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Abstract

The nonnegative matrix factorization (NMF) has been
shown recently to be useful for clustering. Various exten-
sions of NMF have also been proposed. In this paper we
present an overview and theoretically analyze the relation-
ships among them. In addition, we clarify previously unad-
dressed issues, such as NMF normalization, cluster poste-
rior probabilty, and NMF algoritm convergence rate. Ex-
periments are also conducted to empirically evaluate and
compare various factorization methods.

Keywords: matrix factorization, simultaneous cluster-
ing, NMF normalization, NMF convergence rate

1. Introduction

The nonnegative matrix factorization (NMF) has been
shown recently to be useful for many applications in en-
vironment, pattern recognition, multimedia, text mining,
and DNA gene expressions [9, 26, 29, 32]. NMF can be
traced back to 1970s (Notes from G. Golub) and is stud-
ied extensively by Paatero [29]. The work of Lee and
Seung [24, 25] brought much attention to NMF in ma-
chine learning and data mining fields. A very recent the-
oretical analysis [12] shows the equivalence of NMF and
spectral clustering andK-means clustering. Various ex-
tensions and variations of NMF have been proposed re-
cently [13, 14, 15, 23, 27, 3, 30, 33].

Despite significant research progress in this area, few at-
tempts have been made to establish the connections between
various factorization methods while highlighting their dif-
ferences. In this paper, we aim to provide a comparative
study on matrix factorization for clustering. We present an
overview and summary on various matrix factorization al-
gorithms and theoretically analyze the relationships among
them. Experiments were also conducted to empirically eval-
uate and compare various factorization methods. In particu-

lar, our study tries to address the following important ques-
tions for matrix factorizations:

• What are the available forms of matrix factorizations
for clustering?

• What are the relations among the matrix factorizations
as well as the existing clustering methods?

• How to interpret the cluster posterior obtained from
matrix factorizations?

• What are the benefits of simultaneous clustering?

• How to evaluate simultaneous clustering?

• How to choose different factorization methods?

We expect our study would provide insightful guidance
on matrix factorization research for clustering. The rest of
the paper is organized as follows: Section 2 summarizes
various matrix factorizations; Section 3 illustrates the dif-
ferences among various factorizations using examples; Sec-
tion 4 introduces the computation algorithms for various fac-
torization methods; Section 5 studies the relationships of
various matrix factorization methods; Section 6 discusses
the normalization method for eliminating the uncertainty in
NMF solutions; Section 7 explains when and why the si-
multaneous clustering is preferred and presents strategies for
evaluating simultaneous clustering; Section 8 shows the ex-
perimental results for empirically comparing various matrix
factorization methods; and finally Section 9 concludes.

2. Different Matrix Factorizations

In general, matrix factorization algorithms attempt to find
the subspace in which the majority of the data points lie.

Let the input data matrixX = (x1, · · · ,xn) contain the col-
lection ofn data column vectors. Generally, we factorizeX
into two matrices,

X ≈ FGT , (1)



whereX ∈ R
p×n, F ∈ R

p×k andG ∈ R
n×k. Generally, the

rank of matricesF,G is much lower than the rank ofX (i.e.,
k≪ min(p,n)). Here we provide an overview on related
matrix factorization methods:

1. SVD: The classic matrix factorization is Principal
Component Analysis (PCA) which uses the singular
value decomposition [?, 17], X ≈UΣVT , where we al-
low U,V to have mixed-signs; the input data could have
mixed-signs. absorbingΣ into U , we can write

SVD: X± ≈U±V±

2. NMF: When the input data is nonnegative, and we re-
strict F andG to be nonnegative. The standard NMF
can be written as

NMF: X+ ≈ F+G+

using an intuitive notation forX,F,G≥ 0.

3. Semi-NMF: When the input data has mixed signs,
we can restrictG to be nonnegative while placing no
restriction on the signs ofF . This is called semi-
NMF [13]:

semi-NMF: X± ≈ F±G+.

Semi-NMF can be motivated by K-means clustering.
Let F = (f1, · · · , fk) be the cluster centroids obtained
via K-means clustering. LetG be the cluster indicators:
i.e.,gki = 1 if xi belongs to clusterck; gki = 0 otherwise.
The K-means clustering objective can be written as

JK−means=
n

∑
i=1

K

∑
k=1

gik‖xi− fk‖
2 = ‖X−FGT‖2,

where‖ · ‖ is Frobenius norm1. Semi-NMF can be
thought as a soft clustering by relaxing the element of
g from binary to continuous nonnegative values.

4. Convex-NMF: In general, the basis vectors

F = (f1, · · · , fk)

can be anything in a large space, in particular, a space
that contains the space spanned by the columns ofX =
(x1, · · · ,xn). In order for the vectorsF to capture the
notion of cluster centroids, we restrict them to lie within
the space spanned by the columns ofX, i.e.,

f l = w1l x1 + · · ·+wnlxn = Xwl ,or F = XW.

Furthermore, we restrictf l as a convex combination
wil ≥ 0 of the data points. We call this restricted form
of factorization as Convex-NMF. Convex-NMF applies
to both nonnegative and mixed-sign input data.

1Without specifying, all norms in this paper are Frobenius norm.

5. Tri-Factorization: To simultaneously cluster the rows
and the columns of the input data matrixX, we consider
the following nonnegative 3-factor decomposition [15]

X ≈ FSGT . (2)

Note thatSprovides additional degrees of freedom such
that the low-rank matrix representation remains accu-
rate whileF gives row clusters andG gives column
clusters. More precisely, we solve

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, s.t. FTF = I , GTG = I .

(3)
This form gives a good framework for simultaneously
clustering the rows and columns ofX [35].

An important special case is that the inputX contains
a matrix of pairwise similarities:X = XT = W. In this
case,F = G = H. We optimize the symmetric NMF:

min
W≥0,S≥0

‖X−HSHT‖2, s.t. HTH = I .

6. Kernel NMF: Consider a mapping

xi → φ(xi), or X→ φ(X) = (φ(x1), · · · ,φ(xn)).

A standard NMF or Semi-NMF likeφ(X) ≈ FGT

would be difficult sinceF,G will depends explicitly
on the mapping functionφ(·). However, Convex-NMF
provides a nice possibility:

φ(X)≈ φ(X)WGT .

It is easy to see that the minimization objective

||φ(X)−φ(X)WGT ||2 = Tr[φ(X)Tφ(X)−2GT φT(X)φ(X)W

+WTφT(X)φ(X)WGTG]

depends only on the kernelK = φT(X)φ(X). This ker-
nel extension of NMF is similar to kernel-PCA and ker-
nelK-means .

In summary, various factorizations differ by the restric-
tions on the matrix forms and signs, we write them collec-
tively as follows:

SVD: X± ≈U±V±
NMF: X+ ≈ F+GT

+

Semi-NMF: X± ≈ F±GT
+

Convex-NMF: X± ≈ X±W+GT
+

Kernel-NMF: φ(X±)≈ φ(X±)W+GT
+

Tri-Factorization: X+ ≈ F+S+GT
+

Symmetric-NMF: W+ ≈ H+S+HT
+



3. Illustration Examples

In this section, we use examples to illustrate the differ-
ence among various NMF methods.

3.1 A Nonnegative Example

In the section, we use a nonnegative example to illustrate
the differences in NMF and Tri-Factorization.

The input data matrixX is













0.185 0.326 0.761 2.799 2.375 2.970 2.585
0.508 0.380 0.884 2.134 2.374 2.342 2.524
0.452 0.887 0.457 2.065 2.484 2.253 2.163
1.486 1.843 1.858 0.566 0.103 0.417 0.269
1.496 1.806 1.610 0.612 0.158 0.560 0.784













One can see that the first 3 columns should be one cluster
and the last 4 columns should be another cluster.

The computed basis vectorsF for NMF and Tri-
Factorization are:

Fnm f =

















0.0403 0.3695
0.0889 0.3149
0.1033 0.2945
0.3882 0.0002
0.3794 0.0210
16.83 30.64

















,FTri =

















0.0000 0.3704
0.0215 0.3228
0.0320 0.3068
0.4773 0.0000
0.4692 0.0000
2.6172 3.4036

















Basis vectors are normalized to 1 inL2-norm (norms are
given at the bottom line) for comparison purpose. We can
see thatF leads to the correct row clustering results: the first
three row are in one cluster and the bottom 2 rows are in
another cluster.

The matricesG for NMF and Tri-Factorization are listed
as follows:

Gnm f =
(

0.234 0.287 0.259 0.080 0.012 0.063 0.065
0.006 0.014 0.040 0.223 0.238 0.244 0.236

)

GTri =
(

0.270 0.335 0.333 0.034 0.000 0.009 0.020
0.000 0.000 0.000 0.239 0.248 0.264 0.250

)

.

In both factorizations,G leads to the correct clustering
results: the first three columns are in one cluster and the
remaining columns are in another cluster. Note that

STri− f actor =

(

4.3626 1.0136
1.4824 8.4000

)

.

It absorbs the different scales ofX, FTri− f actor and
GTri− f actor and thusFTri− f actor provides row clusters (i.e.,
the attribute clusters).

3.2 A Mixed-sign Example

In this section, we give an example to illustrate the differ-
ences in SVD, semi-NMF and convex-NMF. The input data
matrix is

X =













1.3 1.8 4.8 7.1 5.0 5.2 8.0
1.5 6.9 3.9 −5.5 −8.5 −3.9 −5.5
6.5 1.6 8.2 −7.2 −8.7 −7.9 −5.2
3.8 8.3 4.7 6.4 7.5 3.2 7.4
−7.3 −1.8 −2.1 2.7 6.8 4.8 6.2













One can see that the first 3 columns should be one cluster
and the last 4 columns should be another cluster.

The computed basis vectorsF are:

Fsvd=

















−0.41 0.50
0.35 0.21
0.66 0.32
−0.28 0.72
−0.43 −0.28
25.5 15.6

















,

Fsemi=

















0.05 0.27
0.40 −0.40
0.70 −0.72
0.30 0.08
−0.51 0.49
20.3 23.0

















,Fconv=

















0.31 0.53
0.42 −0.30
0.56 −0.57
0.49 0.41
−0.41 0.36
31.0 39.3

















,

Basis vectors are normalized to 1 inL2-norm (norms are
given at the bottom line) for comparison purpose.

The matrixG are listed as follows:

Gsvd=

(

0.25 0.05 0.22 −0.45 −0.44 −0.46 −0.52
0.50 0.60 0.43 0.30 −0.12 0.01 0.31

)

Gsemi=

(

0.61 0.89 0.54 0.77 0.14 0.36 0.84
0.12 0.53 0.11 1.03 0.60 0.77 1.16

)

Gconv=

(

0.31 0.31 0.29 0.02 0 0 0.02
0 0.06 0 0.31 0.27 0.30 0.36

)

Both semi-NMF and convex-NMF give the correct clus-
tering results. However, convex-NMF gives sharper clus-
ter indicators, while semi-NMF gives a soft clustering. The
residual values, the level of low-rank approximations, are

‖X−FGT‖= 0.27940,0.27944,0.30877,

for SVD, semi-NMF, and convex-NMF respectively. We see
that semi-NMF has a good quality approximation close to
SVD.

4. Algorithms for Various Matrix Factorization
Methods

The algorithms for matrix factorizations are generally it-
erative updating procedures: updating one factor while fix-
ing the other factors. The algorithms for various matrix



Factorizations Updating Rules

NMF Fik← Fik
(XG)ik

(FGTG)ik

G jk←G jk
(XTF) jk

(GFTF) jk

Semi-NMF F = XG(GTG)−1

Gik←Gik

√

(XT F)+ik+[G(FTF)
−

]ik

(XT F)−ik+[G(FTF)
+

]ik

Convex-NMF Gik←Gik

√

[(XT X)
+W]ik+[GWT (XT X)

−W]ik
[(XT X)

−W]ik+[GWT (XT X)
+W]ik

Wik←Wik

√

[(XT X)
+G]ik+[(XTX)

−WGT G]ik
[(XT X)

−G]ik+[(XTX)
+WGT G]ik

Tri-Factorization G jk←G jk

√

(XTFS) jk

(GGT XTFS) jk

Fik← Fik

√

(XGST )ik
(FFT XGST )ik

Sik← Sik

√

(FTXG)ik
(FTFSGT G)ik

Kernel-NMF replaceXTX by 〈φ(X)Tφ(X)〉 in Convex-NMF

Table 1. Updating rules for different matrix factorizations.

factorizations are summarized in Table 1. In the table, we
separate the positive and negative parts of a matrixA as
A+

ik = (|Aik|+Aik)/2, A−ik = (|Aik|−Aik)/2.

In the Literature there is some question [16] on whether
Lee-Seung algorithm converge to a local minima. However,
it is easy to show that at convergence, the solution satisfy the
well-known KKT complementarity condition in the theory
of constrained optimization, which is,

(XG−FGTG)ikFik = 0, (XTF−GFTF) jkG jk = 0, (4)

for the objectiveJ = ||X− FGT ||2. For example, at con-
vergence,F∗ik = F∗ik(XG∗)ik/ (F∗G∗TG∗)ik which is identical
to first condition in Eq.(4). Therefore, Lee-Seung algorithm
does converge to a local minima according to KKT theory.
It has been proved that at convergence, solutions of all algo-
rithms listed in Table 1 satisfy the KKT conditions in their
respective cases.

We can letΘ =

(

F
G

)

and view the updating algorithms as

mappingΘ(t+1) = M(Θ(t)). At convergence,Θ∗ = M(Θ∗).
The objectives for all cases in Table 1 have been proved to
be non-increasing,J(Θ(t+1)) ≤ J(Θ(t)). Following Xu &
Jordan [31], we expand2 Θ ≃M(Θ∗)+ (∂M/∂Θ)(Θ−Θ∗).
Therefore,

‖Θ(t+1)−Θ∗‖ ≤ ‖
∂M
∂Θ
‖ · ‖Θ(t)−Θ∗‖

under appropriate matrix norm. In general,∂M/∂Θ 6= 0.
Thus these updating algorithms have first order convergence
rate, same as the EM algorithm [31].

2Nonnegativity constraint need be enforced.

5. Relations Among Various Factorizations

In this section, we theoretically analyze the relationships
among various matrix factorization methods.

5.1. NMF and K-means Clustering

Lee and Seung [24] emphasizes the difference between
NMF and vector quantization (which isK-means clustering).
Later experiments [22, 26] empirically show that NMF has
clear clustering effects. Theoretically, NMF is inherently
related to kernel K-means clustering.
Theorem 1. Orthogonal NMF,

min
F≥0,G≥0

‖X−FGT‖2, s.t. GTG = I . (5)

is equivalent to K-means clustering.
This theorem has been previously proved [12] with addi-
tional normalization conditions. Here we give a more gen-
eral proof, which will generalize to bi-orthogonality.
Proof. We writeJ = ||X−FGT ||2 = Tr(XTX−2FTXG+
FTF). The zero gradient condition∂J/∂F =−2XG+2F =
0 givesF = XG. Thus J = Tr(XTX −GTXTXG). Since
Tr(XTX) is a constant, the optimization problem becomes

min
G≥0

Tr(GTXTXG) s.t. GTG = I . (6)

According to Theorem 2 below, this is identical to K-means
clustering. �

We note that Theorem 1 holds even ifX andF are not
nonnegative, i.e.,X andF have mixed-sign entries.
Theorem 2[11, 34]. TheK-means clustering

J =
κ

∑
k=1

∑
i∈Ck

‖xi− fk‖
2 (7)



wherefk is the cluster centroid of thek-th cluster, and more
generally, the Kernel K-means with mappingxi → φ(xi)

Jφ =
κ

∑
k=1

∑
i∈Ck

‖φ(xi)− φ̄k||
2 (8)

whereφ̄k is the centroid in the feature space. This can be
solved via the optimization problem

max
GT G=I , G≥0

Tr(GTWG), (9)

whereG are the cluster indicators andWi j = φ(xi)
Tφ(x j) is

the kernel. ForK-means,φ(xi) = xi , Wi j = xT
i x j .

NMF has clustering capabilities which is generally better
than the K-means. In fact, PCA is effectively doingK-means
clustering [11, 34]. LetG be the cluster indicators for thek
clusters then (1)GGT ≃ VVT ; (ii) the principal directions,
UUT , project data points into the subspace spanned by thek
cluster centroids.

5.2. NMF, Semi-NMF, Convex-NMF and
Kernel-NMF

In fact, NMF, semi-NMF, convex-NMF and kernel-NMF
all haveK-means clustering interpretations when the factor
G is orthogonal. Being orthogonal and nonnegative, implies
each row ofG has only one nonnegative elements, i.e.,G is
a bona fide cluster indicator. We have
Theorem 3. G-orthogonal NMF, semi-NMF, convex-NMF
and Kernel-NMF is identical to relaxedK-means clustering.
Proof. For NMF, semi-NMF and convex-NMF, we first
eliminateF . The objective isJ = ‖X−FGT‖2 = Tr(XTX−
2XTFGT + FFT). Setting∂J/∂F = 0, we obtainF = XG.
Thus we obtain

J = Tr(XTX−GTXTXG).

For Kernel-NMF, we have

J = ‖φ(X)−φ(X)WGT‖2 = Tr(K−GTKW+WTKW),

whereK is the kernel. Setting∂J/∂W = 0, we haveKG =
KW. Thus

J = Tr(XTX−GTKG).

In all the above cases, the first term are constant and are
ignored. The minimization problem thus becomes

max
GTG=I

Tr(GTKG),

whereK is either a linear kernelXTX or 〈φ(X),φ(X)〉. It is
known [34] that this is identical to (kernel-)K-means clus-
tering. ⊓–

In the definitions of NMF, semi-NMF, convex-NMF,G
is not restricted to be orthogonal; these NMF varieties are

softversions ofK-means clustering. From NMF/semi-NMF,
and to convex-NMF, the successive restrictions make them
different levels of soft clustering.

This situation is similar to the mixture of Gaussian gen-
eralization ofK-means .K-means is a mixture of spherical
Gaussians with same variance. The first step is to generalize
to spherical Gaussians with individual variance. The second
step is to generalize to Gaussians with individual full co-
variance matrix, etc. Each generalization have more model
parameters and fits the data better.

5.3. Tri-Factorization

First, we emphasize the role of orthogonality in Tri-
Factorization3 Considering the unconstrained 3-factor NMF

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, (10)

we note that this 3-factor NMF can be reduced to the uncon-
strained 2-factor NMF by mappingF ← FS. Another way
to say this is that the degree of freedom ofFSGT is the same
asFGT .

Therefore, 3-factor NMF is interesting only when it can
not be transformed into 2-factor NMF. This happens when
certain constraints are applied to the 3-factor NMF. How-
ever, not all constrained 3-factor NMF differ from their 2-
factor NMF counterpart. For example, the following 1-sided
orthogonal 3-factor NMF

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, s.t. FTF = I (11)

is no different from its 2-factor counterpart, because the
mappingF ← FSreduces one to another. It is clear that

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, s.t. FTF = I , GTG = I . (12)

has no corresponding 2-factor counterpart. This is a genuine
new factorization, which we call 3-factor NMF. The update
rules are given in Table 1.

An important special case is that the inputX contains a
matrix of pairwise similarities:X = XT = W. In this case,
F = G = H. We optimize the symmetric NMF:

min
W≥0,S≥0

‖X−HSHT‖2, s.t. HTH = I . (13)

When the orthogonality ofHTH = I is enforced, we can use
the update rules of Tri-Factorization of Eq.(12) with appro-
priate substitutions. WhenHTH = I is not enforced, the
update rules are :

Sik← Sik
(HTWH)ik

(HTHSHTH)ik
. (14)

3Sometimes we also use 3-factor NMF to represent Tri-Factorization.



Hik←Hik

(

1−β + β
(WHS)ik

(HSHTHS)ik

)

. (15)

where 0< β ≤ 1. In practice, we findβ = 1/2 is a good
choice.

5.4. NMF and PLSI

Here we show that NMF is related to another relevant
unsupervised learning method: Probabilistic Latent Seman-
tic Indexing (PLSI). So far, the cost function we used for
computing NMF is the sum of squared errors,||X−FGT ||2.
Another cost function KL divergence:

JNMF-KL =
m

∑
i=1

n

∑
j=1

[

Xi j log
Xi j

(FGT)i j
−Xi j +(FGT)i j

]

(16)

Probabilistic Latent Semantic Indexing (PLSI) is a un-
supervised learning method based on statistical latent class
models and has been successfully applied to document clus-
tering [21]. (PLSI is further developed into a more compre-
hensive Latent Dirichlet Allocation model [5].)

PLSI maximize the likelihood

JPLSI =
m

∑
i=1

n

∑
j=1

X(wi ,d j)logP(wi ,d j) (17)

where the joint occurrence probability is factorized (i.e., pa-
rameterized or approximated ) as

P(wi ,d j) = ∑
k

P(wi ,d j |zk)P(zk)

= ∑
k

P(wi |zk)P(d j |zk)P(zk),
(18)

assuming thatwi andd j are conditionally independent given
zk.
Proposition 1. Objective function of PLSI is identical to the
objective function of NMF, i.e.,JPLSI =−JNMF-KL +constant.

The proposition can be easily proved by setting
(FGT)i j = P(wi ,d j). Therefore, the NMF update algorithm
and the EM algorithm in training PLSI are alternative meth-
ods to optimize the same objective function [14].

6. Normalization of Nonnegative Matrix Fac-
torizations

In this section, we try to interpret the cluster posterior
obtained form matrix factorization.

Given a solution(F,G) of NMF: X = FGT , it is usually
assumed thatG is the cluster posterior and thusGik gives the
posterior probability thatxi belongs to thek-th column clus-
ter. However, the NMF solutions are not unique. Suppose
(F,G) is solution of NMF. There exist many matrices(A,B)
such thatABT = I , FA≥ 0, GB≥ 0. Thus(FA,GB) is also
the solution with the same residue‖X−FGT‖.

A way to resolve this is to assume NMF follows a certain
distribution. We can think of the rectangular input dataX
as a word-document matrix and perform a PLSI type prob-
abilistic decomposition. as in Eq. 18, wherezk is the latent
cluster variable, and the probability factors follow the prob-
ability normalization

m

∑
i=1

p(wi |zk) = 1,
n

∑
j=1

p(d j |zk) = 1,
K

∑
k=1

p(zk) = ∑
i j

Xi j = 1.

We assume the data is normalized such that∑i j Xi j = 1. With
this, the cluster posterior probability for columnd j is then

p(zk|d j) = p(d j |zk)p(zk)/p(d j) ∝ p(zk)p(d j |zk).

Translating toF,G, the equivalent probabilistic decomposi-
tion is

X = FGT = (FD−1
F )(DFDG)(GD−1

G )T ,

whereDF = diag(eTF), DG = diag(eTG), and

m

∑
i=1

(FD−1
F )ik = 1,

n

∑
j=1

(GD−1
G ) jk = 1,

K

∑
k=1

(DFDG)kk = 1.

Thus for standard NMF, the cluster posterior probability
for columnxi is

NMF: p(zk|xi) ∝ [(DFDG)(GD−1
G )T ]Tik = (GDF)ik

For Convex-NMF, the centroid interpretation ofF = XW im-
pliesW should have aL1 normalization. Thus we write

X = XWGT = (XWD−1
W )(DWDG)(GD−1

G )T .

Therefore, the cluster posterior probability for columnxi is

Convex-NMF: p(zk|xi) ∝ (GDW)ik, DW = diag(eTW).

Semi-NMF does not have a probability interpretation be-
causeF could be negative signs. For this reason, theL2

normalization is most natural. LetF = (f1, · · · , fk) and
ZF = diag(||f1||, · · · , ||fk||). We write

X = FGT = (FZ−1
F )(ZFDG)(GD−1

G )T .

Thus the cluster posterior probability is

Semi-NMF: p(zk|xi) ∝ (GZF)ik.

7. Simultaneous Clustering

Consider the nonnegative Tri-FactorizationX ≃ FSGT .
For the objective of the function approximation, we optimize

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, s.t. FTF = I , GTG = I .



We noteX ∈ R
p×n
+ , F ∈ R

p×k
+ andS∈ R

k×ℓ
+ andG∈ R

n×ℓ
+ .

This allows the number of row cluster (k) differ from the
number of column cluster (ℓ). In most cases, we setk = ℓ.
This form gives a good framework for simultaneously clus-
tering the rows and columns ofX. Recently, simultaneous
clustering has been extensively studied [10, 8, 2, 7, 28].
However, two questions are still largely unaddressed in the
literature:

• Why do we prefer the simultaneous clustering to single-
side clustering?

• How to evaluate the simultaneous clustering?

In this section, we attempt to provide our insights for the
above questions.

7.1. Why Simultaneous Clustering?

First, simultaneous clustering is preferred for applica-
tions in high dimensional spaces. Most clustering algorithms
do not work efficiently in high dimensional spaces due to the
curse of dimensionality. It has been shown that in a high di-
mensional space, the distance between every pair of points is
almost the same for a wide variety of data distributions and
distance functions [4]. Many feature selection techniques
have been applied to reduce the dimensionality of the space.
However, as demonstrated in [1], the correlations among the
dimensions are often specific to data locality; in other words,
some data points are correlated with a given set of features
and others are correlated with respect to different features.
As pointed out in [20], all methods that overcome the di-
mensionality problems use a metric for measuring neighbor-
hoods, which is often implicit and/or adaptive. Simultane-
ous clustering performs an implicit feature selection at each
iteration and provides an adaptive metric for measuring the
neighborhood.

Second, simultaneous clustering is preferred when there
is an association relationship between the data and the fea-
tures (i.e., the columns and the rows). A case is the binary
data. A distinctive characteristic of the binary data is that
the features (attributes) they include have the same natureas
the data they intend to account for: both are binary. Another
case is block diagonal clustering where both data points and
features have the same number of clusters. In this case, after
appropriate permutation of the rows and columns, the cluster
structure takes the form of a block diagonal matrix [18].

It should be noted that simultaneous clustering can also
be interpreted using a probabilistic view similar to the PLSI
model. Instead of assuming that the variableswi andd j are
conditionally independent givenzk in Eq. 18, we assume that
the variablewi only depends on its cluster variablefk and
the variabled j only depends on its cluster variablegl in the
probabilistic model of simultaneous clustering. Therefore

we have

P(wi ,d j) = ∑
k,l

P(wi ,d j | fk,gl )P( fk,gl )

= ∑
k,l

P(wi | fk)P(d j |gl )P( fk,gl ).
(19)

Here,P(wi | fk) corresponds toF, P(d j |gl ) to G andP( fk,gl )
to S.

7.2. An Illustrative Example

The example is based on a simple dataset which contains
six system log messages from two different situations:Start
andCreate.

After removing stop words and words only appear once,
we get the binary document-term matrix as shown in Table 2.
For this example, using one-side clustering, e.g., k-means, it
usually does get perfect clustering results. However, using
simultaneous clustering, we could correctly obtain the mes-
sage clusters. The reason is that using simultaneous clus-
tering, in the iteration process, we could adaptively measure
the distance between the data points: if the words have sim-
ilar distributions across multiple clusters, it can be treated as
outliers and does not contribute to the distance computation.
In the example, Term 3 and 4 (i.e., column 3 and 4) can be
thought as feature noises as they have similar distributions
across multiple clusters.

Terms/Messages S1 S2 S3 C1 C2 C3
T1 1 1 1 0 0 1
T2 1 1 1 1 0 0
T3 0 1 1 1 1 0
T4 0 1 1 1 1 0
T5 0 0 0 1 1 1
T6 1 0 0 1 1 1

Table 2. Log message example: The 6 terms
are start, application, version, service, create, tem-
porary respectively.

7.3. Evaluate Simultaneous Clustering

Simultaneous clustering performs clustering of row and
column clustering simultaneously, where the factorF is the
cluster indicator for words (i.e., rows). Quantitatively,we
can view thei-th row of the cluster indicatorF as the pos-
terior probability that wordi belongs to each of theK word
clusters. We can assign a word to the cluster that has the
largest probability value. However, row clustering has no
cleara prior labels to compare with. For example, for doc-
ument clustering, we usually have labels for each document
class and we have no label information about word clusters.



Here we provide a systematic way for analyzing and eval-
uating the clustering of rows (i.e.,words). Let this row ofF
be (p1, · · · , pk), which has been normalized to∑k pk = 1.
Suppose a word has a posterior distribution of

(0.93, 0.01, 0.04, · · · ,0.02);

it is obvious that this word is cleanly clustered into one clus-
ter. We say this word has a 1-peak distribution. Suppose
another word has a posterior distribution of

(0.52, 0.46, 0.01, · · · ,0.01);

obviously this word is clustered into two clusters. We say
this word has a 2-peak distribution. In general, we wish to
characterize each word as belonging to 1-peak, 2-peak, 3-
peak etc. ForK word clusters, we setK prototype distribu-
tions:

(1,0, · · · ,0), (
1
2
,
1
2
, · · · ,0), · · · , (

1
K

, · · · ,
1
K

).

For each word, we assign it to the closest prototype distribu-
tion based on the Euclidean distance, allowing all possible
permutations of the clusters. For example,(1,0,0, · · · ,0) is
equivalent to(0,1,0, · · · ,0). In practice, we first sort the row
such that the components decrease from the left to the right,
and then assign it to the closest prototype. Generally speak-
ing, the less peaks of the posterior distribution of the word,
the more unique content of the word has. This multi-peak
distribution approach provides the capability of evaluating
row (e.g., word) clusterings and enables the systematic anal-
ysis of word content.

8. Experiments

In this section, experiments are conducted to empirically
compare the clustering results of various NMF algorithms.
In our experiments, documents are represented using the bi-
nary vector-space model where each document is a binary
vector in the term space. Our comparative experimental
study includes the following six methods:K-means , NMF,
Semi-NMF, Convex-NMF, Tri-Factorization, and PLSI.

8.1. Datasets

We use a variety of datasets, most of which are frequently
used in the information retrieval research. Table 3 summa-
rizes the characteristics of the datasets.

CSTR This is the dataset of the abstracts of techni-
cal reports (TRs) published in the Department of Computer
Science at a research university. The dataset contained 476
abstracts, which were divided into four research areas: Nat-
ural Language Processing(NLP), Robotics/Vision, Systems,
and Theory.

Datasets # documents # class
CSTR 476 4

WebKB4 4199 4
Reuters 2,900 10

WebACE 2,340 20
Log 1367 9

Table 3. Document Datasets Descriptions.

WebKB The WebKB dataset contains webpages gath-
ered from university computer science departments. There
are about 8280 documents and they are divided into 7 cat-
egories: student, faculty, staff, course, project, department
and other. The raw text is about 27MB. Among these 7 cat-
egories, student, faculty, course and project are four most
populous entity-representing categories. The associatedsub-
set is typically calledWebKB4.

Reuters The Reuters-21578 Text Categorization Test
collection contains documents collected from the Reuters
newswire in 1987. It is a standard text categorization bench-
mark and contains 135 categories. In our experiments, we
use a subset of the data collection which includes the 10
most frequent categories among the 135 topics and we call
it Reuters-top 10.

WebACE The K-dataset was from WebACE project
and has been used for document clustering [6, 19]. The K-
dataset contains 2340 documents consisting news articles
from Reuters new service via the Web in October 1997.
These documents are divided into 20 classes.

Log The log data used in our experiments are collected
from several different machines with different operating sys-
tems using logdump2td (NT data collection tool) developed
at IBM T.J. Watson Research Center. The data in the log
files describe the status of each component and record sys-
tem operational changes, such as the starting and stopping
of services, detection of network applications, software con-
figuration modifications, and software execution errors.

To pre-process the datasets, we remove the stop words
using a standard stop list, all HTML tags are skipped and all
header fields except subject and organization of the posted
articles are ignored. In all our experiments, we first select
the top 1000 words by mutual information with class labels.

8.2. Result Analysis

The above document datasets are standard labeled cor-
pora widely used in the information retrieval literature. We
view the labels of the datasets as the objective knowledge on
the structure of the datasets. We use accuracy as the cluster-
ing performance measure. Accuracy discovers the one-to-
one relationship between clusters and classes and measures
the extent to which each cluster contained data points from
the corresponding class. It sums up the whole matching de-



Datasets/Methods K-Means NMF Semi-NMF Convex-NMF Tri-Factorization PLSI
CSTR 0.4256 0.5713 0.5628 0.5340 0.604 0.587

WebKB4 0.3888 0.4418 0.4578 0.4658 0.483 0.503
Reuters 0.4448 0.4947 0.4867 0.4789 0.554 0.4870

WebACE 0.4001 0.4761 0.4162 0.4089 0.510 0.4890
Log 0.6876 0.7805 0.7385 0.7257 0.801 0.778

Table 4. Clustering Accuracy. Each entry is the clustering accuracy of the column method on the
corresponding row dataset. The results obtained by averaging 5 trials.

gree between all pair class-clusters. Accuracy can be repre-
sented as:

Accuracy= Max( ∑
Ck,Lm

T(Ck,Lm))/N, (20)

whereCk denotes thek-th cluster, andLm is them-th class.
T(Ck,Lm) is the number of entities which belong to classm
are assigned to clusterk. Accuracy computes the maximum
sum ofT(Ck,Lm) for all pairs of clusters and classes, and
these pairs have no overlaps. The greater accuracy means
the better clustering performance.

Figure 1. Clustering Accuracy Comparison

The experimental results are shown in Table 4 and Fig-
ure 1. From the experimental comparisons, we observe that:

• NMF-like algorithms generally outperform K-mean
clustering algorithms. As we showed in Section 5.4,
NMF is equivalent to soft K-means and the soft relax-
ation improves clustering performance.

• On most of the datasets, NMF gives somewhat better
accuracy than semi-NMF and convex-NMF. The differ-
ences are modest, however, suggesting that the more
highly-constrained semi-NMF and convex-NMF may
be worthwhile options if interpretability is viewed as
a goal of the data analysis.

• The experimental comparisons empirically verify the
equivalence between NMF and PLSI. It can be ob-

served from the table that NMF and PLSI usually lead
to similar clustering results.

• Tri-Factorization generally is better than K-means and
NMF-like algorithms on most of the datasets. The
document datasets are of high dimension. Tri-Factor-
ization provides a good framework for simultaneously
clustering the rows and columns. Simultaneous clus-
tering performs an implicit feature selection at each it-
eration, provides an adaptive metric for measuring the
neighborhood, and thus tends to yield better clustering
results.

• As we discussed in Section 7, Tri-Factorization enables
simultaneous clustering of rows and columns and the
multi-peak distribution evaluation approach enables the
systematic analysis of word content. We take a closer
look at the Log dataset and obtain the words in 1-peak,
2-peak, 3-peak and 4-peak categories respectively. The
raw log files contain a free-format ASCII description
of the event. We can derive meaningful common situ-
ations (i.e., row clustering) from the word cluster re-
sults. For example, situationstart can be described
by 1-peak words such asstart, andservice, and 2-peak
words such asversion. The situationconfigure can be
described by 1-peak words such asconfiguration, two-
peak words such asproduct, and 3-peak words such as
professional. To summarize, the word clustering is ca-
pable of distinguishing the contents of words. The re-
sults of peak words are consistent with what we would
expect from a systematic content analysis.

9. Summary

In this paper we provide a comparative study on (non-
negative) matrix factorization for clustering. Attempts have
been made to establish the relations among various matrix
factorization methods while highlighting their difference.
Previously unaddressed yet important questions such as the
interpretation and normalization of cluster posterior, conver-
gence issues, and the benefits and evaluation of simultane-
ous clustering have also been studied. We expect our study
could provide insightful guidances on matrix factorization



research for clustering. In particular, the extensive research
and experiments show that NMF provides a new paradigm
for unsupervised learning.
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