
Spectral Relaxation for K-meansClusteringHongyuan Zha & Xiaofeng HeDept. of Comp. Sci. & Eng.The Pennsylvania State UniversityUniversity Park, PA 16802fzha,xheg@cse.psu.edu Chris Ding & Horst SimonNERSC DivisionLawrence Berkeley National Lab.UC Berkeley, Berkeley, CA 94720fchqding,hdsimong@lbl.govMing GuDept. of MathematicsUC Berkeley, Berkeley, CA 95472mgu@math.berkeley.eduAbstractThe popular K-means clustering partitions a data set by minimiz-ing a sum-of-squares cost function. A coordinate descend methodis then used to �nd local minima. In this paper we show that theminimization can be reformulated as a trace maximization problemassociated with the Gram matrix of the data vectors. Furthermore,we show that a relaxed version of the trace maximization problempossesses global optimal solutions which can be obtained by com-puting a partial eigendecomposition of the Gram matrix, and thecluster assignment for each data vectors can be found by comput-ing a pivoted QR decomposition of the eigenvector matrix. As aby-product we also derive a lower bound for the minimum of thesum-of-squares cost function.1 IntroductionK-means is a very popular method for general clustering [5]. In K-means clustersare represented by centers of mass of their members, and it can be shown that theK-means algorithm of alternating between assigning cluster membership for eachdata vector to the nearest cluster center and computing the center of each clusteras the centroid of its member data vectors is equivalent to �nding the minimum of asum-of-squares cost function using coordinate descend. Despite the popularity of K-means clustering, one of its major drawbacks is that the coordinate descend searchmethod is prone to local minima. Much research has been done on computing re�nedinitial points for K-means clustering so that the search can converge to better localminimum [1]. In this paper we tackle the problem from a di�erent angle: we �nd anequivalent formulation of the sum-of-squares minimization as a trace maximizationproblem with special constraints; relaxing the constraints leads to a maximizationproblem that possesses optimal global solutions. As a by-product we also have an



easily computable lower bound for the minimum of the sum-of-squares cost function.Our work is inspired by [7, 2] where connection to Gram matrix and extension ofK-means method to general Mercer kernels were investigated.The rest of the paper is organized as follows: in section 2, we derive the equivalenttrace maximization formulation and discuss its spectral relaxation. In section 3, wediscuss how to assign cluster membership using pivoted QR algorithm, taking intoaccount the special structure of the eigenvector matrix. Finally, in section 4, weillustrate the performance of the clustering algorithms using document clusteringas an example.Notation. Throughout, k � k denotes the Euclidean norm of a vector. The traceof a matrix A, i.e., the sum of its diagonal element, is denoted as trace(A). TheFrobenius norm of a matrix kAkF = ptrace(ATA). In denotes identity matrix oforder n.2 Spectral RelaxationGiven a set of m-dimensional data vectors ai; i = 1; : : : ; n, we form the m-by-n datamatrix A = [a1; : : : ; an]. A partition � of the date vectors can be written in thefollowing form AE = [A1; : : : ; Ak]; Ai = [a(i)1 ; : : : ; a(i)si ] (1)where E is a permutation matrix, and Ai is m-by-si, i.e., the ith cluster containsthe data vectors in Ai. For a given partition � in (1), the associated sum-of-squarescost function is de�ned asss(�) = kXi=1 siXs=1 ka(i)s �mik2; mi = siXs=1 a(i)s =si;i.e., mi is the mean vector of the data vectors in cluster i. Let e be a vectorof appropriate dimension with all elements equal to one, it is easy to see thatmi = Aie=si andssi � siXs=1 ka(i)s �mik2 = kAi �mieT k2F = kAi(Isi � eeT=si)k2F :Notice that Isi � eeT =si is a projection matrix and (Isi � eeT =si)2 = Isi � eeT =si;it follows thatssi = trace(Ai(Isi � eeT =si)ATi ) = trace((Isi � eeT =si)ATi Ai):Therefore, ss(�) = kXi=1 ssi = kXi=1 trace(ATi Ai)�� eTpsi�ATi Ai � epsi� :Let the n-by-k orthonormal matrix X beX = 0BB@s1 e=ps1s2 e=ps2... ...sk e=psk1CCA (2)



The sum-of-squares cost function can now be written asss(�) = trace(ATA)� trace(XTATAX);and its minimization is equivalent tomaxf trace(XTATAX) j X of the form in (2)g:Remark. Without loss of generality, let E = I in (1). If we let xi be the clusterindicator vector, i.e., xTi = [0; : : : ; 0; 1; : : : ; 1| {z }si ; 0; : : : ; 0]:Then it is easy to see thattrace(XTATAX) = kXi=1 xTi ATAxixTi xi = kXi=1 kAxik2kxik2 :Using the partition in (1), the right-hand side of the above can be written askXi=1 si Aiesi 2 = kXi=1 sikmik2;a weighted sum of the squared Euclidean norms of the mean vector of each clusters.Remark. If we consider the Gram matrix as measuring similarity between datavectors, then we have shown that Euclidean distance leads to Euclidean inner-product similarity. This inner-product can be replaced by a general Mercer kernelas is done in [7, 2].Ignoring the special structure of X and let it be an arbitrary orthonormal matrix,we obtain a relaxed maximization problemmaxXTX=Ik trace(XTATAX) (3)It turns out the above trace maximization problem has a closed-form solution.Theorem. (Ky Fan) Let H be a symmetric matrix with eigenvalues�1 � �2 � � � � � �n;and the corresponding eigenvectors U = [u1; : : : ; un]. Then�1 + � � ��k = maxXTX=Ik trace(XTHX):Moreover, the optimal X� is given by X� = [u1; : : : ; uk]Q with Q an arbitraryorthogonal matrix.It follows from the above theorem that we need to compute the largest k eigenvectorsof the Gram matrix ATA. As a by-product, we havemin� ss(�) � trace(ATA)� maxXTX=Ik trace(XTATAX) = minfm;ngXi=k+1 �2i (A); (4)where �i(A) is the i largest singular value of A. This gives a lower bound for theminimum of the sum-of-squares cost function.Let Xk be the n-by-k matrix consisting of the largest eigenvectors of ATA. Eachrow of Xk corresponds to a data vector, and the above process can be considered as



transforming the original data vectors which live in a m-dimensional space to newdata vectors which now live in a k-dimensional space. One might be attempted tocompute the cluster assignment by applying the ordinary K-means method to thosedata vectors in the reduced dimension space. In the next section, we discuss analternative that takes into account the structure of the eigenvector matrix Xk [4].Remark. The similarity of the projection process to principal componet analysisis deceiving: the goal here is not to reconstruct the data matrix using a low-rankapproximation but rather to capture the its cluster structure.3 Cluster Assignment Using Pivoted QR DecompositionWithout loss of generality, let us assume that the best partition of the data vec-tors in A that minimizes ss(�) is given by A = [A1; : : : ; Ak]; each submatrix Aicorresponding to a cluster. Now write the Gram matrix of A asATA = 26664 AT1 A1 0 : : : 00 AT2 A2 : : : 0... ... : : : ...0 0 : : : ATkAk 37775+E � B +E:If the overlaps among the clusters represented by the submatrices Ai are small, thenthe norm of E will be small as compare with the block diagonal matrix B in theabove equation. Let the largest eigenvector of ATi Ai be yi, andATi Aiyi = �iyi; kyik = 1; i = 1; : : : ; k;then the columns of the matrixYk = 0BB@s1 y1s2 y2... ...sk yk1CCAspan an invariant subspace of B. Let the eigenvalues and eigenvectors of ATA be�1 � �2 � : : : � �n; ATAxi = �ixi; i = 1; : : : ; n:Assume that there is a gap between the two eigenvalue sets f�1; : : : �kg andf�k+1; : : : �ng, i.e.,0 < � = minfj�i � �j j j i = 1; : : : ; k; j = k + 1; : : : ; ng:Then Davis-Kahan sin(�) theorem states that kY Tk [xk+1; : : : ; xn]k � kEk=� [9,Theorem 3.4]. After some manipulation, it can be shown thatXk � [x1; : : : ; xk ] = YkV +O(kEk);where V is an k-by-k orthogonal matrix. Ignoring the O(kEk) term, we see thatXkT = [y11v1; : : : ; y1s1v1| {z }cluster 1 ; : : : ; yk1vk; : : : ; ykskvk| {z }cluster k ];where we have used yTi = [yi1; : : : ; yisi ]; and V T = [v1; : : : ; vk]: A key observation isthat all the vi are orthogonal to each other: once we have selected a vi, we can jumpto other clusters by looking at the orthogonal complement of vi. Also notice that
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Figure 1: Clustering accuracy for �ve newsgroups NG2/NG9/NG10/NG15/NG18:p-QR vs. p-Kmeans (left) and p-Kmeans vs. Kmeans (right)kyik = 1, so the elements of yi can not be all small. A robust implementation ofthe above idea can be obtained as follows: we pick a column of XkT which has thelargest norm, say, it belongs to cluster i, we orthogonalize the rest of the columns ofXTk against this column. For the columns belonging to cluster i the residual vectorwill have small norm, and for the other columns the residual vectors will tend tobe not small. We then pick another vector with the largest residual norm, andorthogonalize the other residual vectors against this residual vector. The processcan be carried out k steps, and it turns out to be exactly QR decomposition withcolumn pivoting applied to XkT [3], i.e., we �nd a permutation matrix P such thatXTk P = QR = Q[R11; R12];where Q is a k-by-k orthogonal matrix, and R11 is a k-by-k upper triangular matrix.We then compute the matrixR̂ = R�111 [R11; R12]P T = [Ik; R�111 R12]P T :Then the cluster membership of each data vector is determined by the row index ofthe largest element in absolute value of the corresponding column of R̂.4 Experimental ResultsIn this section we present our experimental results on clustering a dataset of news-group articles submitted to 20 newsgroups.1 This dataset contains about 20,000articles (email messages) evenly divided among the 20 newsgroups. We list thenames of the newsgroups together with the associated group labels.NG1: alt.atheism NG2: comp.graphicsNG3: comp.os.ms-windows.misc NG4: comp.sys.ibm.pc.hardwareNG5:comp.sys.mac.hardware NG6: comp.windows.xNG7:misc.forsale NG8: rec.autosNG9:rec.motorcycles NG10: rec.sport.baseballNG11:rec.sport.hockey NG12: sci.cryptNG13:sci.electronics NG14: sci.medNG15:sci.space NG16: soc.religion.christianNG17:talk.politics.guns NG18: talk.politics.mideastNG19:talk.politics.misc NG20: talk.religion.misc1The newsgroup dataset together with the bow toolkit for processing it can be down-loaded from http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html.



Table 1: Comparison of p-QR, p-Kmeans, and K-means for two-way clusteringNewsgroups p-QR p-Kmeans K-meansNG1/NG2 89:29 � 7:51% 89:62 � 6:90% 76:25 � 13:06%NG2/NG3 62:37 � 8:39% 63:84 � 8:74% 61:62 � 8:03%NG8/NG9 75:88 � 8:88% 77:64 � 9:00% 65:65 � 9:26%NG10/NG11 73:32 � 9:08% 74:86 � 8:89% 62:04 � 8:61%NG1/NG15 73:32 � 9:08% 74:86 � 8:89% 62:04 � 8:61%NG18/NG19 63:86 � 6:09% 64:04 � 7:23% 63:66 � 8:48%Table 2: Comparison of p-QR, p-Kmeans, and K-means for multi-way clusteringNewsgroups p-QR p-Kmeans K-meansNG2/NG3/NG4/NG5/NG6 (50) 40:36 � 5:17% 41:15 � 5:73% 35:77 � 5:19%NG2/NG3/NG4/NG5/NG6 (100) 41:67 � 5:06% 42:53 � 5:02% 37:20 � 4:39%NG2/NG9/NG10/NG15/NG18 (50) 77:83 � 9:26% 70:13 � 11:67% 58:10 � 9:60%NG2/NG9/NG10/NG15/NG18 (100) 79:91 � 9:90% 75:56 � 10:63% 66:37 � 10:89%NG1=NG5=NG7=NG8=NG11=NG12=NG13=NG14=NG15=NG17 (50) 60:21 � 4:88% 58:18 � 4:41% 40:18 � 4:64%NG1=NG5=NG7=NG8=NG11=NG12=NG13=NG14=NG15=NG17 (100) 65:08 � 5:14% 58:99 � 5:22% 48:33 � 5:64%We used the bow toolkit to construct the term-document matrix for this dataset,speci�cally we use the tokenization option so that the UseNet headers are stripped,and we also applied stemming [6]. The following three preprocessing steps are done:1) we apply the usual tf.idf weighting scheme; 2) we delete words that appear toofew times; 3) we normalized each document vector to have unit Euclidean length.We tested three clustering algorithms: 1) p-QR, this referred to the algorithm usingthe eigenvector matrix followed by pivoted QR decomposition for cluster member-ship assignment; 2) p-Kmeans, we compute the eigenvector matrix, and then applyK-means on the rows of the eigenvector matrix; 3) K-means, this is K-means di-rectly applied to the original data vectors. For both K-means methods, we startwith a set of cluster centers chosen randomly from the (projected) data vectors,and we aslo make sure that the same random set is used for both for comparison.To assess the quality of a clustering algorithm, we take advantage of the fact thatthe newsgroup data are already labeled and we measure the performance by theaccuracy of the clustering algorithm against the document category labels [8]. Inparticular, for a k cluster case, we compute a k-by-k confusion matrix C = [cij ] withcij the number of documents in cluster i that belongs to newsgroup category j. It isactually pretty tricky to compute the accuracy using the confusion matrix becausewe do not know which cluster matches which newsgroup category. An optimal wayis to solve the following maximization problemmaxf trace(CP ) j P is a permutation matrixg;and divide the maximum by the total number of documents to get the accuracy. Inall our experiments, we used a greedy algorithm to compute a sub-optimal solution.Example 1. In this example, we look at binary clustering. We choose 50 randomdocument vectors each from two newsgroups. We tested 100 runs for each pairof newsgroups, and list the means and standard deviations in Table 1. The twoclustering algorithms p-QR and p-Kmeans are comparable to each other, and bothare better and sometimes substantially better than K-means.



Example 2. In this example, we consider k-way clustering with k = 5 and k = 10.Three newsgroup sets are chosen with 50 and 100 random samples as indicated inthe parenthesis. Again 100 runs are used for each tests and the means and standarddeviations are listed in Table 2. Moreover, in Figure 1, we also plot the accuracyfor the 100 runs for the test NG2/NG9/NG10/NG15/NG18 (50). Both p-QR andp-Kmeans perform better than Kmeans. For newsgroup sets with small overlaps,p-QR performs better than p-Kmeans. This might be explained by the fact thatp-QR explores the special structure of the eigenvector matrix and is therefore moree�cient. As a less thorough comparison with the information bottleneck methodused in [8], there for 15 runs of NG2/NG9/NG10/NG15/NG18 (100) mean accu-racy 56:67% with maximum accuracy 67:00% is obtained. For 15 runs of the 10newsgroup set with 50 samples, mean accuracy 35:00% with maximum accuracyabout 40:00% is obtained.Example 3. We compare the lower bound given in (4). We only list a typicalsample from NG2/NG9/NG10/NG15/NG18 (50). The column with \NG labels"indicates clustering using the newsgroup labels and by de�nition has 100% accuracy.It is quite clear that the newsgroup categories are not completely captured bythe sum-of-squares cost function because p-QR and \NG labels" both have higheraccuracy but also larger sum-of-squares values. Interestingly, it seems that p-QRcaptures some of this information of the newsgroup categories.p-QR p-Kmeans K-means NG labels lower boundaccuracy 86:80% 83:60% 57:60% 100% N/Ass(�) 224.1110 223.8966 228.8416 224.4040 219.0266AcknowledgmentsThis work was supported in part by NSF grant CCR-9901986 and by Departmentof Energy through an LBL LDRD fund.References[1] P. S. Bradley and Usama M. Fayyad. (1998). Re�ning Initial Points for K-MeansClustering. Proc. 15th International Conf. on Machine Learning, 91{99.[2] M. Girolani. (2001). Mercer Kernel Based Clustering in Feature Space. To appear inIEEE Transactions on Neural Networks.[3] G. Golub and C. Van Loan. (1996). Matrix Computations. Johns Hopkins UniversityPress, 3rd Edition.[4] Ming Gu, Hongyuan Zha, Chris Ding, Xiaofeng He and Horst Simon. (2001). SpectralEmbedding for K-Way Graph Clustering. Technical Report, Department of ComputerScience and Engineering, CSE-01-007, Pennsylvania State University.[5] J.A. Hartigan and M.A. Wong. (1979). A K-means Clustering Algorithm. AppliedStatistics, 28:100{108.[6] A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, clas-si�cation and clustering. http://www.cs.cmu.edu/ mccallum/bow.[7] B. Sch�olkopf, A. Smola and K.R. M�uller. (1998). Nonlinear Component Analysis asa Kernel Eigenvalue Problem. Neural Computation, 10: 1299{1219.[8] N. Slonim and N. Tishby. (2000). Document clustering using word clusters via theinformation bottleneck method. Proceedings of SIGIR-2000.[9] G.W. Stewart and J.G. Sun. (1990). Matrix Perturbation Theory. Academic Press,San Diego, CA.


