety of additional potential applications for NMF

techniques. It has been shown that NMF with the sum of

squared error cost function is equivalent to a relaxed K-

means clustering [37, 8], the most widely used unsupervised

learning algorithm. In addition, NMF with the I-divergence

cost function is equivalent to probabilistic latent semantic

indexing, another unsupervised learning method popularly

used in text analysis.

In this paper, we show that NMF provides a nice frame-

work for solving many data mining optimization problems.

In particular, we broaden the scope of application to include

several different data mining problems. We provide NMF-

inspired solutions to

• Multi-way normalized cut spectral clustering,
• Graph matching,
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• Maximal clique and biclique

We also show that new analytical insights flow from this

approach. In particular, in the maximal biclique problem

our approach allows us to derive a new spectral bound for

the size of the maximal edge clique.

2 Spectral clustering

Normalized Cuts [30] is a NP-hard optimization prob-

lem. We focus on the multi-way version of Normalized Cuts,

which can be formulated as the minimization of the follow-

ing objective function:

Jnc =
∑

1≤p<q≤K

s(Cp, Cq)

ρ(Cp)
+

s(Cp, Cq)

ρ(Cq)
(1)

where wij are the entries of an affinity matrix W , {Ci} are
disjoint subsets of the vertices, di =

∑
j wij , ρ(Ck) =∑

i∈Ck
di, and s(Ck, C�) =

∑
i∈Ck

∑
j∈C�

wij . Let hk =
{0, 1}n be an indicator vector for cluster Ck. Let D =
diag(d1, · · · , dn). We have

Jnc =

K∑
�=1

hT
�(D −W )h�

hT
�Dh�

= K −
K∑

�=1

hT
�Wh�

hT
�Dh�

.

Let H = (h1/||D1/2h1||, · · · ,hK/||D1/2hK||). The prob-
lem becomes [13]

max
HTDH=I, H≥0

Tr(HT WH). (2)

If we ignore the nonnegative constraints, and keep the or-

thogonality intact, the solution for H is given by the gener-
alized eigenvectors ofD−W . However, the mixed signs of
the eigenvector solutions make the cluster assignment diffi-

cult. Thus the nonnegativity constraints is the key.

2.1 NMF algorithm

Lee and Seung [19] showed that the NMF problem could

be solved by a multiplicative update algorithm. In this sec-

tion we show that a similar approach can be adopted for Nor-

malized Cuts. We propose the following multiplicative up-

date algorithm for solving Eq. (2):

Hij ← Hij

√
(WH)ij

(DHα)ij
, α ≡ HT WH. (3)

In the following two subsections we show that this update

yields a correct solution at convergence and we show that

the algorithm is guaranteed to converge.

2.1.1 Correctness

Theorem 1 Fixed points of Eq. (3) satisfy the KKT condi-
tion.

Proof. We begin with the Lagrangian

L = TrHT WH − Trα(HT DH − I), (4)

where the Lagrange multiplier α enforces the orthogonality
conditionHT DH = I . The nonnegativity constraint is en-
forced using the KKT complementary slackness condition

(WH −DHα)ijHij = 0. (5)

Summing over j, we obtain (HT WH)ii = (HT DHα)ii =
αii. This gives the diagonal elements of α. To find the
off-diagonal elements of α, we temporally ignore the non-
negativity requirement. This gives (WH − DHα)ij = 0.
Left-multiplying by Hi′j and summing over j, we obtain
(HT WH)i′i = αi′i for the off-diagonal elements of α.
Combining these two results yields

α = HT WH. (6)

Clearly, a fixed point of the update rule Eq. (3) satisfies

(WH − DHα)ijH
2
ij = 0, which is identical to Eq. (5).

This is so because if Hij = 0, we have H2
ij = 0, and vice

versa. �–

2.1.2 Convergence

Theorem 2 Under the update rule of Eq. (3), the La-
grangian function L of Eq. (4) increases monotonically (it
is nondecreasing).

The proof is given in the Appendix.

2.2 Initialization

An approximate solution to the normalized cut problem

can be obtained by K-means clustering in an eigenspace

embedding [25]. We use such a clustering to initialize H.

Specifically, we (1) compute the K principal eigenvectors
of D−1/2WD−1/2, (2) normalize each embedded point to

the unit sphere, and (3) perform K-means on the normalized

points. This gives H0. We then initialize the update rule

Eq. (3) withH0 + 0.2 and iterate until convergence.

2.3 Experiments

We report results from running the NMF algorithm on

the datasets wine and soybean from the UCI data reposi-
tory. Figure 1(a) and Figure 1(b) plot the clustering accuracy
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Figure 1. Objective function (dashed curve)
and clustering accuracy (solid curve) as a
function of iterations on wine and soybean
datasets. On wine dataset, objective function
is scaled by a factor of 0.33 to be comparable
to clustering accuracy values. On soybean
dataset, objective function is scaled by a fac-
tor of 0.22.

across iterations of the algorithm; we also plot the evolution

of the objective function L. Note that the algorithm yields
a significant improvement relative to its initialization from

the spectral clustering algorithm of [25]. Note also that (as

expected from Theorem 2), the objective function increases

monotonically.

3 Graph matching

Graph matching plays an important role in many data

mining applications such as pattern recognition, informa-

tion retrieval, and frequent pattern mining to determine cor-

respondences between the components (vertices and edges)

of two attributed structures [16]. Given two graphs with ad-

jacency matricesA andB, the graph matching problem is to
permute the nodes ofA such that

∑
ij [(P

T AP )ij−Bij ]
2 =

||PT AP −B||2 is minimized, where P is a permutation ma-
trix. Since ||P T AP −B||2 = ||A||+ ||B||−2TrP T APBT ,

the problem becomes

max
P T P=I,P≥0

Tr P T APBT , (7)

The constraints P T P = PP T = I and P ≥ 0 together
ensure that each row has one nonzero elements, and so does

each column. We first consider undirected graphs, i.e., A =
AT , B = BT .

3.1 NMF algorithm for undirected graph
matching

In this section we show that the following multiplicative

update algorithm:

Pij ← Pij

√
(APB)ij

(Pα)ij
, α ≡ PT APB + (P T APB)T

2
,

(8)

is correct and converges to a locally optimal solution. This

algorithm has O(n3) complexity. At convergence, the ele-
ments of the solution P∞ are not generally {0, 1}-valued
and rounding is necessary. We propose to carry out this

rounding via the Hungarian algorithm for the bipartite graph

matching. This algorithm, which can be formulated as

P = arg maxP Tr(PP∞), also has complexityO(n3).

3.1.1 Correctness

Theorem 3 Fixed points of Eq. (8) satisfy the KKT condi-
tion.

Proof. The Lagrangian function is

L(P ) = TrP T APB − Trα(P T P − I). (9)
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The KKT complementary condition for the nonnegativity

constraint is

(APB − Pα)ijPij = 0. (10)

Summing over j, we obtain (P T APB)ii = (P T Pα)ii =
αii. This gives the diagonal elements of α. To find the
off-diagonal elements of α, we temporally ignore the non-
negativity requirement and setting ∂L/∂P = 0, we ob-
tain (P T APB)ij = αij for the off-diagonal elements of

α. Combining these two results together, we have α =
PT APB. However, since P T P − I is symmetric,

Tr α(P T P − I) = Tr [α(P T P − I)]T

= Tr (P T P − I)αT = Tr αT (PT P − I)

Thus only the symmetric part of α contributes to L, i.e., α
should also be symmetric. Thus we set

α = [P T APB + (P T APB)T ]/2. (11)

Clearly, the fixed points of the update rule Eq. (8) satisfy

(APB − Pα)ijP
2
ij = 0, which is identical to Eq. (10). �–

3.1.2 Convergence

Theorem 4 Under the update rule of Eq. (8), the La-
grangian function L(P ) of Eq. (9) increases monotonically
(nondecreasing).

The proof is similar to that of Theorem 1 and is omitted.

3.1.3 Initialization

Let J = P T APBT . It can be shown that J has an up-
per bound [33] and we can solve the optimization problem

based on this upper bound to initialize our algorithm. Let

the eigen-decompositions of A, B be A = UΣUT and B =
V ΛV T , where Σ = diag(σ1, · · · , σn) contains the eigen-
values of A in descending order, and Λ = diag(λ1, · · · , λn)
contains the eigenvalues of B in descending order. We have

J = TrP T (UΣUT )P (V ΛV T ) = TrΣ(UT PV )Λ(UT PV )T

Thus an upper bound of J is attained

max
P T P=I,P≥0

Tr PT APB ≤ max
P T P=I

Tr PT APB = TrΣΛ,

(12)

by relaxing P from a permutation matrix to an orthonormal
matrix: P = UV T . However, the solution is not unique,

because in the decomposition A = UΣUT , the signs of

the eigenvectors are not unique. That is, A = UΣUT

holds for any combination of signs of all eigenvectors: U =
(±u1, · · · ,±un).

To resolve this non-uniqueness, we adopt Umeyama’s ap-

proach [32]. Let Ū be the matrix containing the absolute

values of U : (Ū)ij = |Uij |, and similarly for V̄ . We com-
pute

P0 = Ū V̄ T . (13)

It is easy to see that 0 ≤ (P0)ij ≤ 1, because each row of Ū
and V̄ is a nonnegative vector with length 1. We use P0 as

the initial value for our iterative updating algorithm.

3.2 NMF algorithm for directed graph
matching

Graph matching for directed graphs is harder than for

undirected graphs and there has been little research on this

topic. It is thus of some interest that our approach to graph

matching generalizes to directed graphs in a straightforward

way. In this case A �= AT , B �= BT . The updating rule that

we propose is

Pij ← Pij

√
(APBT + AT PB)ij

(2Pα)ij
, (14)

where

α =
PT (APBT + AT PB) + (APBT + AT PB)T P

4
.

(15)

We can readily establish correctness and convergence for

this update rule using arguments similar to those for the

undirected case.

The initialization of the algorithm is somewhat more del-

icate than for the undirected case. Indeed, for directed

graphs, no upper bound is known to exist. Following [32],

we base our initialization on the following two hermitian

matrices:

Ã =
A + AT

2
+ i

A−AT

2
, B̃ =

B + BT

2
+ i

B −BT

2

where i =
√−1. We can obtain an upper bound for

maxP ||PT ÃP − B̃||2 using the same argument as in Sec-
tion 4.1.3. Let the eigendecompositions be Ã = UΣUT ,

B̃ = V ΣV T . Note that U, V are complex valued matri-
ces. Let U contains the magnitudes of each element of U

U ij = |Uij |, and similarly for V . Then P0 = U V
T
gives

the initial value of P . When A = AT , B = BT , this algo-

rithm reduces to that for undirected graphs.

3.3 Experiments

Following standard procedures in the literature on match-

ing algorithms, we test our algorithm by considering ma-

trices Aij = 100rij where rij is a uniform random num-

ber in [0, 1] and Bij = (P T
t APt)ij(1 + εr′ij), where Pt

is a permutation and ε sets the noise level. Note that the
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globally optimal permutation P satisfies ||P T AP −B||2 ≤
||PT

t APt − B||2. Because it is difficult to compute the true
global solution in experiments, we consider a solution to be

optimal if it satisfies this inequality.

The state-of-art practical algorithm for directed graph-

matching is Umeyama’s algorithm [32]. This algorithm

computes P = argmaxP Tr PP0 using the Hungarian al-

gorithm. We compare to Umeyama’s algorithm. We first

present an example with N = 6 and ε = 0.4. The input
weighted graphs (matrices) are

PT AP =

⎛⎜⎜⎜⎜⎜⎝
0 32 46 48 16 51
32 0 29 51 36 67
46 29 0 26 52 52
48 51 26 0 32 68
16 36 52 32 0 84
51 67 52 68 84 0

⎞⎟⎟⎟⎟⎟⎠

B =

⎛⎜⎜⎜⎜⎜⎝
0 20 30 47 42 58
20 0 24 64 34 76
30 24 0 31 70 42
47 64 31 0 23 71
42 34 70 23 0 82
58 76 42 71 82 0

⎞⎟⎟⎟⎟⎟⎠
where for ease of inspection, we permute A back to best
match B using the solution P . P0 and P∞ at convergence
are shown below:

P0 =

⎛⎜⎜⎜⎜⎜⎝
0.76 0.55 0.79 0.73 0.85 0.98
0.76 0.67 0.77 0.89 0.61 0.61
0.73 0.55 0.83 0.79 0.90 0.94
0.89 0.72 0.99 0.93 0.63 0.91
0.98 0.83 0.88 0.88 0.46 0.82
0.87 0.97 0.69 0.62 0.50 0.67

⎞⎟⎟⎟⎟⎟⎠

P∞ =

⎛⎜⎜⎜⎜⎜⎝
0.38 0.07 0.00 0.00 0.27 0.14
0.00 0.00 0.00 0.00 0.35 0.75
0.00 0.00 0.00 0.82 0.24 0.02
0.00 0.00 0.91 0.07 0.03 0.00
0.78 0.00 0.12 0.00 0.00 0.08
0.00 0.97 0.00 0.06 0.01 0.00

⎞⎟⎟⎟⎟⎟⎠
where the underline indicates that the corresponding el-

ement is rounded to one and the remaining elements are

rounded to zero by the Hungarian algorithm. For this ex-

ample, our algorithm correctly computes the permutation :

||PT AP −B|| = 62.42. Umeyama’s algorithm failed to re-
cover the correct permutation: ||P T

0 AP0 − B|| = 97.96,
but did improve the matching (without the permutation,

||A−B|| = 161.98).

We run Umeyama and our algorithm on graphs with sizes

up to 50 at noise levels up to ε = 0.4. The results are shown
in Table 2, which presents the success rate of correctly com-

puting the global permutation, averaging over 100 runs for

N = 10, 50 runs for N = 50 and 20 runs for N = 50. P0

N ε P0 NMF

10 0.1 0.72 0.97

10 0.2 0.19 0.69

10 0.3 0.04 0.36

10 0.4 0.00 0.19

20 0.2 0 0.74

Table 1. Success rate for different sizes (N )
and noise levels (ε). P0: using P0 and the Hun-
garian algorithm. NMF: using NMF and the
Hungarian algorithm.

N ε P0 NMF P0 + refine NMF+refine

50 0.2 0 0.70 0.20 0.95

Table 2. Success rate at N = 50. P0 + refine:
using P0 and refinement. NMF+refine: using
NMF and refinement.

gives the results for Umeyama algorithm and NMF for our

algorithm. Our algorithm does significantly better than the

Umeyama algorithm at higher noise level.

We can improve on the basic algorithm by adding an re-

finement algorithm, which exchanges two or three nodes at

a time in a greedy fashion to optimize the matching. Table 2

also presents results for this refinement. We see that refine-

ment can significantly improve both of the basic algorithms.

4 Maximal clique

We base our approach to computing maximal cliques on

a theorem due to [24] that relates maximal cliques to the

optimization of a quadratic function. LetA be the adjacency
matrix of an undirected graph with weights in {0, 1}. The
computation of maximal cliques can be formulated as the

solution to the following optimization problem:

max
x

xTAx, s.t.

n∑
i=1

xi = 1, xi ≥ 0, (16)

where Aii = 0.

Theorem 5 (Motzkin and Straus) Let G be an unweighted
graph and let x∗ the optimal solution for the problem of
Eq. (16). Let C = {i | x∗i > 0} be the subset corresponding
to nonzero elements. If nonzero elements have the same val-
ues, x∗i = 1/|C| for all i ∈ C (in which case x∗ is called a
characteristic vector of a subset C), C is a maximal clique
in G.

An algorithm for computing solutions to the maximal

clique problem has been presented by [28] and [12]. The
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algorithm has a multiplicative form:

x
(t+1)
i = x

(t)
i

(Sx(t))i

[x(t)]TSx(t)
(17)

and has been shown to be effective in practice [28, 12].

This approach is interesting not only because it antici-

pates our work in using a multiplicative update to solve a

combinatorial optimization problem, but also because the al-

gorithm provides a very clear link between sparsity and the

L1-norm constraint.

In this section, we use our NMF-based approach to: (1)

Prove the convergence of the update algorithm of Eq. (17);

(2) generalize the L1-norm constraint to Lp-norm constraint

and derive an algorithm to compute it; (3) generalize this

methodology to bipartite graphs.

4.1 Lp-norm constraints

We generalize the maximal clique problem to the follow-

ing optimization problem:

max
x

xTAx, s.t.

n∑
i=1

xβ
i = 1, xi ≥ 0, (18)

where β ∈ [1, 2] is a parameter. We show the following:

(1) The maximal clique is obtained when β = 1+ ε, 0 <
ε 
 1, while setting Aii = 1. As we will see later, setting
Aii = 1 enables us to generalize this approach to bipartite
graphs.

(2) A convergent algorithm can be obtained for β ∈ [1, 2].
When β = 1, this algorithm reduces to the extant algorithm
of Eq. (17).

(3) As β → 1+, the sparsity of the solution increases

steadily, reflecting the close relation between L1 constraints

and sparsity. At β = 2, the solution is given by the principal
eigenvector of A.

Let Ã denote the adjacency matrix of the graph with
Ãii = 1. and letA be the adjacency matrix of the graph with
Aii = 0. We can prove the following Generalized Motzkin-
Straus Theorem:

Theorem 6 Using Ã as the adjacency matrix, and setting
β = 1 + ε, 0 < ε 
 1. Let C = {i | xi > 0} be the sub-
set corresponding to nonzero elements. If nonzero elements
have same values, xi = 1/|C| for ∀i ∈ C C is a maximal
clique in G.

Proof sketch. Since the nonzero elements of x

have constant values, x∗ must have the form x∗ =
(1/|C|1/β)(1 · · · 1, 0 · · ·0)T , if we index the nodes of C
first. The objective becomes J = (x)T Ãx = |C|2−2/β .

Because 2− 2/β > 0,maxJ is equivalent tomax |C|. �–

Note that if we use β = 1, then J is equal to one inde-
pendent of |C|; i.e., we are not guaranteed to compute the
maximal clique. Theorem 6 can be readily generalized to

bipartite graphs.

4.1.1 An algorithm for the generalized Motzkin-
Strauss theorem

When Ã is positive definite, there is a unique global solution
to the quadratic optimization problem. When Ã is positive
semidefinite, there are several solutions with the same opti-

mal value of the objective function. When Ã is indefinite,
there are many locally optimal solutions. In our case, since

Aii = 0, A is always indefinite. Thus working with the
Lp-norm version (Theorem 6) has some advantages.

To find the local maxima and thus the maximal cliques,

we use an algorithm that iteratively updates a current solu-

tion vector x(t) as follows:

[x
(t+1)
i ]β = x

(t)
i

(Sx(t))i

[x(t)]TSx(t)
. (19)

The iteration starts with an initial guess x(0) and is repeated

until convergence.

We analyze the basic properties of this algorithm.

Feasibility. First, we show that from any initial x(0), the

iteration will lead to a feasible solution:∑
i

[
x

(t+1)
i

]β

=
∑

i

x
(t)
i (Sx(t))i

[x(t)]TSx(t)
= 1.

Optimality. Second, we show that the update rule satisfies
the first-order KKT optimality condition. We form the La-

grangian function

L = xTSx− λ(
∑

i

xβ
i − 1) (20)

where λ is the Lagrangian multiplier for enforcing the Lp

constraint. This leads to the following KKT condition:[
2(Sx)i − λβ[xi]

β−1
]
xi = 0. (21)

Summing over index i, we obtain the value for the La-
grangian multiplier λ:

2xTSx = λβ

n∑
i=1

[xi]
β = λβ. (22)

Clearly the updating rule

[x
(t+1)
i ]β = x

(t)
i

(Sx(t))i

(λβ/2)
, (23)

satisfies the KKT condition Eq. (36) at convergence. Sub-

stituting the value of λ from Eq. (22), this yields the update
rule Eq. (19).

Convergence.
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Theorem 7 Under the update rule in Eq. (23), the La-
grangian function L of Eq. (20) is monotonically increasing
(nondecreasing),

Since J is bounded from above, the convergence of this al-
gorithm is thus established.

Upper bound.
From the proof of Theorem 6, we can provide a new

derivation of a known upper bound on the size of the maxi-

mal clique [cf. 2]:

|C| = (x∗)T Ãx∗

(x∗)T x∗
≤ max

x

xT Ãx

xT x
= λ1(Ã).

4.2 Generalize to bipartite graph

Let G(B) be a bipartite graph with a set R of r-nodes
and a set C of c-nodes. Let B be the adjacency matrix of
G(B). B is a rectangular matrix of n = |R| rows (r-nodes)
and m = |C| columns (c-nodes). A biclique is a subset
(R1, C1), where R1 ⊂ R and C1 ⊂ C, such that every
r-node in R1 is connected to every c-node in C1. There

are two types of maximal bicliques: (a) maximal edge bi-

cliques where the number of edges, |R1| · |C1|, is maximal
and (b) maximal node bicliques where the number of nodes,

|R1| + |C1|, is maximal. Typically, maximal edge biclique
selects the largest block area in the adjacency matrix and

is the interesting biclique. Maximum-node biclique is typ-

ically a narrow/skinny block in the adjacency matrix and is

not very useful.

A maximal biclique is computed via the solution to the

following optimization problem:

max
x∈F α

x , y∈F β
y

xTBy (24)

where the regionF α
x is defined as F

α
x :

∑m
j=1 xα

i = 1, xi ≥
0. The region F β

y can be defined similarly.

Let (x∗,y∗) be an optimal solution, let R1 = {i | x∗i >
0} be the subset of nonzero elements in x∗, and let C1 =
{j | y∗j > 0} be the subset of nonzero elements in y∗. We

can derive a GeneralizedMotzkin-Straus Theorem for bipar-

tite graphs:

Theorem 8 Let β = 1 + ε, 0 < ε 
 1. For an optimal
solution (x∗,y∗), if nonzero elements of x∗ have the same
values, and if nonzero elements of y∗ have the same values,
then (R1, C1) is a maximal edge biclique in B. The objec-
tive function has the optimal value J = (|R1||C1|)1−1/β .

We provide an iterative algorithm to compute the maxi-

mal edge biclique. We prove its feasibility, correctness, and

convergence. Given initial (x(0),y(0)), the iterative algo-
rithm updates x and y using:

[
x

(t+1)
i

]β

= x
(t)
i

(By(t))i

[x(t)]TBy(t)
, (25)[

y
(t+1)
j

]β

= y
(t)
j

(BT x(t))j

[x(t)]TBy(t)
, (26)

When B is symmetric, this algorithm reduces to Eq. (19).
The feasibility, optimality, and convergence of the algorithm

can be established in similar manner as in the case of maxi-

mal clique.

Upper bound on the size of biclique.
We can establish a new theoretical bound on the size of

biclique as a consequence of Theorem 8. In particular, we

have:

|R1C1|1/2 =
(x∗)T By∗

||x∗|| · ||y∗|| ≤ max
x,y

xT By

||x|| · ||y|| = σ1(B),

which yields the following upper bound:

|R1C1| ≤ σ2
1(B). (27)

4.3 Test on synthetic data

We test the ability of the algorithm to detect maximal bi-

cliques. We embed a known biclique into the standard ran-

dom graphs (two nodes are joined with an edge with fixed

probability p = 0.3). We vary the size of the embedded
cliques, while fixing the rectangularmatrix to be 500×1000.
We set α = β = 1.05. We tested on 20 bipartite graphs
with randomly generated adjacency matrices. The embed-

ded maximal bicliques are readily detected in all cases.

4.4 Finding Bicliques in Document Collec-
tions

In this section, we apply our algorithm to discover bi-

cliques in document collections. A document collection can

be represented as a binary document-termmatrix where each

entry is 1 or 0 denotingwhether the corresponding document
and term co-occur or not. The document-term matrix can

be expressed as a unweighted bipartite graph with a set of

document nodes and a set of term nodes. If a document con-
tains a term, an edge exists to connect them. Hence bicliques

in binary document-term matrices are subsets of documents

with tightly coupled terms. These bicliques represent spe-

cific topics and are explicitly supported/described by both

representative subgroups of documents and representative

subgroups of words.
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4.4.1 Experiment Setup

Since each biclique is composed of representative docu-

ments and representative, purity measure can then be used

to measure the extent to which each biclique contained doc-

uments from primarily one class [38].

Purity =

K∑
i=1

ni

n
P (Si), P (Si) =

1

ni
maxj(n

j
i ), (28)

where Si is a particular biclique or cluster with ni docu-

ments, nj
i is the number of documents of the j-th class that

were assigned to the i-th biclique or cluster,K is the number
of bicliques or clusters and n is the total number of extracted
documents. In general, the larger the values of purity, the

better the documents can describe the biclique.

We use five real world datasets described in Table 3 in our

experiments. CSTR is a dataset of the abstracts of techni-
cal reports (TRs) published in the Department of Computer

Science at a research university. WebKB4 and WebKB7
datasets are webpages gathered from university computer

science departments. Reuters is a subset of Reuters-21578
Text Categorization Test collection that includes the 10 most

frequent categories. WebACE is the dataset generated from
WebACE project [14].

Datasets # Documents # words # Classes

CSTR 476 1000 4

WebKB4 4199 1000 4

WebKB7 8280 1000 7

Reuter 2900 1000 10

WebAce 2340 1000 20

Table 3. Dataset Description.

It is important to note that cliques and bicliques discov-

ered using our algorithm are not always 100% complete

cliques — many computed cliques have missing edges. In

general, the missing edges are less than 30% of the total pos-

sible edges in the computed psuedo cliques.

The clustering procedure is the following. We compute

the bicliques one at a time. After a biclique is computed, the

edges among the nodes are removed. The algorithm is then

repeat once more to find the next biclique. This is repeated

until the computed cliques is less than minimum size, which

we set to 5.

4.4.2 Results

We compare our biclique finding algorithm with the tra-

ditional K-Means clustering, and several co-clustering al-

gorithms including information theoretic co-clustering al-

gorithm (ITCC) [7], Euclidean co-clustering algorithm

(ECCC), and minimum squared residue co-clustering algo-

rithm (MRCC) [4] on five real world datasets described in

Table 3. The experimental results are shown in Figure 2. the

computed bicliques are generally tight.

The experiments confirm this property of our algorithm.

It showes that documents in each biclique have higher pu-

rity. In other words, our algorithm is able to extract more

meaningful bicliques from document collections.

Figure 2. Purity Comparisons.

5 Conclusions

Recent progresses have shown nonnegative matrix fac-

torization (NMF) provides a new versatile model for data

clustering. In this paper, we propose several NMF inspired

algorithms to solve different data mining problems including

multi-way normalized cut spectral clustering, graph match-

ing of both undirected and directed graphs, and maximum

clique finding on both graphs and bipartite graphs. These

NMF inspired algorithms are extremely simple to implement

and their convergence can be rigorously proven. We conduct

experiments to demonstrate the effectiveness of these new

algorithms. This work highlights that techniques developed

in machine learning could have much broader applicability.
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Appendix

Proof of Theorem 2.

We use the auxiliary function approach [18]. An auxiliary

functionG(H, H̃) of function L(H) satisfies

G(H, H) = L(H), G(H, H̃) ≤ L(H). (29)

We define

H(t+1) = argmax
H

G(H, H(t)). (30)

Then by construction, we have

L(H(t)) = G(H(t), H(t)) ≤ G(H(t+1), H(t)) ≤ L(H(t+1)).
(31)

This proves that L(H(t)) is monotonically increasing.

The key steps in the remainder of the proof are: (1) Find

an appropriate auxiliary function; (2) Find the global max-
ima of the auxiliary function. It is important that the max-

ima in Eq. (30) are the global maxima, otherwise the first

inequality of Eq. (31) does not hold.

We can show that

G(H, H̃) =
∑

k

∑
ij

WijH̃ikH̃jk(1 + log
HikHjk

H̃ikH̃jk

)

−
p∑

i=1

∑
k,l

(DH̃α)ikH2
ik

H̃ik

(32)

is an auxiliary function of L(H) of Eq. (4) (the constant
term Trα is ignored). Using the inequality z ≥ 1+logz and
setting z = HikHjk/H̃ikH̃jk , the first term in Eq. (32) is a

lower bound of the first term in Eq. (4).

We note a generic inequality

n∑
i=1

k∑
p=1

(AS′B)ipS
2
ip

S′ip
≥ Tr(ST ASB), (33)

where A > 0, B > 0, S > 0, S ′ > 0, with A and B sym-
metric. Using this, we can see the second term in Eq. (32) is

a lower bound of the second term in Eq. (4).

According to Eq. (30), we need to find the global maxima

of G(H, H̃) forH . The gradient is

∂G(H, H̃)

∂Hik
= 2

(WH̃)ikH̃ik

Hik
− 2

(DH̃α)ikHik

H̃ik

(34)

The second derivative is

∂2G(H, H̃)

∂Hik∂Hj�
= −2[

(WH̃)ikH̃ik

H2
ik

+
(DH̃α)ik

H̃ik

]δijδk�.

(35)

Thus G(H, H̃) is a concave function in H and has a unique
global maximum. This global maximum can be obtained by

setting the first derivative to zero, which gives

H2
ik = H̃2

ik

(WH̃)ik

(DH̃α)ik

. (36)

According to Eq. (30), H (t+1) = H and H(t) = H̃ . Thus
we obtain the update rule in Eq. (3). �–
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