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Abstract

Non-negative Matrix Factorization (NMF) and Probabilistic Latent Semantic Indexing (PLSI) have been successfully applied
to document clustering recently. In this paper, we show that PLSI and NMF (with the I-divergence objective function) optimize the
same objective function, although PLSI and NMF are different algorithms as verified by experiments. This provides a theoretical
basis for a new hybrid method that runs PLSI and NMF alternatively, each jumping out of the local minima of the other method
successively, thus achieving a better final solution. Extensive experiments on five real-life datasets show relations between NMF
and PLSI, and indicate that the hybrid method leads to significant improvements over NMF-only or PLSI-only methods. We also
show that at first-order approximation, NMF is identical to the χ2-statistic.
c© 2008 Published by Elsevier B.V.

1. Introduction

Document clustering has been widely used as a fundamental and effective tool for efficient document organization,
summarization, navigation, and retrieval of large number of documents. Generally document clustering problems
are determined by three basic tightly-coupled components: (a) the (physical) representation of the given dataset;
(b) the criterion/objective function which the clustering solutions should aim to optimize; and (c) the optimization
procedure (Li, 2005).

Among clustering methods, the K-means algorithm has been the most popularly used. A recent development is the
Probabilistic Latent Semantic Indexing (PLSI). PLSI is an unsupervised learning method based on statistical latent
class models and has been successfully applied to document clustering (Hofmann, 1999). (PLSI has been further
developed into a more comprehensive Latent Dirichlet Allocation model (Blei et al., 2003).)

Non-negative Matrix Factorization (NMF) is another recent development in document clustering. The initial work
on NMF (Lee and Seung, 1999, 2001) emphasizes that the NMF factors contain coherent parts of the original data
(images). Later works (Xu et al., 2003; Pauca et al., 2004) show the usefulness of NMF for clustering with experiments

∗ Corresponding author.
E-mail address: taoli@cs.fiu.edu (T. Li).

0167-9473/$ - see front matter c© 2008 Published by Elsevier B.V.
doi:10.1016/j.csda.2008.01.011

http://www.elsevier.com/locate/csda
mailto:taoli@cs.fiu.edu
http://dx.doi.org/10.1016/j.csda.2008.01.011


3914 C. Ding et al. / Computational Statistics and Data Analysis 52 (2008) 3913–3927

on document collections, and a recent theoretical analysis (Ding et al., 2005) shows the equivalence between NMF
and K -means /spectral clustering.

Despite significant research on both NMF and PLSI, few attempts have been made to establish the connections
between them while highlighting their differences in the clustering framework. Gaussier and Goutte (2005) made
the initial connection between NMF and PLSI, by showing that the iterative update procedures of PLSI and NMF
are similar in that the fixed-point equations for the converged solutions are the same. However, we emphasize that
NMF and PLSI are different algorithms: they converge to different solutions, even if they start from the same initial
condition, as verified by experiments (see later sections).

In this paper, we first show that both NMF (with I-divergence objective) and PLSI optimize the same objective
function. This fundamental fact and the L1-normalization NMF ensure that NMF and PLSI are equivalent. In other
words, PLSI is equivalent to NMF with I-divergence objective.

Second, we show, by an example and extensive experiments, that NMF and PLSI are different algorithms and they
converge to different local minima. This leads to a new insight: NMF and PLSI are different algorithms for optimizing
the same objective function.

Third, we give a detailed analysis about the NMF and PLSI solutions. They are local minima of the same landscape
in a very high-dimensional space. We show that PLSI can jump out of the local minima where NMF converges to and
vice versa. Based on this, we further propose a hybrid algorithm to run NMF and PLSI alternatively to jump out of a
series of local minima and finally reach a much better minimum. Extensive experiments show this hybrid algorithm
improves significantly over the standard NMF-only or PLSI-only algorithms.

A preliminary version of this paper appeared in Ding et al. (2006). More theoretical analysis and experiments
are included in the journal version. The rest of the paper is organized as follows: Section 2 introduces the data
representations of NMF and PLSI, Section 3 presents the equivalence between NMF and PLSI, Section 4 shows
that the column normalized NMF is equivalent to the probability factorization, Section 5 uses an example to illustrate
the difference between NMF and PLSI, Section 6 gives the empirical comparison results between NMF and PLSI,
Section 7 proposes a hybrid algorithm to run NMF and PLSI alternatively and finally Section 8 concludes.

2. Data representations of NMF and PLSI

Suppose we have n documents and m words (terms). Let F = (Fi j ) be the word-to-document matrix: Fi j =

F(wi , d j ) is the frequency of word wi in document d j .
In this paper, we re-scale the term frequency Fi j by Fi j ← Fi j/Tw, where Tw =

∑
i j Fi j is the total number of

words. With this stochastic normalization,
∑

i j Fi j = 1. The joint occurrence probability p(wi , d j ) = Fi j .
The general form of NMF is

F = C HT, (1)

where the matrices C = (Cik), H = (H jk) are non-negative matrices. They are determined by minimizing

JNMF =

m∑
i=1

n∑
j=1

Fi j log
Fi j

(C HT)i j
− Fi j + (C HT)i j . (2)

PLSI maximizes the likelihood

max JPLSI, JPLSI =

m∑
i=1

n∑
j=1

Fi j log P(wi , d j ) (3)

where P(wi , d j ) is the factorized (i.e., parameterized or approximated) joint occurrence probability

P(wi , d j ) =
∑

k

P(wi , d j |zk)P(zk)

=

∑
k

P(wi |zk)P(d j |zk)P(zk), (4)
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assuming that wi and d j are conditionally independent given zk . The probability factors follow the normalization of
probabilities

m∑
i=1

p(wi |zk) = 1,

n∑
j=1

p(d j |zk) = 1,

K∑
k=1

p(zk) = 1. (5)

3. Equivalence of NMF and PLSI

In this section, we present our main results:

Theorem 1. PLSI and NMF are equivalent. The proof of Theorem 1 is better described by the following two
propositions.

Proposition 1. The objective function of PLSI is identical to the objective function of NMF, i.e.,

max JPLSI ⇐⇒ min JNMF. (6)

Proposition 2. Column normalized NMF of Eq. (1) is equivalent to the probability factorization of Eq. (4),
i.e., (C HT)i j = P(wi , d j ).

Proof of Theorem 1. By Proposition 2, NMF (with L1-normalization, see Section 4) is identical to PLSI
factorization. By Proposition 1, they minimize the same objective function. Therefore, NMF is identical to PLSI. �

We proceed to prove Proposition 1 in this section. The Proposition 2 will be proved in Section 4.

Proof of Proposition 1. First, we note that the PLSI objective function Eq. (3) can be written as

min
m∑

i=1

n∑
j=1

−Fi j log P(wi , d j ).

Adding a constant,
∑m

i=1
∑n

j=1 Fi j log Fi j , PLSI is equivalent to solving

min
m∑

i=1

n∑
j=1

Fi j log
Fi j

P(wi , d j )
.

Now since
m∑

i=1

n∑
j=1

[P(wi , d j )− Fi j ] = [1− 1] = 0,

we can add this constant to the summation; thus PLSI is equivalent to minimizing

m∑
i=1

n∑
j=1

Fi j log
Fi j

P(wi , d j )
− Fi j + P(wi , d j ). (7)

This is precisely the objective function for NMF. �

3.1. NMF and χ2-statistic

JNMF of Eq. (2) has a somewhat complicated expression. It is related to the Kullback–Leibler divergence. We give

a better understanding by relating it to the familiar χ2 test in statistics. Assume |(C HT)i j−Fi j |

Fi j
is small. We can write

JNMF =

m∑
i=1

n∑
j=1

[(C HT)i j − Fi j ]
2

2Fi j
−
[(C HT)i j − Fi j ]

3

3F2
i j

+ · · · . (8)
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Let δi j = (C HT)i j − Fi j , z = δi j/Fi j . Since log(1+ z) = z − z2/2+ z3/3 · · ·; the i j th term in JNMF becomes

δi j − Fi j log
(

1+
δi j

Fi j

)
=

1
2

δ2
i j

Fi j
−

1
3

δ3
i j

F2
i j

+ · · · .

Clearly, the first term in JNMF is the χ2-statistic,

χ2
=

m∑
i=1

n∑
j=1

[(C HT)i j − Fi j ]
2

F2
i j

, (9)

since Fi j is the data and (C HT)i j is the model fit to it. Therefore, to first order approximation, NMF objective function
is a χ2-statistic. As a consequence, we can associate a confidence to NMF factorization by utilizing the statistic.

The χ2 form of NMF naturally relates to another NMF cost function, i.e., the sum of squared errors

J ′NMF =

m∑
i=1

n∑
j=1

[(C HT)i j − Fi j ]
2. (10)

4. Normalizations of NMF

For any given NMF solution (C, H), there exist a large number of matrices (A, B) such that ABT
= I, C A ≥

0, H B ≥ 0.. Thus (C A, H B) is also a solution with the same cost function value. Normalization is a way to eliminate
this uncertainty. We mostly consider the normalization of columns of C, H . Specifically, let the columns be expressed
explicitly, C = (c1, . . . , ck), H = (h1, . . . , hk).

1

We consider column normalization. Let the normalized columns be

C̃ = (̃c1, . . . , c̃k), H̃ = (̃h1, . . . , h̃k). (11)

With this normalization, we can write

C HT
= C̃SH̃

T
, (12)

where

C̃ = C D−1
C , H̃ = H D−1

H , S = DC DH . (13)

DC , DH are diagonal matrices. Depending on the normalizations in the Hilbert space, the L p-normalization, the
diagonal elements are given by

(DC )kk = ‖̃ck‖p, (DH )kk = ‖̃hk‖p.

For the standard Euclidean distance normalization, i.e., the L2-norm

‖̃ck‖2 = 1, ‖̃hk‖2 = 1. (14)

This is the same as in singular value decomposition where the non-negativity constraint is ignored.
For probabilistic formulations, such as PLSI, we use the L1-norm.

‖̃ck‖1 = 1, ‖̃hk‖1 = 1. (15)

Due to the non-negativity, these are just the condition that columns sum to 1. DC contains the column sums of C and
DH contains the column sums of H .

With these clarification, we now prove Proposition 2.

1 In this column form, for clustering interpretation (Ding et al., 2005), ck is the centroid for the kth cluster, while hk is the posterior probability
for the kth cluster. For hard clustering, on each row of H , set the largest element to 1 and the rest to 0.
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Proof of Proposition 2. Using L1-norm, we obviously have

m∑
i=1

C̃ik = 1,

n∑
j=1

H̃ jk = 1,

n∑
k=1

Skk = 1,

where the last equality is proved as

1 =
∑

i j

Fi j =

m∑
i=1

K∑
k=1

n∑
j=1

C̃ik SkkH̃ jk =

K∑
k=1

Skk .

These can be seen as equivalent to the normalization of probabilities of Eq. (5). Therefore, C̃ik = p(wi |zk),

H̃ jk = p(d j |zk) and Skk = p(zk). Thus F = C HT
= C̃SH̃

T
factorization with L1-normalization is identical to

PLSI factorization. �

4.1. A probabilistic view

We can also interpret the cluster posterior obtained from matrix factorization. We can think of the rectangular input
data X as a word–document matrix and perform a PLSI type probabilistic decomposition. As in Eq. (4), the joint
occurrence probability X i j = P(wi , d j ) can be factorized as

P(wi , d j ) =
∑

k

p(wi |zk)p(zk)p(d j |zk),

where zk is the latent cluster variable, and the probability factors follow the probability normalization

m∑
i=1

p(wi |zk) = 1,

n∑
j=1

p(d j |zk) = 1.

If
∑

i j X i j = 1, then
∑K

k=1 p(zk) = 1.
With this, the cluster posterior probability for column d j is then

p(zk |d j ) = p(d j |zk)p(zk)/p(d j ) ∝ p(d j |zk)p(zk).

Translating to C, H , the equivalent probabilistic decomposition is

X = C HT
= (C D−1

C )(DC DH )(H D−1
H )T,

where DC = diag(eTC) and DH = diag(eT H). Thus for standard NMF, the cluster posterior probability for column
xi is

NMF: p(zk |xi ) ∝ (H D−1
H )(DC DH ) = (H DC )ik .

5. An illustration of NMF/PLSI difference

Although NMF and PLSI optimize the same objective function as shown above, they are different computational
algorithms. This fact is obvious from experiments. In all of our extensive experiments, starting with the same initial
starting C0, H0, NMF and PLSI always converge to different solutions. Here we give an illustration. The input data
matrix is

X =


.048 .042 .047 .024 .029 .026
.035 .040 .045 .016 .023 .029
.031 .019 .031 .040 .045 .042
.027 .023 .031 .032 .039 .045
.047 .043 .035 .026 .021 .019

 .
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The initial C0, S0, H0 are

C0S0 HT
0 =


.24 .20
.02 .27
.31 .16
.07 .26
.36 .11


(

.34 0
0 .66

)


.18 .19

.15 .18

.15 .21

.18 .12

.18 .14

.16 .16



T

.

Running the NMF algorithm, the converged solution is

C̃ S H̃T
=


.33 .14
.29 .12
.02 .33
.05 .29
.32 .11


(

.39 0
0 .61

)


.27 .14

.28 .09

.25 .15

.07 .18

.06 .22

.06 .23



T

.

Running the PLSI algorithm, the converged solution is

C SHT
=


.12 .31
.10 .28
.38 .04
.33 .07
.08 .31


(

.50 0
0 .50

)


.13 .25

.09 .25

.14 .24

.19 .09

.22 .09

.23 .09



T

.

One can observe that the NMF solution differs from the PLSI solution significantly. Our example shows that
starting at the same point in the multi-dimensional space, NMF and PLSI converge to different local minima.

However, it is interesting and important to note that in this example the clustering results embedded in the solutions
of NMF and PLSI are identical by an examination of H (see footnote 1): the first 3 data points (columns) belong to
one cluster, and the remaining 3 points belong to another cluster. This result is the same as the K-means clustering.
More generally, we introduce a clustering matrix R = (ri j ), where ri j = 1 if xi , x j belong to the same cluster; ri j = 0
otherwise. Thus the clustering results can be expressed as

RNMF = RPLSI =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

 . (16)

6. Comparison between NMF and PLSI

In this section, we compare the clustering performance of NMF and PLSI on five real-life datasets.

6.1. Datasets

We use five datasets in our experiments, most of which are frequently used in the information retrieval research.
Table 1 summarizes the characteristics of the datasets.

CSTR This dataset contains the abstracts of technical reports (TRs) published in the Computer Science Department
at the University of Rochester between 1991 and 2002. The dataset has 476 abstracts, which are divided into four
research areas: Natural Language Processing(NLP), Robotics/Vision, Systems, and Theory.
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Table 1
Dataset descriptions

Datasets # Documents # Class

CSTR 476 4
WebKB 4199 4
Log 1367 9
Reuters 2900 10
WebAce 2340 20

WebKB The dataset contains webpages gathered from university computer science departments. There are about
4199 documents and they are divided into 4 categories: student, faculty, course, and project.

Log This dataset contains 1367 log text messages which are grouped into 9 categories, i.e., configuration,
connection, create, dependency, other, report, request, start, and stop.

Reuters The Reuters-21578 Text Categorization Test Collection contains documents collected from the Reuters
newswire in 1987. In our experiments, we use a subset of the data collection which includes the 10 most frequent
categories among the 135 topics and has about 2900 documents.

WebAce The dataset is from WebACE project Han et al. (1998). It contains 2340 documents consisting of news
articles from Reuters new service via the Web in October 1997. These documents are divided into 20 classes.

To pre-process the datasets, we remove the stop words using a standard stop list. All HTML tags are skipped and
all header fields except the subject and organization of the posted articles are ignored. In all our experiments, we first
select the top 1000 words by occurrence frequencies.

6.2. Evaluation measures

The above document datasets are standard labeled corpora widely used in the information retrieval literature. We
view the labels of the datasets as the objective knowledge on the structure of the datasets. To measure the clustering
performance, we use accuracy, entropy, purity and Adjusted Rand Index (ARI) as our performance measures. We
expect these measures would provide us with enough insights.

Accuracy discovers the one-to-one relationship between clusters and classes and measures the extent to which each
cluster contained data points from the corresponding class. It sums up the whole matching degree between all pairs of
class–clusters. Accuracy can be represented as:

Accuracy = Max

( ∑
Ck ,Lm

T (Ck, Lm)

)/
N , (17)

where Ck is the kth cluster, and Lm is the mth class. T (Ck, Lm) is the number of entities which belong to class m and
are assigned to cluster k. Accuracy computes the maximum sum of T (Ck, Lm) for all pairs of clusters and classes,
and these pairs have no overlaps. Generally, the greater the accuracy values, the better the clustering performance.

Purity measures the extent to which each cluster contains data points from primarily one class. In general, larger
purity values lead to better clustering solutions. The purity of a clustering solution is obtained as a weighted sum of
individual cluster purity values and is given by

Purity =
K∑

i=1

ni

n
P(Si ), P(Si ) =

1
ni

max
j

(n j
i ), (18)

where Si is a particular cluster of size ni , n j
i is the number of documents of the i th input class that were assigned to

the j th cluster, K is the number of clusters and n is the total number of points.2

2 P(Si ) is also called the individual cluster purity.
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Entropy measures how classes are distributed on various clusters. Generally, the smaller the entropy value, the
better the clustering quality. The entropy of the entire clustering solution is computed as:

Entropy = −
1

n log2 m

K∑
i=1

m∑
j=1

ni
i log2

n j
i

ni
, (19)

where m is the number of original labels, K is the number of clusters. Generally, the smaller the entropy value, the
better the clustering quality. More details on the purity and entropy measures can be found in Zhao and Karypis
(2004).

The Rand Index is defined as the number of pairs of objects that are both located in the same cluster and the same
class, or both in different clusters and different classes, divided by the total number of objects (Rand, 1971). Adjusted
Rand Index (ARI) which adjusts Rand Index is set between 0 and 1 Milligan and Cooper (1986):

ARI =
a − bc

n(n−1)/2

(1/2)(b + c)− bc
n(n−1)/2

, (20)

where a =
∑

i, j
Vi j (Vi j−1)

2 , b =
∑

i
Vi (Vi−1)

2 , c =
∑

j
V j (V j

−1)
2 , Vi j is the number of objects that are in both of class

i and cluster j , Vi is the number of objects in the class i , and V j is the number of objects in cluster j . The higher the
Adjusted Rand Index, the more resemblance between the clustering results and the labels.

6.3. Performance comparison

For each of the five datasets we first run K-means clustering. This serves as a comparison and also initialization.
From the K-means solution, H0 is constructed from the cluster assignments and C0 is simply the cluster centroids
(see footnote 1). The H0 obtained this way is discrete (0 and 1) and is very sparse (mostly zeroes). This is generally
poor for multiplicative updating algorithms. Thus we smooth H0 by adding a small constant3 to every element of H0.
We then do necessary normalization on C0, H0. Starting from this smoothed K-means solution, we run NMF or PLSI.
From the NMF or PLSI solution, we harden the posterior H (see footnote 2) to obtain a discrete H (containing 0 and
1). From here, the performance measures are computed. We typically run 10 runs and obtain the average.

The clustering solutions of NMF and PLSI are compared based on accuracy, entropy, purity, and ARI as shown in
Figs. 1 and 2. And the NMF objective function JNMF in Eq. (2) and the negative PLSI objective function −JPLSI in
Eq. (3) are compared in Fig. 3. From these cluster assignment figures, we observe that NMF and PLSI lead to similar
clustering results and objective function residues. For example, as shown in Fig. 1(a), in terms of purity value, the
differences between the clustering solutions obtained by NMF and PLSI are less than 0.02 in all the datasets. We can
observe similar behavior for other performance measures as well.4

6.4. Agreements between NMF and PLSI

However, the closeness of NMF and PLSI on these performance measures merely indicates that the level of
agreement between the NMF clustering solution and the known class label information is close to the level of
agreement between PLSI and known class labels, and how approximate that solutions of NMF and PLSI are to the
original matrix.

To understanding the difference between NMF and PLSI, we compare NMF and PLSI solutions directly: We
measure the number of differences in clustering of data pairs using the clustering matrix R in Eq. (16). To normalize
the difference so that datasets of different sizes can be compared with each other, we measure the relative difference:

δ = ‖RNMF − RPLSI‖F/

√
‖RNMF‖

2
F
/2+ ‖RPLSI‖

2
F/2.

3 In our experiments, we choose the constant to be 0.2 as it generally leads to good performance.
4 One thing we need to point out is that, in terms of accuracy, NMF and PLSI have a large difference of about 0.2 on the WebKB dataset. This is

because WebKB contains a lot of confusing webpages that can be assigned to one or more clusters and the accuracy measure takes into account the
entire distribution of the documents in a particular cluster and not just the largest class as in the computation of the purity.
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(a) Purity.

(b) Entropy.

Fig. 1. Performance comparison of NMF and PLSI: I.

Table 2
Disagreements between NMF and PLSI

WebAce CSTR WebKB Reuters Log

A 0.083 0.072 0.239 0.070 0.010
B 0.029 0.025 0.056 0.051 0.010
C 0.022 0.013 0.052 0.040 0.012

All 3 type experiments begin with the same smoothed K-means. (A) Smoothed K-means to NMF. Smoothed K-means to PLSI. (B) Smoothed
K-means to NMF to PLSI. (C) Smoothed K-means to PLSI to NMF.

The computed results, the average of 10 different runs, are listed in line A of Table 2. The results show that the
differences between NMF and PLSI are quite substantial for WebKB (24%), and ranges between 1%–8% in general
cases.

Function JNMF defines a surface in the multi-dimensional space. Because this global objective function is not a
convex function, there are in general a very large number of local minima in the high p-dimensional space. Our
experimental results suggest that starting with same initial smoothed K-means solution, NMF and PLSI converge to
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(a) Accuracy.

(b) Adjust rand index.

Fig. 2. Performance comparison of NMF and PLSI: II.

different local minima. In many cases, NMF and PLSI converge to nearby local minima as they have similar clustering
performance and objective functions; In other cases they converge to not-so-nearby local minima.

6.5. Word occurrence probability

In order to get a better understanding, we further compare the word occurrence probabilities of two corresponding
clusters obtained from NMF and PLSI solutions for every dataset. In Figs. 4–8, the X axis represents the top ten words
with the largest probabilities P(wi | zk) picked from each cluster k obtained from PLSI, and these probabilities are
illustrated as the declining solid lines along the Y axis. The dotted lines present the “probabilities” Ck′(wi ) of the
same words in the corresponding cluster k′ from NMF. The solid lines and the dotted lines with the same symbols
(e.g., ◦, �, and ×) are from the corresponding clusters of PLSI and NMF solutions. The legend shown in Fig. 4 gives
a clearer explanation of curves, where Ci presents the probabilities of top 10 words in the cluster i from PLSI, and
Ki shows the corresponding probabilities of the same 10 words in the corresponding cluster i from NMF. In each
figure, we picked four pairs of clusters for each dataset. Observe that every pair of curves is almost parallel to each
other with very similar slopes. In Figs. 4–8, the solid lines are the occurrence probabilities of the top 10 words in a
cluster obtained from PLSI solution. The dotted lines with the same symbols as those on the solid lines represent the
corresponding occurrence probabilities in the corresponding cluster from NMF solutions. In summary, we observe
that NMF and PLSI have similar word clustering results.
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(a) JNMF.

(b) JPLSI.

Fig. 3. Comparison of NMF and PLSI on JNMF in Eq. (2) and −JPLSI in Eq. (3).

7. A hybrid NMF–PLSI algorithm

We have seen that NMF and PLSI optimize the same objective function, but their different detailed algorithms
converge to different local minima. An interesting question arises. Starting from a local minimum of NMF, could
we jump out of the local minimum by running the PLSI algorithm? Strictly speaking, if an algorithm makes an
infinitesimal step, it will not jump out of a local minimum (we ignore the situation that the minimum could be saddle
points). But PLSI algorithm is a finite-step algorithm, so it is possible to jump out of a local minimum reached by
NMF. Vice versa, NMF is also a finite-step algorithm.

Interestingly, experiments indicate that we can jump out of local minima this way. The results are shown in Table 2
Lines B & C. In Line B, we start from the K -means solution with smoothing and converge to a local minimum using
NMF. Starting from the same local minimum, we run PLSI till convergence. The solution changed and the difference
is given in Line B. This change indicates that we jump out of the local minimum. The changes in the solutions are
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Fig. 4. CSTR dataset.

Fig. 5. WebACE dataset.

smaller than Line A, as expected. In Line C, we start from the K -means solution with smoothing and then run PLSI
to converge to a local minimum; we then jump out of this local minimum by running NMF. The difference of the
solutions is given in Line C. The changes in the solutions are smaller than line A, as expected. The changes are also
smaller than line B, indicating that the local minimum reached by PLSI is perhaps slightly deeper than the local
minima reached by NMF.

Based on the ability of NMF for jumping out of local minima of PLSI and vice versa, we propose a hybrid algorithm
that alternatively runs NMF and PLSI, with the goal of successively jumping out of local minima and therefore
converging to a better minimum. The hybrid algorithm consists of 2 steps (1) K-means and smooth. (2) Iterate until
converge: (2a) Run NMF to converge. and (2b) Run PLSI to converge. We run the hybrid algorithm on all five datasets
and the results are listed in Table 3. We observe that: (1) NMF and PLSI always improve upon K-means. (2) Hybrid
always improves upon NMF and PLSI; the clustering accuracy improvements are especially obvious on the first three
out of five datasets.

The hybrid method will converge. Each step of PLSI and NMF will lower the objective value and thus the process
is monotonic. Since the objective has a lower bound, this guarantees the convergence. However, we are not sure about
the rate of convergence at this stage of the research. Note that the hybrid process is carried out near a local minima of
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Fig. 6. WebKB dataset.

Fig. 7. Reuter dataset.

Table 3
Clustering accuracy

Reuters WebKB CSTR WebAce Log

A 0.316 0.410 0.617 0.416 0.775
B 0.454 0.619 0.666 0.520 0.778
C 0.487 0.510 0.668 0.519 0.779
D 0.521 0.644 0.878 0.523 0.781

(A) K-means. (B) NMF-only. (C) PLSI-only. (D) hybrid.

the objective function landscape, i.e., (A) either near the place where some of the gradients of the model parameters
(conditional probabilities) are zero (B) or the positive conditional probabilities reaching the boundary of feasibility
region is zero. For this reason, the rate of convergence will likely be linear, instead of quadratic. Experiments show
that typically the number of iterations is around 10.
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Fig. 8. Log dataset.

8. Summary

In this paper, we study the relationships between NMF (with I-divergence objective) and PLSI in the clustering
framework; in particular, we show that i) both NMF and PLSI have similar data representations; ii) both NMF and
PLSI minimize the same objective function; and iii) NMF with L1-normalization is identical to PLSI factorization.
These three relationships establish the equivalence between NMF and PLSI in the clustering framework. Based on
this analysis, we propose a hybrid algorithm which alternatively runs NMF and PLSI. Extensive experiments on 5
datasets show the significant improvement of the hybrid method over PLSI or NMF.
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