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ABSTRACT
Many feature selection algorithms have been proposed in
the past focusing on improving classification accuracy. In
this work, we point out the importance of stable feature se-
lection for knowledge discovery from high-dimensional data,
and identify two causes of instability of feature selection al-
gorithms: selection of a minimum subset without redundant
features and small sample size. We propose a general frame-
work for stable feature selection which emphasizes both good
generalization and stability of feature selection results. The
framework identifies dense feature groups based on kernel
density estimation and treats features in each dense group
as a coherent entity for feature selection. An efficient algo-
rithm DRAGS (Dense Relevant Attribute Group Selector)
is developed under this framework. We also introduce a gen-
eral measure for assessing the stability of feature selection
algorithms. Our empirical study based on microarray data
verifies that dense feature groups remain stable under ran-
dom sample hold out, and the DRAGS algorithm is effective
in identifying a set of feature groups which exhibit both high
classification accuracy and stability.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
data mining; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Feature selection, stability, high-dimensional data, kernel
density estimation, classification

1. INTRODUCTION
Feature selection, the problem of selecting a minimum

subset of original features for best predictive accuracy, has
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attracted strong interest in the past several decades. A great
variety of feature selection algorithms have been developed
and proven to be effective in improving predictive accuracy
for classification in many application domains [21]. The sub-
tle issue of feature redundancy is also resolved by algorithms
which minimize redundancy and maximize relevance among
selected features for classification [2, 11, 22, 30].

However, a relatively neglected issue is the stability of se-
lected feature sets, which remains an unresolved problem.
This problem is particularly important for knowledge discov-
ery from high-dimensional data, where the goal of knowledge
discovery is often to identify features best explaining the
differences between classes or subsets of samples from thou-
sands of features. For example, in biological applications
(e.g., microarrays, mass spectrometry), the primary goal of
domain experts in conducting high-throughput experiments
is often to detect leads for some biologically relevant marker
genes or proteins, rather than building models for predicting
diseases or phenotypes of novel samples [4, 23].

Although many feature selection algorithms are effective
in selecting a subset of predictive features for sample class
prediction, they are not necessarily reliable to identify can-
didate features for subsequent costly biological validation.
One may be tempted to choose the set of features producing
the best predictive accuracy as a starting point for valida-
tion. However, for the same data, many different subsets
of features can result in the same or similarly good accu-
racy [12, 25]. The large number of predictive subsets and
the disparity among them reveals the instability of feature
selection algorithms. As a consequence, domain experts are
unlikely to have the confidence to investigate any single sub-
set of predictive features.

One cause of such instability is the classic goal of feature
selection which aims to select a minimum subset of features
necessary for constructing a classifier of best predictive ac-
curacy [18, 19]. Many feature selection algorithms thus
discard features which are relevant to the target concept
but highly correlated to the selected ones. For the purpose
of knowledge discovery from features, such minimum sub-
set misses important knowledge about redundant features.
Moreover, among a set of highly correlated features, differ-
ent ones may be selected under different settings of a feature
selection algorithm. The problem is usually severe for high-
dimensional data with many highly correlated features.

Another cause of the instability of feature selection algo-
rithms is the relatively small number of samples in high-
dimensional data. Take microarray data for example, the
typical number of features (genes) is thousands or tens of
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thousands, but the number of samples is often less than a
hundred. For the same feature selection algorithm, a differ-
ent subset of features may be selected each time when there
is a slight variation in the training data. Such instability
has been confirmed by our observations from experiments
as well as recent work studying the stability of feature se-
lection algorithms under training data variations [10, 17].

The two causes of instability are independent, and amplify
the effect of each other on feature selection from data with
many redundant features but limited samples. In order to
provide domain experts with stable feature selection results,
we have to overcome both causes of instability. In this paper,
we propose a general framework for stable feature selection
which aims to achieve not only good classification accuracy
but also stable feature selection results.

Our framework is motivated by a key observation that
in the sample space, the dense core regions (peak regions),
measured by probabilistic density estimation, are stable with
respect to sampling of the dimensions (samples). For exam-
ple, a spherical Gaussian distribution in the 100-dimensional
space will likely be a stable spherical Gaussian in any of
the subspaces. The features near the core of the spheri-
cal Gaussian, viewed as a core group are likely to be stable
under sampling, although exactly which feature is closest to
the peak could vary. Another observation is that the features
near the core region are highly correlated to each other, and
thus should have similar relevance scores w.r.t. some class
labels, assuming the class labels are locally consistent. Thus
these features can be regarded as a single group in feature
ranking. And we can pick any one of them in final classifi-
cation. In this sense, the feature group is a stable entity.

The rest of the paper is organized as follows. In Section 2,
we review previous work on feature selection, in contrast
with our work. In Section 3, we introduce preliminaries on
kernel density estimation. In Section 4, we describe in de-
tail the proposed stable feature selection framework and the
DRAGS algorithm under this framework. In Section 5, we
propose a general measure of stability for feature selection
results. Section 6 evaluates the effectiveness of the DRAGS
algorithm in terms of both classification accuracy and sta-
bility based on microarray data sets. Section 7 provides a
summary of this work and some future directions.

2. RELATED WORK
For many years, feature selection has been generally viewed

as a problem of searching for an optimal subset of features
guided by some evaluation measures. Various feature selec-
tion methods can broadly fall into the filter model and the
wrapper model depending on their evaluation measures [18].
Filter methods use measures of intrinsic data characteris-
tics [9, 21, 29], and wrapper methods rely on the perfor-
mance of a predefined learning algorithm to evaluate the
goodness of a subset of features [18]. For high-dimensional
data, filter methods are often preferred due to their compu-
tational efficiency. As to search strategy, a simple way is to
evaluate each feature independently and form a subset based
on top-ranked features. Such univariate methods have been
shown effective in some applications [13, 20]. However, they
do not work well when features highly correlate or interact
with each other. Various subset search methods evaluate
features in a subset together and select a small subset of
relevant but non-redundant features [2, 11, 22, 30]. They
have shown improved classification accuracy over univariate

methods. Another way is to weight all features together ac-
cording to maximum margin. The margin can be defined
either by the distance between a selected data point and its
nearest neighbors in the same and different classes (as in
ReliefF-based weighting) [6, ?, 24] or by the distance be-
tween support vectors (as in SVM-based weighting) [14, 27].
An advantage of such methods is that optimal weights of
features can be estimated by considering features together.
A subset of top-ranked features can be selected based on
a single pass of weighting features [6, ?, 24] or a recursive
feature elimination (RFE) procedure [14, 27].

All work discussed above only focuses on the generaliza-
tion ability of feature selection methods, and pays little at-
tention to their stability; methods were not deliberately de-
signed to achieve stable results and hence not evaluated in
terms of stability either. In contrast, our work addresses
the two causes of instability of feature selection algorithms
identified in Introduction. Another distinction is that our
proposed framework identifies coherent feature groups and
treats each group as a single entity during feature evaluation
and subsequent learning tasks, while previous work treats
each feature as an entity for evaluation and classification.

Clustering has been applied to feature selection, by clus-
tering features and then selecting one (or a few) representa-
tive features from each cluster [3, 5, 15], or simultaneously
clustering and selecting features [16], to form a final feature
subset. Intuitively, clustering features can illuminate rela-
tionships among features and facilitate feature redundancy
analysis; a feature is more likely to be redundant to some
other features in the same cluster than features in other
clusters. However, an optimal clustering result does not in-
dicate that features in each cluster are coherent in terms
of relevance and can be treated as a single entity. More
importantly, existing feature clustering methods for feature
selection do not consider the stability of feature groups, and
therefore, are essentially different from our framework for
stable feature selection based on dense feature groups.

Two recent papers have studied the stability issue of fea-
ture selection under small sample size, and compared a few
existing feature selection algorithms [10, 17]. For each algo-
rithm, they measured the stability of selected features when
various random subsets of the same training data were used
for feature selection. They both concluded that different al-
gorithms which performed equally well for classification had
a wide difference in terms of stability, and recommended
to empirically choose the best feature selection algorithm
according to both accuracy and stability measured by re-
peatedly sampling of the training data. Such procedure is
computationally very costly, and is subject to ad hoc choice
of a predefined pool of feature selection algorithms and clas-
sification algorithms used for evaluation. Moreover, the best
outcome of such procedure is limited to the stability of ex-
isting feature selection algorithms which often suffer from
the two causes of instability discussed in Introduction.

Significant effort is needed in order to have a comprehen-
sive comparison of the stability of various existing feature
selection algorithms which apply different evaluation mea-
sures and search strategies. Our work takes a paradigm
shift from this direction, and is clearly different from previ-
ous work on stability study. To the best of our knowledge,
our work is the first to propose a feature selection algorithm
which directly provides stable feature selection results by
addressing the two causes of instability.
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3. PRELIMINARY
Kernel density estimation (known as Parzen window) is

the most popular non-parametric method for estimating prob-
abilistic density functions [26]. Given a data set of n data
points D = {xi}n

i=1 in the d-dimensional space Rd, a well-
known multivariate kernel density estimator is given by

p̂(x) =
1

nhd

nX
i=1

K
�x− xi

h

�
, (1)

where p̂(x) is an estimate of the unknown pdf, K(x) is a
radially symmetric, non-negative kernel function integrating
to one, and h is a fixed bandwidth (window size).

In many applications of machine learning and pattern
recognition, it is often useful to identify the modes of the
underlying density p(x), which are located at the zeros of
the gradient ∇p(x) = 0. The mean shift procedure [7] is an
elegant way to estimate the locations of these zeros without
estimating the density. Given a data set D and a kernel
function K as introduced before, the mean shift vector is
defined by

mh,K(x) =

Pn
i=1 xiK( x−xi

h
)Pn

i=1 K( x−xi
h

)
− x, (2)

i.e, the difference between the weighted sample mean, using
the kernel for weights, and x, the center of the kernel.

Let {yj}j=1,2,... denote the sequence of successive loca-
tions of the kernel K, where,

yj+1 =

Pn
i=1 xiK(

yj−xi

h
)Pn

i=1 K(
yj−xi

h
)

j = 1, 2, ... (3)

is the weighted mean at yj computed based on kernel K
and y1 is the center of the initial position of the kernel.
Such iterative movement of the kernel along the direction
defined by the mean shift vector can start with any data
point x ∈ D.

It is proven [7] that if a kernel K has a convex and monoton-
ically decreasing profile, both sequences {yj}j=1,2,... and
{p̂(yj)}j=1,2,... converge, and {p̂(yj)}j=1,2,... is monotoni-
cally increasing. In addition, the magnitude of each suc-
cessive mean shift vector (derived from (2) and (3))

mh,K(yj) = yj+1 − yj (4)

converges to zero, and the gradient of the density estimate (1)
computed at the stationary point yc is zero∇p̂(yc) = 0. Two
simple kernels which satisfy the condition are the flat kernel
and Gaussian kernel.

4. STABLE FEATURE SELECTION
Our proposed framework for stable feature selection iden-

tifies dense feature groups based on kernel density estima-
tion, and treats features in each dense group as a coherent
entity for feature selection.

4.1 Identification of Dense Feature Groups
Kernel density estimation operates on a set of data vectors

x1, x2, ..., xn, defined by a d-dimensional feature space. In
this work, we apply such method to estimate the density of
a set of feature vectors f1, f2, ..., fn in a data set. In order
to do so, we need to transpose the data matrix representing
the data set; original feature vectors become data vectors in
the new feature space defined by the original data vectors.

Algorithm 1 DGF (Dense Group Finder)

Input: data D = {xi}n
i=1, bandwidth h

Output: a number of dense feature groups G1, G2, ..., Gm

for i = 1 to n do
Initialize j = 1, yi,j = xi

repeat
Compute yi,j+1 according to (3)

until convergence
Set stationary point yi,c = yi,j+1

Merge yi,c with its closest peak if their distance < h
end for
For every unique peak pr, add xi to Gr if ||pr − xi|| < h
Optional: Eliminate feature groups of low density

We use the multivariate density estimator in (1) to evaluate
the density of a feature; a feature with higher value of p̂(x)
is denser than a feature with lower value.

Our proposed framework is motivated by a key observa-
tion that the dense core regions (peak regions), measured
by probabilistic density estimation, are stable with respect
to sampling of the dimensions. For example, in a spheri-
cal Gaussian distribution, data in each dimension follow the
distribution

p(xp) =
1√
2πσ

e−(xp−µp)2/2σ2
,

where xp is the coordinate in p-th dimension of a vector x.
Thus, the total distribution in 100 dimensions is just

100Y
p=1

p(xp) =
1

(
√

2πσ)100
e−||x−µ||2/2σ2

.

Clearly, taking off any 50 dimensions, the rest will still be a
spherical Gaussian. The features near the core of the spher-
ical Gaussian, viewed as a core group are likely to be stable
under sampling, although exactly which feature is closest to
the peak could vary.

In order to identify such dense feature groups, we need to
group together dense features which are close to the same
density peak. Based on the mean shift procedure, we pro-
pose the DGF (Dense Group Finder) algorithm. As shown
in Algorithm 1, DGF first finds a number of unique density
peaks in the data, and then decides dense feature groups
based on density peaks. The main part of DGF is the it-
erative mean shift procedure for all n features, which has a
time complexity of O(λn2d), where λ is the number of iter-
ations for each mean shift procedure to converge, and d is
the dimensionality in the transposed data (i.e., the number
of samples in the original feature space). Normally, it only
takes a few steps for each mean shift procedure to converge.

A difficulty in kernel density estimation is the choice of
kernel bandwidth h. If h is very large, the whole data will
have only one peak. On the other hand, if h is very small,
every data point will be a peak. Fortunately, there is a nice
way to estimate it from the K-Nearest Neighbors (KNN)
point of view. For each data point xi, we can find its KNNs,
and compute the average distance from xi to its KNNs. This
average distance is a reasonable length which captures the
local density near xi. We can further compute the average
of the average distance of KNNs for all data points to get
a global average length. For a data set with n features, the
possible values of K range from 1 to n. The smaller the
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chosen K value (hence the smaller bandwidth h), the higher
correlation features included in each dense group will have.
Therefore, in order to find coherent dense feature groups,
a reasonable K value should be sufficiently small but away
from 1. Clearly, when K=1, the bandwidth will be zero, and
every data point will be a peak.

The major difference of DGF from other mean-shift based
clustering algorithms [8] lies in the last two steps after find-
ing all the unique peaks. Clustering algorithms based on
mode seeking aim to create continuity-based clusters among
data points, and, therefore, they group all data points at-
tracted to the same peak into one cluster of arbitrary shape.
Each resulting cluster may contain data points with low den-
sity which are far way from the peak. Our goal is to identify
dense feature groups, and therefore, DGF only includes fea-
tures into a feature group if they are close to a unique peak.
Feature groups of low density can be eliminated in an op-
tional step. In our work, we eliminate a feature group Gr

if the average distance of the associated density peak Pr to
its KNNs is above the kernel bandwidth decided in the way
described above.

4.2 Selection based on Dense Feature Groups
The maximum pair-wise distance among features in the

same dense feature group identified by DGF is limited by
the kernel bandwidth. Under a sufficiently small bandwidth
h > 0, features in each dense feature group will be highly
correlated to each other, and thus should have similar rele-
vance scores with respect to some class labels, assuming the
class labels are locally consistent. Thus these features can be
regarded as a single group in relevance based ranking. And
we can pick any one of them in final classification. There-
fore, our general framework for stable feature selection is to
first identify dense feature groups and then select relevant
feature groups among dense feature groups. To decide the
relevance of each dense group, the framework treats features
in each dense group as a coherent entity.

We propose the DRAGS (Dense Relevant Attribute Group
Selector) algorithm under this general framework. As shown
in Algorithm 2, DRAGS first finds a number of dense fea-
ture groups based on DGF, and then evaluates the relevance
of each feature group based on the average relevance of fea-
tures in each group. DRAGS has the same time complexity
as DGF if feature relevance is measured based on individual
feature groups. DRAGS can be easily extended to consider
interactions among feature groups when deciding group rel-
evance under its general framework. In this work, since our
investigative emphasis is on the effectiveness of dense feature
groups for stable feature selection, we use the simple method
of individual feature evaluation to determine the group rele-
vance in DRAGS. As to relevance measures, various existing
feature evaluation measures such as correlation, dependency,
and distance [21] can be chosen depending on data charac-
teristics. We use F -statistic, a commonly used statistical
measure for identifying differentially expressed genes, as the
relevance measure for experiments on microarray data sets.

For the sake of a simple model, like most other feature
selection algorithms, DRAGS is able to provide a compact
feature subset for classification by only selecting one repre-
sentative feature from each dense and relevant feature group.
Since features in each dense group are highly correlated,
DRAGS naturally deals with the redundancy among rele-
vant features. DRAGS also overcomes the two causes of in-

Algorithm 2 DRAGS (Dense Relevant Attribute Group
Selector)

Input: data D, bandwidth h, relevance measure Φ(·)
Output: selected relevant feature groups G1, G2, ..., Gk

Find dense feature groups G1, G2, ..., Gm = DGF(D, h)
for i = 1 to m do

Measure relevance Φ(Gi) based on average relevance of
features in Gi

end for
Rank G1, G2, ..., Gm according to Φ(Gi)
Select top k most relevant groups (or based on a threshold)

stability discussed in Introduction. As to instability caused
by eliminating redundant features, DRAGS keeps highly cor-
related features in a coherent feature group. Such coherent
feature groups provide valuable knowledge about how rele-
vant features are correlated. Features in all groups together
provide a more comprehensive set of important features than
any single subset of features selected by methods eliminat-
ing redundant features. As to instability caused by small
sample size, DRAGS ensures the stability of feature groups
identified from a small number of samples by evaluating the
density of features and identifying dense feature groups.

5. STABILITY MEASURES
Measuring the stability of feature selection algorithms re-

quires some similarity measures for two sets of feature selec-

tion results. Let R1 = {Gi}|R1|
i=1 and R2 = {Gj}|R2|

j=1 denote
two sets of feature selection results, where each Gi and Gj

represents a group of features. In a special case when each
Gi and Gj only contains a single feature, R1 and R2 become
two subsets of features. In such case, the similarity between
R1 and R2 can simply be decided by

SimID(R1, R2) =
2|R1 ∩R2|
|R1|+ |R2| , (5)

where the subscript ID indicates that the similarity is de-
cided by matching feature indices between the two subsets.
Measures of similar forms have been used for assessing the
stability of selected feature subsets in related papers [10, 17]
discussed in Section 2. In this work, we develop a measure
which extends existing similarity measures in two aspects.
First, it is directly applicable to assess the similarity be-
tween two sets of feature groups in a general case. Second,
it considers the similarity of feature values in addition to
feature indices, which makes it informative when two fea-
ture subsets contain a large portion of different but highly
correlated features. This general similarity measure for two
sets of feature selection results is defined based on maximum
weighted bipartite matching.

Given a bipartite graph G = (V, E), with vertex partition
V = V1 ∪ V2, and edge set E = {(u, v)|u ∈ V1, v ∈ V2}. G is
called a weighted bipartite graph if every edge (u, v) is asso-
ciated with a weight w(u,v), and a complete bipartite graph
if every u in V1 is adjacent to every v in V2. A matching M
in G is a subset of non-adjacent edges in E. The problem of
maximum weighted bipartite matching (also known as the
assignment problem) is to find an optimal matching where
the sum of the weights of all edges in the matching has a
maximal value. There exist various efficient algorithms (e.g,
the Hungarian algorithm) for finding an optimal solution.
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Given two sets of feature selection results, R1 = {Gi}|R1|
i=1

and R2 = {Gj}|R2|
j=1 , we model R1 and R2 together as a

weighted complete bipartite graph G = (V, E), where V =
R1 ∪ R2, and E = {(Gi, Gj)|Gi ∈ R1, Gj ∈ R2}, and
w(Gi,Gj) is determined by the similarity between a pair of
feature groups Gi and Gj . The overall similarity between
R1 and R2 is defined as:

SimM (R1, R2) =

P
(Gi,Gj)∈M w(Gi,Gj)

|M | , (6)

where M is a maximum matching in G.
Depending on how to decide w(Gi,Gj), we differentiate two

forms of SimM : SimM
ID and SimM

V , where the subscripts ID

and V respectively indicate that each weight is decided based
on feature indices or feature values. When Gi and Gj repre-
sent feature groups with more than one feature, for SimM

ID,
each weight w(Gi,Gj) can be decided by the simple measure

SimID in (5); For SimM
V , each weight can be decided by

the correlation coefficient between the centers or the most
representative features of the two feature groups. In the
special case when Gi and Gj represent individual features,
for SimM

ID, since w(Gi,Gj) = 1 for matching features and 0

otherwise, SimM
ID becomes SimID; for SimM

V , each weight
can be simply decided by the correlation coefficient between
the two individual features. Therefore, the proposed simi-
larity measure in (6) is a general measure for assessing the
similarity between two sets of feature selection results.

Given the general similarity measure, we define stability
of a feature selection algorithm as the average similarity of
various sets of results produced by the same feature selection
algorithm under training data variations. Let SimM (R, Ri)
denote the similarity between two sets of results R and Ri

from the full set of samples and a subset of samples, respec-
tively. Each subset of samples can be obtained by randomly
sampling or bootstrapping the full set of samples. The sta-
bility of an algorithm over q subsets of samples is given by:

Sim
M

(R, Ri) =
1

q

qX
i=1

SimM (R, Ri) . (7)

It is worth to note that the stability can also be measured
based on pair-wise similarity of results from different subsets
of samples. We use formula (7) because it is more efficient
to compute than pair-wise comparison. Moreover, it directly
captures how different the result will be from the result ob-
tained based on the full data, when some training samples
are randomly removed.

6. EMPIRICAL STUDY
In this section, we empirically study the framework for

stable feature selection based on dense feature groups. The
study is conducted in two parts. In Section 6.2, we verify
that dense feature groups are stable with respect to sample
hold out. In Section 6.3, we verify that feature selection from
dense feature groups according to group relevance produces
feature groups which are both highly predictive and stable.
Before we delve into experimental results and discussions,
we first present the setup of various experiments.

6.1 Experimental Setup

Table 1: Summary of Microarray Data Sets
Data Set # Genes # Samples # Classes
Colon 2000 62 2
Leukemia 7129 72 2
Lung 12533 181 2
Prostate 6034 102 2
Lymphoma 4026 62 3
SRBCT 2308 63 4

We experimented with six frequently studied public mi-
croarray data sets1, characterized in Table 1. Following the
original work on Colon data [1], for each data set, we nor-
malized each feature vector so that the mean over its com-
ponents is zero and the standard deviation is one. Note
that because of the normalization, the Euclidean distance
between two feature vectors xi and xj is related to r, the
Pearson correlation between xi and xj : |xi−xj |2 = 2d(1−r),
where d is the number of dimensions of the feature vectors.
Due to such relationship, dense feature groups identified
based on kernel function using Euclidean distance consist
of features which are highly correlated to each other.

In order to evaluate the stability of dense feature groups
under sample hold out, each data set was randomly par-
titioned into 3 folds, with each fold containing 1/3 of all
the samples. Algorithm 1, DGF, was repeatedly applied to
2 out the 3 folds, while a different fold was hold out each
time. This process was repeated 10 times for different par-
titions of the data set. Overall, a total of 10 × 3 different
subsets of samples were used to generate different sets of fea-
ture groups by DGF. DGF was also applied to the full set of
data in order to produce a reference set of feature groups R

for Sim
M

(R, Ri), the average SimM (R, Ri) over 30 folds.
In order to evaluate the generalization ability and stability

of Algorithm 2, DRAGS, each of the 30 subsets of samples
in the previous study was used as the training set to select
relevant feature groups from dense feature groups produced
by DGF, and then train classifiers based on selected fea-
ture groups. The corresponding hold-out fold was used as
the test set. One representative feature (the one with the
highest average similarity to all other features in the group)
from each selected group was used for both training and
testing. Both sophisticated SVM (linear kernel) and simple
KNN (K=1) classification algorithms (Weka’s implementa-
tion [28]) were used to evaluate the generalization ability
of the representative features of feature groups selected by
DRAGS. The average predictive accuracy over the 30 folds
was used as the measure for generalization ability. To con-
firm that the selected relevant dense feature groups remain
stable, the stability of DRAGS was measured in the same
setting as in the previous study for DGF, except that dense
but irrelevant feature groups were excluded from the stabil-
ity measurement.

As discussed in Section 2, feature clustering has been used
for feature selection. For comparison purpose, we investi-
gated whether simple K-means clustering can produce fea-
ture groups which are both stable and predictive. With-
out prior knowledge about the optimal number of clusters

1http://www.cs.binghamton.edu/∼lyu/KDD08/data/
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in each data set, the performance of K-means was evalu-
ated under a wide range of K values. For each K value,
K-means was repeated 50 times with random initial seeds,
and the clustering result with minimum WSS (Within clus-
ters Sum of Squared errors) was used for performance eval-
uation. First, we evaluated the stability of feature clusters
from K-means under sample hold out. Under each K value,
the stability of K feature clusters was evaluated in the same
setting as DGF. Then, we evaluated the generalization abil-
ity and stability of the feature clusters selected based on
relevance. Like existing work [16], a cluster was selected for
classification if its representative feature was among the top
k (k<K) according to relevance score. The rest of the pro-
cedure was the same as in evaluating DRAGS. In addition,
we also tested the classification performance using represen-
tative features from all K clusters like in [3] and found the
results (not included in the paper) were consistently inferior
than those from the above approach.

Additionally, we evaluated the performance of a well-known
feature selection algorithm for small sample classification,
SVM-RFE (RFE in short) [14], under the same setting as
DRAGS. RFE recursively eliminates features based on SVM.
At each iteration, it trains an SVM classifier, ranks features
according to some score function, and eliminates one or more
features with the lowest scores. Since RFE is computation-
ally intensive, as in [14], we chose to first eliminate half of
the remaining features at each iteration and then switch to
one feature at a time when only a small number of features
(50 in these experiments) were left.
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Figure 1: Various distributions of average Pearson
correlation of K-Nearest Neighbors for all features,
under K=1,2,...,10,15,20,25, for Colon data.

For DRAGS, we need to specify the number of nearest
neighbors considered by each feature in order to determine
the kernel bandwidth h for the mean shift procedure. Fig-
ure 1 depicts a series of distributions of average Pearson
correlation of KNNs for all features under increasing val-
ues of K (from right to left) in Colon data set. We can
see that the distributions are highly skewed and show little
spread before K reaches 4, which indicates that the average
Pearson correlation of KNNs does not adequately capture
the heterogeneity of the underlying density distribution un-
der those small values of K. Such information can be easily
obtained based on pair-wise Pearson correlation among all
features. We examined several data sets and observed very

similar trend as in Figure 1. In order to find coherent dense
feature groups, we prefer a K value which is small but able to
capture the heterogeneity of the data. In our experiments,
we uniformly set K=5 for all the data sets.

6.2 Evaluation of Dense Feature Groups
In this section, we evaluate the stability of dense feature

groups produced by DGF under sample hold out based on

the stability measure in (7), which has two forms Sim
M
V

and Sim
M
ID depending on whether the similarity is measured

based on feature values or feature indices. We also compare
the stability of DGF with K-means algorithm under the set-

ting described in Section 6.1. To compute Sim
M
V , for both

DGF and K-means, Pearson correlation of group centers is
used to determine a maximum matching between two sets
of feature groups R and Ri (R from the full data set and

Ri from the ith random subset). To compute Sim
M
ID, for

DGF, features in each dense group are used to determine a
maximum matching. For K-means, a maximum matching is
determined in two ways: using all features in each cluster
regardless of its size or 5 features closest to each cluster cen-
ter (up to 5 if there are less than 5 features in the cluster).
The higher stability value between the two is reported.

Figure 2 reports the stability values of DGF and K-means

based on Sim
M
V and Sim

M
ID for each of the six microarray

data sets used in our study. We can clearly observe from
every data set that DGF is highly stable in terms of both
measures when the top k (k=4, 6,..., 50) dense groups are
evaluated. For all data sets except SRBCT, the stability

score based on Sim
M
V is almost perfect for every k value,

indicating Pearson correlation is almost 1 for all pairs of
group centers under the best matching between two sets of
feature groups. This observation verifies that density peaks
in the sample space are highly stable with respect to sample
hold out (even when 1/3 of the samples were removed in our

experiments). The stability scores based on Sim
M
ID show

the same trend, although they are less perfect than Sim
M
V .

Overall, more than 70% of the features in one dense feature
group match with those in its matching group under the
best matching for most k values, in five out of the six data
sets. This further verifies that dense feature groups around
density peaks are highly stable as well.

In contrast, K-means is much less stable than DRAGS in
terms of both measures with only one exception (SRBCT,
K=4). As the number of feature clusters increases, the sta-
bility of K-means degrades, that is, the resulting clusters
become more sensitive to the variations of the dimensions
(samples) included in computing the similarity between fea-

tures. For all data sets, the Sim
M
ID scores are close to 0 for

large numbers of clusters (e.g., k>20), which indicates al-
most no overlap between any pair of matching clusters, con-
sidering either all features in each cluster or several closest
features to each cluster center. These observations suggest
that grouping features without considering the density of
feature groups is not effective for stable feature selection.

6.3 Evaluation of Feature Selection Results
We now evaluate the generalization ability and stability

of selected feature groups by DRAGS. We also compare
DRAGS with K-means based feature selection and RFE fea-
ture selection algorithm under the previously described set-
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Figure 2: Stability of DGF and K-means according to Sim
M
V and Sim

M
ID measures for six data sets.

ting. Table 2 compares the average predictive accuracies
(over 30 folds) for SVM and 1NN based on selection results
from these three algorithms under a wide range of k, where
k stands for the number of feature groups for DRAGS and
K-means, and the number of features for RFE, respectively.
The last value in each row is the average of accuracies across
all the k values for each algorithm.

Between DRAGS and RFE, the accuracies resulted from
DRAGS are significantly higher than those from RFE under
all values of k for two data sets (Colon and SRBCT). For the
other four data sets, DRAGS performs similar to RFE un-
der large k values, but significantly higher when k ≤ 10 (ex-
cept Lymphoma). Such observations suggest that features in
each dense group selected by DRAGS are coherent in terms
of class discrimination, and therefore, good accuracy can
be achieved by using representative features (one from each
group) from only a few most relevant feature groups, rather
than using a large subset of dozens of features like RFE.
More importantly, DRAGS not only provides k features for
classification, but also includes in its result features highly
correlated to these k features. This is desirable for appli-
cations where the goal of knowledge discovery is to iden-
tify features best explaining the differences between classes.
Comparing DRAGS with K-means based feature selection,
the accuracies resulted from DRAGS are significantly higher
than those from K-means under all values of k for SRBCT,
and generally similar to those from K-means for the other
five data sets.

At last, we evaluate the stability of DRAGS, K-means,
and RFE. Figure 3 shows the stability of the three algo-
rithms. We can clearly observe from all data sets that
DRAGS remains highly stable in terms of both measures
based on the top k relevant feature groups selected from
dense feature groups. Therefore, we conclude that DRAGS
can identify feature groups which together lead to good pre-
diction of the class and are stable under sample hold out.

K-means remains much less stable than DRAGS when the
the top k relevant feature clusters among all K clusters are

measured. For RFE, its stability values based on Sim
M
ID

are consistently almost zero under any k value for all data
sets, which shows that almost none of the features selected
from a training fold matches with the set of features selected

from the full data set. Its stability values based on Sim
M
V

are higher due to the correlation between features selected
based on a training fold and those selected based on the full
data set, but RFE is overall much less stable than DRAGS.
Such observations indicate that RFE is ineffective in provid-
ing stable results under training data variations, although it
can select large subsets of features of good prediction.

7. CONCLUSION
In this paper, we have identified the importance of stable

feature selection, and proposed a general feature selection
framework for stable feature selection based on dense fea-
ture groups. We have also proposed a general measure of
stability. Our empirical study based on various microarray
data sets has verified that the proposed framework is effec-
tive for stable feature selection, and the DRAGS algorithm
developed within this framework produces feature groups
which together lead to good classification accuracy and are
stable under sample hold out.

Because DRAGS limits the selection of relevant feature
groups from dense feature groups identified by DGF, DRAGS
may not necessarily include some of the most relevant fea-
tures determined according to individual feature ranking in
any of its selected feature groups, if those features are lo-
cated in the sparse region of the data distribution. Some
improvements to DRAGS can be studied in the future work.
Another interesting future direction is to develop additional
feature selection algorithms under the proposed framework,
for example, by using other methods to evaluate the rele-
vance of dense feature groups.
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Figure 3: Stability of DRAGS, K-means, and RFE according to Sim
M
V and Sim

M
ID measures for six data sets.
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Table 2: Average Accuracies (%, with Standard Deviation ±) Produced by DRAGS, Kmeans, and RFE
k

Data Method 4 6 8 10 20 30 40 50 Avg
Colon SVM DRAGS 80.5±9.6 82.4±9.6 83.5±9.5 83.8±9.2 84.9±6.9 86.3±6.8 87.3±4.9 87.1±5.6 84.5

RFE 64.8±3.3 65.5±4.1 68.9±5.1 68.3±5.6 76.1±5.3 78.6±5.1 80.2±6.7 81.9±7.6 73.0
Kmeans 77.6±10.7 79.3±8.7 81.7±7.7 82.7±7.0 84.2±6.3 84.2±5.8 81.9±8.2 82.2±7.8 81.8

1NN DRAGS 74.1±10.7 77±8.9 75.1±8.1 74.4±9.3 74.6±7.4 75.2±7.8 77.3±7.5 77.9±7.3 75.7
RFE 59.9±6.2 64±5.8 67.2±3.4 66.9±5.9 73±4.6 74.8±5.8 75.9±5.1 80.3±4.9 70.3

Kmeans 76.1±9.0 76.1±7.1 75.4±7.9 76.3±6.6 79.6±9.0 78.2±9.1 78.1±11.7 75.5±8.7 77.0
Leuk. SVM DRAGS 92.8±3.8 92.2±3.6 92.9±4 93.2±4.2 95±3.5 96.2±3 96.7±3.4 97.1±3.5 94.5

RFE 78.2±5 85.5±3.7 87.3±5.5 89.9±4.9 95.3±2.9 95.5±2.7 96.9±0.9 97.5±0.9 90.8
Kmeans 89.4±5.8 91.8±4.3 92.9±4.1 93.6±4.3 95.6±4.0 95.4±3.5 95.5±3.6 97.3±3.3 94.0

1NN DRAGS 93.5±4 92.1±4.1 90.6±4.8 90.8±4.3 92.4±3.6 92.4±5 94.3±3.5 95.6±4.5 92.7
RFE 77.7±4.5 83.1±4.5 86.2±5 86.6±5.1 91.6±3 93.2±3.5 94.9±1.9 94.9±2.9 88.5
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RFE 90.3±1.6 93.2±1.6 95.7±1.3 96.4±1.7 98.8±0.7 99.4±0.6 99.5±0.3 99.4±0.5 96.6
Kmeans 94.9±3.2 96.0±2.8 97.1±2.5 97.4±2.5 97.6±2.6 97.8±2.1 98.3±1.8 98.4±2.0 97.2

1NN DRAGS 98.4±1.4 99±1.3 98.7±1.2 98.9±1.3 98.6±1.7 98.7±1.7 98.6±1.9 98.7±2 98.7
RFE 91.9±3.1 93.6±2.2 95±1.7 95.2±2 97.7±1.1 97.6±0.9 98.4±0.5 98.4±0.8 96.0

Kmeans 95.4±3.9 95.6±3.0 96.3±2.6 96.8±2.5 97.1±2.2 97.6±2.1 97.6±2.0 97.9±1.9 96.8
Pro. SVM DRAGS 86.6±4.6 88.6±4.9 90.5±5.5 89.8±5.9 89.1±6.4 89.9±5.4 91.3±4.6 91.7±3.9 89.7
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