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Abstract

Principal component analysis (PCA) mini-
mizes the sum of squared errors (L2-norm)
and is sensitive to the presence of outliers.
We propose a rotational invariant L1-norm
PCA (R1-PCA). R1-PCA is similar to PCA
in that (1) it has a unique global solution,
(2) the solution are principal eigenvectors of
a robust covariance matrix (re-weighted to
soften the effects of outliers), (3) the solu-
tion is rotational invariant. These proper-
ties are not shared by the L1-norm PCA. A
new subspace iteration algorithm is given to
compute R1-PCA efficiently. Experiments on
several real-life datasets show R1-PCA can
effectively handle outliers. We extend R1-
norm to K-means clustering and show that
L1-norm K-means leads to poor results while
R1-K-means outperforms standard K-means.

1. Introduction

Principal component analysis (PCA)(Jolliffe, 2002) is
a widely-used method for dimension reduction. When
data points lie in a low-dimensional manifold and the
manifold is linear or nearly-linear, the low-dimensional
structure of data can be effectively captured by a linear
subspace spanned by the principal PCA directions.

In this paper, we address the issue of robustness of
PCA in the presence of outliers, which we define as the
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points that deviates significantly from the rest of the
data. Traditional PCA minimizes the sum of squared
errors, which is prone to the presence of outliers, be-
cause large errors squared dominate the sum. Several
robust PCA have been proposed(Torre & Black, 2003;
Aanas et al., 2002).

Another approach uses the L1-norm or the least abso-
lute deviance, which is less sensitive to outliers com-
pared to the Euclidean metric (L2-norm). This has
been proposed for K-means clustering and is recently
(Ke & Kanade, 2004) extended to PCA.1

In this paper we propose the rotational invariant L1-
norm (we call it R1-norm) for the objective functions
of PCA. In R1-norm, distance in spatial dimensions
(attribute dimensions) are measured in L2, while the
summation over different data points uses L1. Let X =
(x1, · · · ,xn) be n data points in d-dimensional space.
In matrix form X = (xji), index j sum over spatial
dimensions, j = 1, · · · , d and index i sum over data
points, i = 1, · · · , n. R1-norm is defined as

||X||
R1

=

n
∑

i=1

(

d
∑

j=1

x2
ji

)
1
2

, (1)

1L1-norm originates from LASSO (Tibshirani, 1996),
and has caught some interest in machine learning (Ng,
2004) and statistics. Besides the robustness against out-
liers context in this paper, L1-norm is also used as a
penalty/regularization term on model parameters to en-
force sparsity , or parameter/feature selection, such as
sparse PCA (Jolliffe, 2002; Zou et al., 2004), logistic-
regression(Ng, 2004). In addition, L0-norm (the number
of nonzero) is also used (d’Aspremont et al., 2004; Zhang
et al., 2004). L1 robustness is different from L1 sparsifi-
cation: in sparsification L1 is a constraint to the objective
function while in robustness L1 is on the main objective
function itself.
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while the Frobenius and L1-norms are defined as2

||X||
F

=
(

n
∑

i=1

d
∑

j=1

x2
ji

)
1
2

, ||X||
L1

=

n
∑

i=1

d
∑

j=1

|xji|. (2)

R1-norm is indeed a norm: for any two matrices A,B,
we can show that the triangle inequality holds, i.e.,
||A + B||

R1
≤ ||A||

R1
+ ||B||

R1
.

Rotational invariance is a fundamental property of Eu-
clidean space with L2-norm. It has been emphasized
in the context of learning algorithms (Ng, 2004). For
any orthogonal coordinate rotation R (an orthogonal
matrix), and data point transformation R : xi ← Rxi,
the L2-norm is invariant ||Rxi|| = ||xi||. In many ap-
plications, the dimension is high and we use PCA to
project data into a low-dimensional subspace which
reduces the noise at same time. A subspace is not
uniquely determined up to an orthogonal transforma-
tions. Therefore, we prefer to model data with distri-
butions that satisfy rotational invariance.

Another reason against pure L1-norm PCA and pure

L1-norm K-means is the shape of the equi-distance
surface of a given norm. In K-means the assignment
of data points to centroids determines the shape of
clusters which is the equi-distance surface. This sur-
face in L2-norm ||x−µ||2 = const is a sphere, which is
the same in R1-norm. However in L1-norm, the equi-
distance surface ||x−µ||1 = const is a simplex surface
centered at coordinate origin. In high p-dimensional
space, the simplex has very skewed surface. This can
be seen from the ratio of longest direction vs. shortest
direction which is p/

√
p =

√
p. For the newsgroups

data (see §5) at p = 500, the ratio is
√

p = 22.4. Thus
the clusters described by the L1-K-means is far away
from a Gaussian distribution. This is the reason why
the L1-K-means performs poorly (see §5). This mo-
tives us to propose the R1-norm.

Our main results on the rotational invariant L1-norm
PCA (we call it R1-PCA) are (1) The principal com-
ponents in R1-PCA are the principal eigenvectors of a
robust (R1) covariance matrix (re-weighted to soften
outliers); (2) The solutions are rotational invariant.
(3) An efficient subspace iteration based algorithm it-
eratively solve the nonlinear eigenvector problem of
R1-PCA. We show several experimental results on 4
real-life datasets, which illustrate the usefulness of the
R1-PCA in handling outliers. Properties (1) and (2)
are shared by standard PCA, but not by L1-PCA.

We further extend R1-norm to to K-means and com-
pare it with L1-norm K-means in §5. Experiments on

2The Lp-norm of a vector x in d-dimensional space is

||x||p = (
∑d

j=1
|xj |

p)1/p. By convention, ||x|| ≡ ||x||2.

internet newsgroup data show that L1-K-means clus-
tering has very poor performance This poor perfor-
mance is found to be caused by a key weakness of
L1-K-means , i.e., the assignment of a point data to
nearest cluster centroid using L1 distance. On datasets
with noises, R1-K-means performs slightly better than
standard K-means .

2. Covariance, L1-PCA and R1-PCA

2.1. Two Formulations for PCA

Let U = (u1, · · · ,uk) contains the principal directions

and V = (v1, · · · ,vk) contains the principal compo-

nents (data projects along the principal directions).
There are two formulations for PCA.

(a) Covariance based approach. Compute the covari-
ance matrix C =

∑

i(xi − x̄)(xi − x̄)T = XXT . Here
we assume the data are already centered, x̄ = 0, and
we drop the factor 1/(n− 1) which does not affect U .
The principal directions are obtained as

max
UT U=I

Tr UT XXT U (3)

(b) Matrix low-rank approximation based approach.
Let X = UV T . We solve

min
U,V

J, J = ||X − UV T ||2F =
∑

ij

[Xij − (UV T )ij ]
2. (4)

For standard PCA, the solutions to these two ap-
proaches are identical, thanks to SVD.

The standard generalization to L1-norm PCA is to
solve (Ke & Kanade, 2004).

min
U,V

J, J = ||X − UV T ||
L1

=
∑

ij

|Xij − (UV T )ij |. (5)

There are several drawbacks of L1-PCA: (1) Compu-
tationally expansive; (2) It is not clear whether the
solution U relates to the covariance matrix; (3) Ques-
tions relating to use L1 in clustering (see §5).
A common feature of previous approaches using Frobe-
nius norm and L1-norm is that they treat the two in-
dexes i and j in the same way. However, these two
indexes have different meaning: i runs through data
points, while j = 1 run through the spatial dimen-
sions. In strict matrix format, this subtle distinction
is easy to get lost. R1-norm captures this subtle dis-
tinction.
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2.2. Rotational Invariant L1-norm PCA

We first express R1-norm in vector format. Let V =
(v1, · · · ,vn) ∈ Rk×n and we write

X ' UV (6)

in contrast to X ' UV T . The standard PCA can be
formulated as

min
U,V

JSVD = ||X − UV ||2
F

=

n
∑

i=1

||xi − Uvi||2. (7)

In R1-PCA, we use R1-norm,

min
U,V

JR1-PCA = ||X − UV ||
R1

=

n
∑

i=1

||xi − Uvi||. (8)

An algorithm can be developed for alternatively up-
dating U (while fixing V ) and V (while fixing U).
Here we develop a more efficient algorithm to solve
this problem. It uses the covariance matrix, thus is
statistically more interesting.

First, we can require U to be orthonormal without los-
ing generality. Second, given a fixed U , we solve for V
according to Eq.(8). Different column vectors vi of V
can be solved independently. Solving min ||xi−Uvi||2,
the solution is vi = (UT U)−1UT xi. Applying to all
columns, we obtain the solution V = (v1, · · · ,vn) =
(UT U)−1UT X. Now since we require U to be orthonor-
mal, V = (UT U)−1UT X = UT X. Thus

||xi − Uvi|| =
√

xT
i xi − xT

i UUT xi ≡ si. (9)

The approximation error si is the distance of xi to the
subspace. Thus the R1-PCA optimization problem is
simplified to

min
UT U=I

JR1-PCA =

n
∑

i=1

√

xT
i xi − xT

i UUT xi. (10)

The standard PCA (SVD) can be similarly written as
the solution to the optimization problem

min
UT U=I

JPCA =

n
∑

i=1

(xT
i xi − xT

i UUT xi). (11)

Clearly, JR1-PCA(U) and JPCA(U) are convex functions
of UUT , since each term in both JR1-PCA and JPCA is
a convex function of UUT . Thus we have
Proposition 0. Both PCA and R1-PCA have a
unique global optimal solution. 3

3Although UUT is unique, U is unique up to an orthogo-
nal transformation R. In Theorem 3, once Cr is computed,
the solution is unique.

For PCA, this is well-known. For R1-PCA, this en-
sures a unique and well-behaved solution.

For PCA, U is the principal eigenvectors of the covari-
ance matrix C = XXT =

∑

i xix
T
i . For R1-PCA, we

have a similar result (the main result of this paper):
Theorem 1. The solution to R1-PCA are the princi-
pal eigenvectors of the R1-covariance matrix

Cr =
∑

i

wixix
T
i , w

(L1)
i =

1

||xi − UUT xi||
, (12)

This is a weighted version of the covariance matrix.

2.3. Rotational Invariance of the Solutions of

R1-PCA and PCA

In previous sections, “rotational invariance” is w.r.t.
to the objective function. But “rotational invariance”
can also be w.r.t. to the solution. This means that
under a rotational transformation of the feature space
R : xi ← Rxi, the solution of PCA satisfy: (1) princi-
pal directions (columns of U) are rotated accordingly,
uk ← Ruk; (2) principal components V remains fixed.
PCA solution has the rotational invariance property.

Theorem 2. R1-PCA solution has the rotational in-
variance property, while L1-PCA does not.

Proof. Since R is orthogonal, i.e., RT R = I. The
L2-norm of a vector has

||xi − Uvi|| = ||(RT R)(xi − Uvi)||

= ||RT (Rxi −RUvi)|| = ||Rxi −RUvi||

This show under the transformation of X ← RX,
U ← RU ; and V remains unchanged. Thus PCA and
R1-PCA have the rotational invariance, because they
use L2-norm in spatial dimensions. For L1-norm, in
general ||RT (Rxi−RUvi)||1 6= ||Rxi−RUvi||1. Thus
L1-PCA does not has rotational invariance. u–
Proposition 0 and Theorems 1,2 show that R1-PCA is
very similar to standard PCA. Furthermore, R1-PCA
can be solved by an efficient subspace iteration algo-
rithm.

3. R1-PCA Algorithm

3.1. R1-PCA Using Generic Robust Estimator

We first generalize rotational invariant L1-PCA of
Eq.(10) using a generic loss function ρ(·) as

min
UT U=I

Jr =

n
∑

i=1

ρ(
√

xT
i xi − xT

i UUT xi ) (13)
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Many forms for the loss function are possible. ρ(s) =
|s| recovers the rotational invariant L1 measure.
Another popular robust estimation is Huber’s M-
estimator,

ρ
H

(s) =

{

s2 if |s| ≤ c
2c|s| − c2 if |s| > c

(14)

We call the parameter c ”cutoff” for its regularization
effect of the weights in the R1 covariance matrix (see
§3.4). Another robust estimation is Cauchy function

ρ
C
(s) = c2log(1 + s2/c2) (15)

Like M -estimator, at small distance s¿ c, ρC(s) = s2,
reducing to Euclidean metric.

Let us define the R1 covariance matrix

Cr =
∑

i

wixix
T
i (16)

where the weight is, for Huber’s M-estimator,

w
(H)
i =

{

1 if ||xi − UUT xi|| ≤ c
c/||xi − UUT xi|| otherwise

(17)
which reduces to the L1 form of Eq.(12) for c → 0
(more precisely, ρH(c)/c → ||s||1). For the Cauchy
robust function, the weight is

w
(C)
i =

(

1 + ||xi − UUT xi||2/c2
)−1

(18)

The main difference between this R1 covariance and
the usual covariance is to reduce the weight or contri-
bution from those “outlying” points (whose distance to
its projection in the subspace si are larger than cutoff
c).

Theorem 3. The global optimal solution for R1-PCR
are given by the principal eigenvectors of Cr i.e.,

Cruk = λkuk.

Proof. We follow the standard theory of constrained
optimization and introducing the Lagrangian function

L =

n
∑

i=1

ρ(
√

xT
i xi − xT

i UUT xi )+TrΛ(UT U−I),

(19)
where the Lagrangian multipliers Λ = (Λk`) for en-
forcing the orthonormal constraints UT U = I. The
KKT condition for optimal solution specifies that the
gradient of L must be zero:

∂L

∂U
= −2

∑

i

wixix
T
i U + 2UΛ = 0, (20)

where the specific form of wi depends on the robust-
ness function ρ(·), and are given by Eqs.(12,17,18) for
L1, Huber and Cauchy functions. Eq.(20) gives the
fixed point relation

CrU = UΛ. (21)

Left multiply by UT , we obtain the Lagrangian multi-
pliers as

Λ = UT CrU. (22)

Generally speaking, Lagrangian multipliers Λ could
take any values. In particular, the off-diagonal ele-
ments of Λ does not have to be zero.

However, we recognize that there is an unique so-
lution to Eq.(21), which are the eigenvectors of the
symmetric positive definite matrix Cr. And the La-
grangian multipliers Λ becomes a diagonal matrix:
Λ = diag(λ1, · · · , λk). Now, according to KKT The-
ory, the solution to Lagrangian multipliers are unique
under general conditions. Therefore, the eigenvector
solutions to Eq.(21) must be the unique and global
solution. u–

3.2. Subspace Iteration Algorithm

Now we provide an efficient algorithm to compute the
solution to Eq.(21). First, we recognize this is a nonlin-
ear eigenvalue problem, since R1 covariance matrix Cr

is dependent on U in a non-trivial way. Fortunately,
all we need are the k eigenvectors corresponding to
the k large eigenvalues. This is precisely the principal
subspace of Cr. There exists a well-known subspace
iteration algorithm in matrix theory (Golub & Van
Loan, 1996) that can efficiently compute the principal
subspace.

The basic idea is the following. We start with an initial
guess U (0), which we take as the principal directions of
the standard covariance matrix. From U (0), we com-
pute the R1-covariance Cr(U

(0)). U is updated using
the power method and while maintaining orthogonal-
ity:

U (t+ 1
2 ) = Cr(U

(t))U (t), (23)

U (t+1) = orthogonalize(U (t+ 1
2 )) (24)

This update reduces L in each step of the way. At con-
vergence, Cr(U

(t)) converges to its asymptotic value:
Cr(U

(∞)) ≡ Cr. U (t) converge to the eigenvectors of
Cr. The Lagrangian multiplier Λ = UT CrU converge
to the diagonal matrix containing eigenvalues.

3.3. Effects of Cutoff in Huber’s Estimator

Now we discuss the effects of the cutoff c in Eqs.(14,17)
and how to specify it. First, we consider the case when
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c = 0, which is equivalent to use the rotational invari-
ant L1-norm as robustness function and is given in
Eq.(12).

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

s

w

Figure 1. The weights in covariance matrix. The singu-
larity (blow-up of the weight w(s) near s = 0) of L1-norm
weight of Eq.(12) is being cutoff at 1 by the L2-norm weight
of Eq.(17) assuming c = 1.

Using this L1 form of the R1-covariance (we call it C1),
the subspace iteration algorithm of §3.3 works as well.
However, because the weights are directly proportional
to 1/si, so C1 is dominated by the data points with
near-zero distance to subspace si = ||xi−UUT xi|| ' 0.
We have run the algorithm on a number of datasets.
The solution of U always pass some of the data points.
On these data points, the denominator is near zero.
(This singularity problem can be temporarily pre-
vented by adding a small number ε of the smallest

quantity a computer can represents: w
(L1)
i = 1/(si+ε).

To prevent this, we incorporate the cutoff c in
Eqs.(14,17) The effects of the cutoff can be seen in
Figure 1. When si is larger than the cutoff, we use
L1-norm weight of 1/s. Otherwise, we reverse back to
L2-norm weight of 1.

How to determine the cutoff? From Figure 1, we see
that as long as the singularity (blow-up nero s = 0) is
cutoff, the weight curve is not particularly sensitive to
the exact value of c. This is crucial for the stability of
our R1 approach — if the final subspace obtained is
very sensitive to cutoff, then it is not well defined.

This important stability property also makes the
choice of c easy. A general motivation and also quanti-
tative goal for the choice of c is to cut off outliers, that
is, using L1 distance on them. In most applications,
the number of outliers are small. Therefore, a reason-
able choice is to set c at median of (s1, · · · , sn). We
can estimate this median by using U from the standard
SVD.

3.4. R1-PCA Algorithm

. Here we outline the concrete algorithm

R1- PCA algorithm:
Input: data matrix X, the subspace dimension k
Initialize:

compute standard PCA and obtain U0

compute residue si =
√

xT
i xi − xT

i U0UT
0
xi

compute c = median(si)
Set U = U0.
Update U according to Eqs.(23,24)

iterate until convergence
Compute V = UT X

Compute Λ = UT CrU . Check deviation from diagonal
Output U, V

Starting from the initial guess U (0) = U0 the algorithm
iteratively converges to the optimal solution. At con-
vergence, U (t) converges to the eigenvectors of Cr and
the Lagrangian multiplier Λ(t) converges to the eigen-
values of Cr. The off-diagonal elements of Λ(t) is a
measure of the accuracy of the algorithm.

4. Experiments on R1-PCA

We apply R1-PCA to a synthetic dataset and four
datasets from UCI repository 4.

Synthetic dataset. We test the sensitivity of PCA
results to the presence of noises. 200 points near a
straight line are generated with 12 outliers (see Figure
2). We apply PCA and R1-PCA to this dataset. The
results are shown in Fig. 2(a). We can see that stan-
dard PCA is significantly affected by the noises while
R1-PCA is affected much less.

In Fig. 2(b), we plot {si} (the distances to PCA and
R1-PCA principal subspaces). The horizontal axises
are data points in the sorted order. In PCA (top panel
of Fig. 2(b)) the noise points are very clearly distinct
from the normal points. In R1-PCA (lower panel of
Fig. 2(b)), we see a sharp jump near the 12 rightmost
points (index 201-212): outliers become obvious. This
indicates R1-PCA has a capability of detecting out-
liers.

UCI datasets. We run R1-PCA on four real world
datasets in UCI repository: glass, diabetes, mfeat
(hand writing recognition), and isolet. A summary of
the four datasets is give in Table 4.

Fig. 3 shows the convergence curves of Jr in Eq.(13) (at
a stopping threshold 10−8). The algorithm typically
converges to the asymptotic limit in 6 iterations.

4http://www.ics.uci.edu/∼mlearn/
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(b) Distance to principal subspace

Figure 2. PCA vs R1-PCA on a synthetic dataset
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Figure 3. Convergence of Jr towards their asymptotic lim-
its in normalized way.

Next we show the quality of convergences by looking at
the initial value of Lagrangian multiplier Λ[0] and the

Table 1. Summary of UCI datasets and PCA / R1-PCA
subspace dimension K.

dataset # instance dimensions # class K

glass 214 9 6 5
diabetes 768 8 2 5
mfeat 2000 216 10 15
isolet 1559 617 26 15

converged Λ[t] values for R1-PCA. We list the results
for glass and isolet (the rests are very similar).

Λ
[0]

glass
=







2.3993 0.0496 0.1833 0.0578 −0.0519
0.0496 1.9984 −0.0072 0.0177 0.0860
0.1833 −0.0072 0.7579 −0.0675 0.1204
0.0578 0.0177 −0.0675 1.0250 −0.0387
−0.0519 0.0860 0.1204 −0.0387 0.7847







Λ
[t=10]

glass
=







2.3889 −0.0000 0.0000 0.0000 0.0000
−0.0000 2.0501 −0.0000 −0.0000 −0.0000
0.0000 −0.0000 1.0662 0.0000 0.0000
0.0000 −0.0000 0.0000 0.9204 0.0000
0.0000 −0.0000 0.0000 0.0000 0.6181







Λ
[0]

isolet
=







121.6442 −0.0624 −0.1388 −0.0434 0.3064
−0.0624 52.5410 −0.1280 −0.0690 0.1302
−0.1388 −0.1280 31.9051 −0.0282 0.0795
−0.0434 −0.0690 −0.0282 25.8461 −0.0864
0.3064 0.1302 0.0795 −0.0864 24.4433







Λ
[t=20]

isolet
=







121.6139 −0.0001 0.0001 −0.0000 0.0000
−0.0001 52.5283 −0.0002 0.0001 −0.0002
0.0001 −0.0002 31.8918 −0.0003 0.0000
−0.0000 0.0001 −0.0003 25.8902 0.0186
0.0000 −0.0002 0.0000 0.0186 24.4808







Clearly the Lagrangian multipliers converge to the di-
agonal form. The relative magnitudes of off-diagonal
elements reflect the accuracy of the convergence. Be-
cause of the convexity of R1-PCA (Proposition 0), the
solutions are well-behaved.

Subspaces. We discuss the computed R1-PCA sub-
space (principal directions) U ′ = (u′

1, · · · ,u′

K) and
compare to the PCA subspace U=(u1, · · · ,uK). The
inner products (cosine of angels) are given in Table 4
for glass and Table 4 for isolet (for isolet K = 15, we
show the first 5 dimensions due to space limitation).

We observe that most of the principal directions are
different. Some of them have large differences while
others have smaller differences.

The principal angle θ ∈ [0, π/2] between two subspace
A,B is defined (Golub & Van Loan, 1996) as

cos(θ) = max
a∈A

max
b∈B

aT b, s.t. ||a|| = ||b|| = 1.

This is a generalization of the angle between two vec-
tors and characterizes the distance between two sub-
spaces in a comprehensive way. The computed prin-
cipal angles between PCA-subspace and R1-PCA sub-
space are given below.
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Figure 4. Distance to principal subspace for glass data.
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Figure 5. Distance to principal subspace for isolet data.

dataset glass diabetes mfeat isolet

θ 0.4539 0.2188 0.1457 0.5918

These results indicate the difference between R1-PCA
and PCA is small for mfeat and diabetes while the
difference is large for glass and isolet. For this reason,
we present the distance-to-subspace results on glass
and isolet in Figures 4 and 5. To save space, we put
PCA and R1-PCA results in one figure, and plot them
in the sorted order for PCA results. In both glass and
isolet, we see the same trends as in Figure 2b: a few
outlying points move away from the subspace while
most stay or move slightly towards the subspace.

K-means on Subspaces. If the R1-PCA-subspace
better captures the data manifold than the PCA-
subspace, we hope data clustering on the R1-PCA-
subspace is improved compared to that on the PCA-
subspace. Here we compare the clustering accuracy
of K-means algorithm on these subspaces. Results
for averages over 10 runs are shown in Table 4. The
results indicate that R1-PCA-subspace outperforms
PCA-subspace for clustering; K-means in both sub-
spaces improve over the full-space K-means .

Table 2. Inner products between PCA and R1-PCA prin-
cipal directions for glass data.

up · u′

q u′

1 u′

2 u′

3 u′

4 u′

5

u1 0.9873 -0.0679 -0.0848 0.0143 -0.0605
u2 0.0705 0.9878 0.0130 0.0146 -0.0422
u3 0.1152 -0.0293 0.7458 0.2829 0.5094
u4 -0.0464 -0.0311 -0.0868 0.9161 -0.3849
u5 -0.0120 0.0761 -0.5076 0.2814 0.7477

Table 3. Inner products between PCA and R1-PCA prin-
cipal directions for isolet data.

up · u′

q u′

1 u′

2 u′

3 u′

4 u′

5

u1 0.9999 0.0026 0.0017 0.0013 0.0046
u2 -0.0027 0.9999 0.0012 0.0084 -0.0016
u3 -0.0016 -0.0008 0.9969 -0.0649 -0.0271
u4 -0.0018 -0.0085 0.0670 0.9952 0.0633
u5 -0.0046 0.0020 0.0238 -0.0661 0.9967

5. Rotational Invariant L1-norm
K-means Clustering (R1-Kmeans)

We generalize R1-norm from PCA to K-means , and
discuss the L1-norm K-means . PCA relates to K-
means in that the relaxed solution of cluster member-
ship indicators are given by principal components, and
the subspace spanned by the cluster centroids are given
by the PCA principal subspace (Ding & He, 2004; Zha
et al., 2002). We perform experiments and show that
L1-K-means performs poorly compared to standard
K-means , while R1-K-means outperforms standard
K-means for the cases where outliers exist.

The K-means clustering minimizes the objective

J`2 =

K
∑

k=1

∑

i∈Ck

||xi − µk||2, (25)

where Ck is the k-th cluster and µ is the centroid. The
L1-norm K-means clustering minimizes

J`1 =
∑

k

∑

i∈Ck

||xi − µk||1. (26)

The R1-norm K-means clustering minimizes

fr1 =
∑

k

∑

i∈Ck

||xi − µk||. (27)

K-means is closely related to the spherical Gaussian

Table 4. Clustering accuracy of K-means on subspaces.
method glass diabetes mfeat isolet

PCA+K-means 0.7043 0.5490 0.9111 0.9480
R1-PCA +K-means 0.7922 0.5608 0.9438 0.9512
Fullspace+K-means 0.6851 0.5463 0.9088 0.9248
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distribution

g(x ;σ, µ) =
1

[√
2πσ
]d

exp(−1

2
‖x− µ

σ
‖2) (28)

where σ is the standard deviation. L1-norm K-means
relates to the Laplace distribution,

f`1(x ;σ, µ) =
1

[4σ]
d

exp(−1

2
||x− µ

σ
||1) (29)

We generalize this to rotational invariant Laplace dis-
tribution as the underlying distribution for R1-norm
K-means ,

fr1(x ;σ, µ) =
1

v(d)σd
exp(−1

2
||x− µ

σ
||) (30)

where v(d) = 2πd/2/Γ(d/2) is the volume of unit
sphere.

With these distributions, we can derive the K-
means algorithms. They are easily generalized to
the Expectation-Maximization (EM) algorithm for the
mixture

g(x) = π1p1(x) + · · ·+ πKpK(x) (31)

where pk(x) is a one of the above distributions.

In those algorithms, the key is to compute the cen-
troids µ. We compute it by gradient descent and ob-
tain an iterative algorithm:

µ← (1− β)µ + β
∑

i

xi

||xi − µ||

/

∑

i

1

||xi − µ|| (32)

The iteration starts with µ as the mean of {xi}. We
use β = 0.5 in all datasets. The convexity of J(µ)
ensures the convergence. Here is the outline.

R1-K-means algorithm

Initialization: centroids {µk}.
Iterate the following two steps until convergence:

(E) Re-assign {xi} to closest centers using L2-norm;
(M) Update centroids µk according to Eq.(32)

Experiment. We apply R1-K-means and L1-K-means on
the widely-used 20-newsgroup dataset. We use five news-
groups: comp.graphics rec.motorcycles rec.sport.baseball
sci.space talk.politics.mideast. 200 documents are ran-
domly sampled from each newsgroup, with a total of 1000
documents. To simulate the outliers, we randomly pick 80
documents from the rest 15 newsgroups and merge them
with 5-newsgroups dataset. The word-document matrix
X is constructed with 500 words selected according to the
mutual information between words and documents. tf.idf
term weighting is used. Clustering accuracy are computed
using the known class labels. Results of on 5 random sam-
ples are given below

K-means 0.618 0.848 0.634 0.770 0.835
L1-K-means 0.332 0.239 0.286 0.259 0.276
R1-K-means 0.756 0.846 0.786 0.748 0.869

L1-K-means performs very poorly; the reason is due to the
the assignment of data points to centroids using L1-norm
which defines very skewed of cluster shape. R1-K-means
perform better than standard K-means for this dataset
with some outliers.

6. Summary

R1-PCA is a natural extension of PCA. R1-PCA solutions
are eigenvectors of the R1-covariance matrix that softens
the contributions from outliers. It arises from the opti-
mization of the R1-norm objective function. R1-norm is
extended to K-means clustering. Experiments show R1-
K-means is a better robust K-means than the L1-norm
K-means .
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