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Abstract lar, our study tries to address the following important ques

tions for matrix factorizations:

The nonnegative matrix factorization (NMF) has been
shown recently to be useful for clustering. Various exten-
sions of NMF have also been proposed. In this paper we
present an overview and theoretically analyze the relation ¢ What are the relations among the matrix factorizations

ships among them. In addition, we clarify previously unad-  as well as the existing clustering methods?
dressed issues, such as NMF normalization, cluster poste-

rior probabilty, and NMF algoritm convergence rate. Ex- ¢ How to interpret the cluster posterior obtained from
periments are also conducted to empirically evaluate and Matrix factorizations?
compare various factorization methods.

Keywords: matrix factorization, simultaneous cluster-
ing, NMF normalization, NMF convergence rate e How to evaluate simultaneous clustering?

e What are the available forms of matrix factorizations
for clustering?

e What are the benefits of simultaneous clustering?

e How to choose different factorization methods?

1. Introduction We expect our study would provide insightful guidance
on matrix factorization research for clustering. The rdst o

The nonnegative matrix factorization (NMF) has beeWe_ paper |s_organ|z_ed as fOHOWSf SeCF'On 2 summarizes
arious matrix factorizations; Section 3 illustrates the d

shown recently to be useful for many applications in ely- . factorizati . les: S
vironment, pattern recognition, multimedia, text mining,erences among various factorizalions using examples, Sec

and DNA gene expressions [9, 26, 29, 32]. NMF can t}é)n4i_ntroducesthe computation aIgorithmsforyariom;sfa
traced back to 1970s (Notes from G. Golub) and is stuIJQ”_Zatlon me_thods; _Sec_tlon 5 stud|e.s the _relatlon_shlps of
ied extensively by Paatero [29]. The work of Lee anéﬁlr'ous mqtnx_ factorization me_thpdsz Section 6 d'S.CUSS.eS
Seung [24, 25] brought much attention to NMF in malne normalllzanon me_thod for ellmlnatlng the uncerta|mty|_
chine learning and data mining fields. A very recent theyMF solutions; Section 7 explains when and why the si-

oretical analysis [12] shows the equivalence of NMF argultaneous clustering is preferred and presents stratégie
spectral clustering an&-means clustering. Various ex-€valuating simultaneous clustering; Section 8 shows the ex

tensions and variations of NMF have been proposed I%Qrimental results for empirically comparing various rixatr

cently [13, 14, 15, 23, 27, 3, 30, 33]. factorization methods; and finally Section 9 concludes.
Despite significant research progress in this area, few at-

tempts have been made to establish the connections betwdeRifferent Matrix Factorizations

various factorization methods while highlighting theif-di

ferences. In this paper, we aim to provide a comparative In general, matrix factorization algorithms attempt to find

study on matrix factorization for clustering. We present ate subspace in which the majority of the data points lie.

overview and summary on various matrix factorization al- Let the input data matriX = (x4, --- ,Xn) contain the col-

gorithms and theoretically analyze the relationships agnofection ofn data column vectors. Generally, we factorke

them. Experiments were also conducted to empirically evahto two matrices,

uate and compare various factorization methods. In particu X~FG', (1)



whereX € RP*", F € RP*K andG € R™. Generally, the
rank of matrices-, G is much lower than the rank of (i.e.,

k < min(p,n)). Here we provide an overview on related
matrix factorization methods:

1. SVD: The classic matrix factorization is Principal
Component Analysis (PCA) which uses the singular
value decompositior?] 17], X ~U3VT, where we al-
low U,V to have mixed-signs; the input data could have
mixed-signs. absorbinginto U, we can write

SVD: Xy ~UiVy

2. NMF: When the input data is honnegative, and we re-
strict F andG to be nonnegative. The standard NMF
can be written as

NMF: X+ ~ F+G+
using an intuitive notation foxX,F,G > 0.

3. Semi-NMF: When the input data has mixed signs,
we can restricG to be nonnegative while placing no
restriction on the signs oF. This is called semi-
NMF [13]:

semi-NMF: XL ~F.G,.

Semi-NMF can be motivated by K-means clustering.
Let F = (f1,---,fx) be the cluster centroids obtained
via K-means clustering. L& be the cluster indicators:
i.e.,gki = 1if xj belongs to clustey; gki = 0 otherwise.
The K-means clustering objective can be written as

n K
JK—means= Zl Z Ok || Xi —kaZ =|IX— FGTHZa
i=1k=1

where|| - || is Frobenius norfh  Semi-NMF can be
thought as a soft clustering by relaxing the element of
g from binary to continuous nonnegative values.

4. Convex-NMF: In general, the basis vectors

F=(f,-,f

5. Tri-Factorization: To simultaneously cluster the rows

and the columns of the input data matixwe consider
the following nonnegative 3-factor decomposition [15]

X ~FSG. 2)

Note thatSprovides additional degrees of freedom such
that the low-rank matrix representation remains accu-
rate whileF gives row clusters an gives column
clusters. More precisely, we solve

min _ [[X—FSG|? st.FTF=1,G'G=1.
F>0,G>0,5>0
3)

This form gives a good framework for simultaneously
clustering the rows and columns Xf[35].

An important special case is that the inplitontains
a matrix of pairwise similaritiesX = XT =W. In this
caseF = G = H. We optimize the symmetric NMF:

min _[X—HSHT||?, st. HTH =1.
W>0,5>0

6. Kernel NMF: Consider a mapping

Xi — @(xi), or X — @(X) = (@(x1), -, ®(Xn))-

A standard NMF or Semi-NMF likep(X) ~ FG'
would be difficult sinceF,G will depends explicitly
on the mapping function(-). However, Convex-NMF
provides a nice possibility:

OX) =~ X)\WG.
It is easy to see that the minimization objective

19(X) —@X)WGT[[> = Trip(X)Te(X) —2GT ¢" (X)p(X)W
+WT " (X)p(X)WG' G]

depends only on the kernigl= @ (X)@(X). This ker-
nel extension of NMF is similar to kernel-PCA and ker-
nelK-means .

that contains the space spanned by the columixs=ef tions on the matrix forms and signs, we write them collec-
(X1,--+,Xn). In order for the vector§ to capture the tively as follows:

notion of cluster centroids, we restrict them to lie within
the space spanned by the columnXof.e.,

f| = Wy X1+ - - + WniXn = Xw;, 0r F = XW.

Furthermore, we restridy as a convex combination
w; > 0 of the data points. We call this restricted form
of factorization as Convex-NMF. Convex-NMF applies
to both nonnegative and mixed-sign input data.

lwithout specifying, all norms in this paper are Frobeniugmo

SVD: Xi ~ULVs
NMF: X. ~F G
Semi-NMF: Xy ~ FLGT
Convex-NMF: Xy~ Xe W, G
Kernel-NMF: @(Xs) ~ X)W, GT
Tri-Factorization: X, ~F, S Gl
Symmetric-NMF: W, ~ H. S HT



3. lllustration Examples 3.2 A Mixed-sign Example

In this section, we use examples to illustrate the differ- In this section, we give an example to illustrate the differ-
. ences in SVD, semi-NMF and convex-NMF. The input data
ence among various NMF methods.

matrix is
. 1.3 18 4.8 7.1 50 52 8.0
3.1 A Nonnegative Example 15 69 39 -55 -85 -39 -55
X=1] 65 16 82 —-72 -87 —-79 -52
In the section, we use a nonnegative example to illustrate 38 83 47 64 75 32 74
the differences in NMF and Tri-Factorization. -73 -18 -21 27 68 48 62

The input data matriX is One can see that the first 3 columns should be one cluster

and the last 4 columns should be another cluster.

0.185 Q326 Q761 2799 2375 2970 2585 Thecomputed basis vectdfsare:
0.508 Q380 0884 2134 2374 2342 2524
0.452 0887 Q457 2065 2484 2253 2163 —041 050
1.486 1843 1858 0566 0103 Q417 0269 035 021
1496 1806 1610 0612 Q158 Q560 Q784 Faa= | oan  aoa |
One can see that the first 3 columns should be one cluster 72%?)3 71%%8
and the last 4 columns should be another cluster.
The computed basis vectors for NMF and Tri- 005 027
Factorization are: 040 —0.40

0.70 -0.72

Fsemi= 0.30 008 ,Feonv= s
—-051 049
20.3 230

Famt=

Basis vectors are normalized to 1lip-norm (norms are
given at the bottom line) for comparison purpose.
The matrixG are listed as follows:

Basis vectors are normalized to 1 lin-norm (norms are

- . . 0.25 005 022 -045 -044 -0.46 -0.52
given at the bottom line) for comparison purpose. We ca®y,q= (0.50 060 043 030 -012 0QO1 031>
see thaF leads to the correct row clustering results: the first
three row are in one cluster and the bottom 2 rows are in 061 089 054 077 014 036 084
another cluster. Gsemi= (0.12 053 011 103 060 077 116)

The matricess for NMF and Tri-Factorization are listed
as follows: Geomy— (0.31 031 029 002 0 0 002)
0O 006 O Q031 027 030 036
Gomf = Both semi-NMF and convex-NMF give the correct clus-

(0-234 0287 0259 0080 Q012 Q063 0065) tering results. However, convex-NMF gives sharper clus-

0.006 Q014 Q040 0223 0238 0244 Q236 ter indicators, while semi-NMF gives a soft clustering. The
Grii = residual values, the level of low-rank approximations, are
(0.270 0335 (0333 0034 0000 Q009 0020> [X —FG'| = 0.2794Q00.279440.30877

0.000 Q000 QOO0 0239 0248 0264 Q250/°

for SVD, semi-NMF, and convex-NMF respectively. We see

In both factorizations( leads to the correct clusteringthat semi-NMF has a good quality approximation close to
results: the first three columns are in one cluster and tB&/D.
remaining columns are in another cluster. Note that

4. Algorithms for Various Matrix Factorization

43626 10136
) Methods

Stri—factor = (1_4824 84000/ -

It absorbs the different scales of, Frri_tactor and The algorithms for matrix factorizations are generally it-
Grri—factor and thusFryi_tactor provides row clusters (i.e., erative updating procedures: updating one factor while fix-
the attribute clusters). ing the other factors. The algorithms for various matrix



Factorizations Updating Rules
NMF Fi — Fik praris
G — G: (XTF>jk
Kk KTGFTF) i
Semi-NMF F=XGG'G)?
[ (XTE)HIG(FTF) ik
G|k — le\/(XTF)"(+[G(FTF)+]ik
- . L LX) Wi [GWT (XTX) W
Convex-NMF | Gic— G'k\/[<><TX>WJZMGWT(XTXVWJL
[(XTX) " Gl +[(XTX) " WGT Gy
Whe <_W"<\/[<><TX>GJik+[<XTX>*WGTGJik
Tri-Factorization Gjk — ij\/((;—g%
XGY),
Fic — Fik\/ FFrxes
(FTXG)
Sk — Sky\/ FrEsT o
Kernel-NMF | replaceX™ X by (@(X)"@(X)) in Convex-NMF

Table 1. Updating rules for different matrix factorizations.

factorizations are summarized in Table 1. In the table, we Relations Among Various Factorizations
separate the positive and negative parts of a marxs
i = (A +Ak) /2, A = (JAK] — Ak) /2. In this section, we theoretically analyze the relationship
In the Literature there is some question [16] on wheth@among various matrix factorization methods.
Lee-Seung algorithm converge to a local minima. However,
itis easy to show that at convergence, the solution satigfy t5.1. NMF and K-means Clustering
well-known KKT complementarity condition in the theory
of constrained optimization, which is, Lee and Seung [24] emphasizes the difference between
NMF and vector quantization (whichli&means clustering).
(XG—FG'G)kFk =0, (XTF —~GFTF)xGjx =0, (4) Later experiments [22, 26] empirically show that NMF has
clear clustering effects. Theoretically, NMF is inhergntl
for the objective] = ||[X — FG'||2. For example, at con- related to kernel K-means clustering.
vergenceF;; = Fii(XG )i/ (F*G*T G*)i which is identical Theorem 1 Orthogonal NMF,
to first condition in Eq.(4). T_h(_arefore, Le(_a—Seung algarmth min_[[X — FGT||2, st G- )
does converge to a local minima according to KKT theory. F>0,G>0
It has been proved that at convergence, solutions of all-alq
rithms listed in Table 1 satisfy the KKT conditions in thei
respective cases.

8 equivalent to K-means clustering.

Mhis theorem has been previously proved [12] with addi-

tional normalization conditions. Here we give a more gen-
We can le® = (F; and view the updating algorithms aseral proof, which will generalize to bi-orthogonality.

Proof. We writeJ = ||[X —FGT[|? = Tr(XTX — 2FTXG+
mapping®* Y = M(G). At convergence®* = M(®*).  FTF). The zero gradient conditio®d /oF = —2X G+ 2F =
The objectives for all cases in Table 1 have been proveddogivesF = XG. ThusJ = Tr(X"X — GTXTXG). Since
be non-increasing)(@' ") < J(®Y). Following Xu & Tr(xTX) is a constant, the optimization problem becomes
Jordan [31], we expartd ~ M(0*) + (0M/90)(© — ©%). _ Tt T
Therefore, g1>|r(')1Tr(G X'XG) st.G'G=I. (6)

According to Theorem 2 below, this is identical to K-means
clustering. |

We note that Theorem 1 holds evenXifandF are not
under appropriate matrix norm. In generdM/0© = 0. nonnegative, i.eX andF have mixed-sign entries.
Thus these updating algorithms have first order convergendeeorem 211, 34]. TheK-means clustering
rate, same as the EM algorithm [31].

oM
ot+h _ || < ||—] - |oV — o
[ =< l5gll-i |

I=Y 3 Ixi—fl? (7)

2Nonnegativity constraint need be enforced. K=1i&C,




wherefy is the cluster centroid of thieth cluster, and more softversions oK-means clustering. From NMF/semi-NMF,

generally, the Kernel K-means with mappixg— ¢(x;) and to convex-NMF, the successive restrictions make them
different levels of soft clustering.
< =2 This situation is similar to the mixture of Gaussian gen-
3=3 Y lox)-adl g NS MiXture .
&il eralization ofK-means .K-means is a mixture of spherical

B Gaussians with same variance. The first step is to generalize
whereqy is the centroid in the feature space. This can bde spherical Gaussians with individual variance. The sdcon

solved via the optimization problem step is to generalize to Gaussians with individual full co-
. variance matrix, etc. Each generalization have more model
GTanIaXG>OTr(G WG), (9) parameters and fits the data better.

whereG are the cluster indicators aMil; = @(xi)'@(x;) is 5.3. Tri-Factorization
the kernel. FoK-meansg(x;) = i, Wj = x/X;j.

NMF has clustering capabilities which is generally better First, we emphasize the role of orthogonality in Tri-
than the K-means. In fact, PCA is effectively doidgmeans Factorizatior? Considering the unconstrained 3-factor NMF
clustering [11, 34]. LeG be the cluster indicators for tHe

clusters then (1G" ~ VVT; (ii) the principal directions, YL R FsG|?, (10)
UUT, project data points into the subspace spanned b the T
cluster centroids. we note that this 3-factor NMF can be reduced to the uncon-

strained 2-factor NMF by mapping < FS. Another way
5.2. NMF, Semi-NMF, Convex-NMF and to say this is that the degree of freedonF&G' is the same
Kernel-NMF asfFGT.
Therefore, 3-factor NMF is interesting only when it can
In fact, NMF, semi-NMF, convex-NMF and kernel-NMFnot be transformed into 2-factor NMF. This happens when
all haveK-means clustering interpretations when the fact@ertain constraints are applied to the 3-factor NMF. How-
G is orthogonal. Being orthogonal and nonnegative, impli@ver, not all constrained 3-factor NMF differ from their 2-
each row ofG has only one nonnegative elements, iis factor NMF counterpart. For example, the following 1-sided

a bona fide cluster indicator. We have orthogonal 3-factor NMF

Theorem 3. G-orthogonal NMF, semi-NMF, convex-NMF _ . T

and Kernel-NMF is identical to relaxettmeans clustering. eooin  JIX—FSG| st F'F =1 (11)
Proof. For NMF, semi-NMF and convex-NMF, we first ~  — —

eliminateF. The objective is) = |[X —FGT||2=Tr(XTX— is no different from its 2-factor counterpart, because the

2XTFGT +FFT). SettingdJ/oF = 0, we obtainF = XG. mappingF — FSreduces one to another. Itis clear that
Thus we obtain
min _ [[X—FSG|? st.FTF=1,G'G=1. (12)
J=Tr(XTX - G'XTXG). F20,620.50
has no corresponding 2-factor counterpart. This is a genuin
new factorization, which we call 3-factor NMF. The update

J=|p(X) — @X)WGT |2 = Tr(K — GTKW + WTKW), rules are givenin Table 1. _ _
An important special case is that the inptttontains a

For Kernel-NMF, we have

whereK is the kernel. SettingJ/dW = 0, we haveKG = matrix of pairwise similaritiesX = XT =W. In this case,
KW. Thus F = G =H. We optimize the symmetric NMF:
J=Tr(X"X-G'KG).
_ min |[X—HSH"||?, st. HTH =1. (13)
In all the above cases, the first term are constant and are W>0,5>0

ignored. The minimization problem thus becomes ) _
When the orthogonality dfi "H = | is enforced, we can use

max Tr(G'KG), the update rules of Tri-Factorization of Eq.(12) with appro
GTG=I priate substitutions. WheRTH = | is not enforced, the
whereK is either a linear kerneX™ X or (@(X),@(X)). Itis update rules are :
knpwn [34] that this is identical to (kernelk-means clus- (H'WH)jc
tering. O Sk + Sk (14)

HTHSH™H )
In the definitions of NMF, semi-NMF, convex-NMG ( Jik

is not restricted to be orthogonal; these NMF varieties are 3Sometimes we also use 3-factor NMF to represent Tri-Fazzttioin.




WHS, s -
Hic — Hy (1_ BB ( T3|k _ ) (15) A waytoresolve thisis to assume NMF follows a certain
(HSH™H S)ik distribution. We can think of the rectangular input dXta

where 0< B < 1. In practice, we fing = 1/2 is a good 2S 2 word-document matrix and perform a PLSI type prob-
B ’ abilistic decomposition. as in Eq. 18, whexeis the latent

choice. i 4
cluster variable, and the probability factors follow thelpr
5.4. NMF and PLSI ability normalization
n K
Here we show that NMF is related to another reIevant p(wi|z) = Z djlz) = z Z =1

unsupervised learning method: Probabilistic Latent Semari=

tic Indexing (PLSI). So far, the cost function we used for,

computing NMF is the sum of squared errdf¥ — FGT||2. We assume the data is normalized such¥hpXij = 1. With
Another cost function KL divergence: this, the cluster posterior probability for colurdpis then

P(z|dj) = p(dj|z)p(z)/p(dj) O p(z) p(dj|z).

Translating toF, G, the equivalent probabilistic decomposi-

Probabilistic Latent Semantic Indexing (PLSI) is a unt-Ion s

supervised learning method based on statistical latess cla X —FGT = (FDF )(DF DG)(GDfl)T

models and has been successfully applied to document clus- Gl

tering [21]. (PLSI is further developed into a more compreyhereDg = diage"F), Dg = diag(e' G), and

hensive Latent Dirichlet Allocation model [5].)
PLSI maximize the likelihood

1]

M =3 3 [Hilouggry %+ (| 19

m n K
i= =1 &1

m n
s = Z Z X(W,,dj)|OgP(W|,dJ) (17)
i=1j=1 Thus for standard NMF, the cluster posterior probability

where the joint occurrence probability is factorized (ip- [OF columnxi is

rameterized or approximated ) as

WI7 ZPWH J|Zk )

ZZP (wi|z) P(dj|z)

NMF:  p(zxi) O [(DrDg)(GDg") ik = (GDr )ik

For Convex-NMF, the centroid interpretationfof= XWim-
P( (18) pliesw should have &, normalization. Thus we write

X =XWG = (XwWD,!)(DwDg)(GDg")".
assuming thai; andd; are conditionally independent given
Z. Therefore, the cluster posterior probability for columiis
Proposition 1. Objective function of PLSI is identical to the _ T
objective function of NMF, i.e.Js = —Jurx +constant ~ CONVEX-NMF: P(z/xi) O (GDw)ik, Dw = diage'W).
The proposition can be easily proved by settin . g , i
(FGT);j = P(w,,d;). Therefore, the NMF update algorlthmg mi-NMF does not have a probability interpretation be
causeF could be negative signs. For this reason, the
and the EM algorithm in training PLSI are alternative meths
- LSS ) normalization is most natural. Leét = (f1,---,fx) and
ods to optimize the same objective function [14].

Zg =diag(|[f1]],- -, [[fkl]). We write
6. Normalization of Nonnegative Matrix Fac- X =FG' = (FZ£%)(ZrDg)(GDg!)".
torizations _ -
Thus the cluster posterior probability is
In this section, we try to interpret the cluster posterior Semi-NMF:  p(zxi) O (GZe ).

obtained form matrix factorization.

Given a solutionF,G) of NMF: X = FGT, it is usually
assumed thas is the cluster posterior and th@g, gives the
posterior probability that; belongs to thé-th column clus-
ter. However, the NMF solutions are not unique. Suppose Consider the nonnegative Tri-Factorizatifn~ FSG'.
(F,G) is solution of NMF. There exist many matrices, B)  For the objective of the function approximation, we optieniz
such thatAB" =1, FA> 0, GB > 0. Thus(FA,GB) is also
the solution with the same resid{iX — FGT|. L L

ZY,oZU, 07

7. Simultaneous Clustering

IX—FSG|? st.FTF=1,G'G=1.



We noteX € R?", F ¢ R”* andSe R¥*‘ andG € R™.  we have
This allows the number of row clustek)(differ from the

number of column cluster). In most cases, we s&t= /. P(wi,dj) = ZP(Wi’di [f:91)P(fk. 01)
This form gives a good framework for simultaneously clus- i (19)
tering the rows and columns &f. Recently, simultaneous = ZP(Wi Ifi)P(djla)P(f, a).

clustering has been extensively studied [10, 8, 2, 7, 28].

However, two questions are still largely unaddressed in ”Ilfere,P(wi i) corresponds &, P(d;|gi) to G andP(f,,gi)
literature: toS.

e Why do we prefer the simultaneous clustering to single7— 2

side clustering? An Illustrative Example

The example is based on a simple dataset which contains
six system log messages from two different situatitsrt
In this section, we attempt to provide our insights for thandCreate.
above questions. After removing stop words and words only appear once,
we get the binary document-term matrix as shownin Table 2.
For this example, using one-side clustering, e.g., k-mgans
usually does get perfect clustering results. However,gusin
simultaneous clustering, we could correctly obtain the-mes

First, simultaneous clustering is preferred for applicasage clusters. The reason is that using simultaneous clus-
tions in high dimensional spaces. Most clustering algot&h tering, in the iteration process, we could adaptively measu
do not work efficiently in high dimensional spaces due to thie distance between the data points: if the words have sim-
curse of dimensionalityit has been shown that in a high di5jay distributions across multiple clusters, it can be tieeas
mensional space, the distance between every pair of psintgjtiiers and does not contribute to the distance computatio
almost the same for a wide variety of data distributions anf the example, Term 3 and 4 (i.e., column 3 and 4) can be

distance functions [4]. Many feature selection techniquésought as feature noises as they have similar distribstion
have been applied to reduce the dimensionality of the spaggross multiple clusters.

However, as demonstrated in [1], the correlations among the
dimensions are often specific to data locality; in other8ord [ Terms/Messages S1[ S2[ S3] C1| C2 [ C3

e How to evaluate the simultaneous clustering?

7.1. Why Simultaneous Clustering?

some data points are correlated with a given set of featureg T1 1111 110 0 1
and others are correlated with respect to different feature T2 11111111010
As pointed out in [20], all methods that overcome the di- T3 ol1l 1111110
mensionality problems use a metric for measuring neighbor- T4 0 1 1111 11 110
hoods, which is often implicit and/or adaptive. Simultane- T5 ol ol ol 1 1 1
ous clustering performs an implicit feature selection atea T6 11 0l0l 1 1 1
iteration and provides an adaptive metric for measuring the

neighborhood. Table 2. Log message example: The 6 terms

Second, simultaneous clustering is preferred when thereare start, application version service create tem-
is an association relationship between the data and the feaporary respectively.
tures (i.e., the columns and the rows). A case is the binary
data. A distinctive characteristic of the binary data isttha
the features (attributes) they include have the same nasure
the data they intend to account for: both are binary. Anoth&:3. Evaluate Simultaneous Clustering
case is block diagonal clustering where both data points and
features have the same number of clusters. In this case, afteSimultaneous clustering performs clustering of row and
appropriate permutation of the rows and columns, the alustslumn clustering simultaneously, where the fadtas the
structure takes the form of a block diagonal matrix [18]. cluster indicator for words (i.e., rows). Quantitativelye

It should be noted that simultaneous clustering can alsan view thei-th row of the cluster indicatof as the pos-
be interpreted using a probabilistic view similar to the PLSerior probability that word belongs to each of thi€ word
model. Instead of assuming that the variabgesindd; are clusters. We can assign a word to the cluster that has the
conditionally independent giveg in Eq. 18, we assume thatlargest probability value. However, row clustering has no
the variablew; only depends on its cluster variabig and cleara prior labels to compare with. For example, for doc-
the variabled; only depends on its cluster varialgein the ument clustering, we usually have labels for each document
probabilistic model of simultaneous clustering. Thereforclass and we have no label information about word clusters.



Here we provide a systematic way for analyzing and eval- Datasets| # documents| # class
uating the clustering of rows (i.e.,words). Let this rowFof CSTR 476 4
be (p1,---,px), which has been normalized o, px = 1. WebKB4 4199 4
Suppose a word has a posterior distribution of Reuters 2,900 10
WebACE 2,340 20
(0.937 0.01, 0.04, s 70.02); Log 1367 9
itis obvious that this word is cleanly clustered into oneselu Table 3. Document Datasets Descriptions.

ter. We say this word has a 1-peak distribution. Suppose
another word has a posterior distribution of
WebKB The WebKB dataset contains webpages gath-
(0.52, 0.46, 0.01,---,0.01); ered from university computer science departments. There

) ) ) ) are about 8280 documents and they are divided into 7 cat-
obviously this word is clustered into two clusters. We Saygories: student, faculty, staff, course, project, depent

this word has a 2-peak distribution. In general, we wish tgq other. The raw text is about 27MB. Among these 7 cat-
characterize each word as belonging to 1-peak, 2-peak,gdories, student, faculty, course and project are four most
peak etc. FoK word clusters, we sét prototype distribu- 5opulous entity-representing categories. The associated

tions: set is typically calledVebKB4.
11 1 1 Reuters The Reuters-21578 Text Categorization Test
(1,0,---,0), (557“' ,0), -, (Rv”' ’R)' collection contains documents collected from the Reuters

newswire in 1987. Itis a standard text categorization bench
For each word, we assign it to the closest prototype distribghark and contains 135 categories. In our experiments, we
tion based on the Euclidean distance, allowing all possihlge a subset of the data collection which includes the 10
permutations of the clusters. For examgle0,0,---,0) is  most frequent categories among the 135 topics and we call
equivalenttq0,1,0,---,0). In practice, we first sort the row j Reuters-top 10
such that the components decrease from the left to the right\webACE  The K-dataset was from WebACE project
and then assign it to the closest prototype. Generally spegakd has been used for document clustering [6, 19]. The K-
ing, the less peaks of the posterior distribution of the wordataset contains 2340 documents consisting news articles
the more unique content of the word has. This multi-peafom Reuters new service via the Web in October 1997.
distribution approach provides the capability of evalo@ti These documents are divided into 20 classes.
row (e.g., word) clusterings and enables the systematie ana Log The log data used in our experiments are collected

ysis of word content. from several different machines with different operatipg-s
tems using logdump2td (NT data collection tool) developed
8. Experiments at IBM T.J. Watson Research Center. The data in the log

files describe the status of each component and record sys-

In this section, experiments are conducted to empiricalf§M operational changes, such as the starting and stopping
compare the clustering results of various NMF algorithm8! Services, detection of network applications, softwame-c
In our experiments, documents are represented using theflguration modifications, and software execution errors.
nary vector-space model where each document is a binaryT0 Pre-process the datasets, we remove the stop words
vector in the term space. Our comparative experiment$ing a standard stop list, all HTML tags are skipped and all
study includes the following six method&-means , NMF, header fields except subject and organization of the posted
Semi-NMF, Convex-NMF, Tri-Factorization, and PLSI.  articles are ignored. In all our experiments, we first select

the top 1000 words by mutual information with class labels.

8.1. Datasets
8.2. Result Analysis

We use a variety of datasets, most of which are frequently
used in the information retrieval research. Table 3 summa- The above document datasets are standard labeled cor-
rizes the characteristics of the datasets. pora widely used in the information retrieval literaturee W

CSTR This is the dataset of the abstracts of technidew the labels of the datasets as the objective knowledge on
cal reports (TRs) published in the Department of Computthre structure of the datasets. We use accuracy as the eluster
Science at a research university. The dataset contained #¥$ performance measure. Accuracy discovers the one-to-
abstracts, which were divided into four research areas: Nahe relationship between clusters and classes and measures
ural Language Processing(NLP), Robotics/Vision, Systenthe extent to which each cluster contained data points from
and Theory. the corresponding class. It sums up the whole matching de-



Datasets/Method$s K-Means| NMF | Semi-NMF | Convex-NMF| Tri-Factorization| PLSI
CSTR 0.4256 | 0.5713| 0.5628 0.5340 0.604 0.587
WebKB4 0.3888 | 0.4418| 0.4578 0.4658 0.483 0.503
Reuters 0.4448 | 0.4947| 0.4867 0.4789 0.554 0.4870
WebACE 0.4001 | 0.4761| 0.4162 0.4089 0.510 0.4890
Log 0.6876 | 0.7805| 0.7385 0.7257 0.801 0.778

Table 4. Clustering Accuracy. Each entry is the clustering accuracy of the column method on the
corresponding row dataset. The results obtained by averaging 5 trials.

gree between all pair class-clusters. Accuracy can betepre served from the table that NMF and PLSI usually lead

sented as: to similar clustering results.
Accuracy= Max( Z T(Cx,Lm))/N, (20) Tri-Factorization generally is better than K-means and
Ck.Lm NMF-like algorithms on most of the datasets. The

whereCy denotes thé-th cluster, and_p, is them-th class.
T(Cx,Lm) is the number of entities which belong to class

are assigned to clustkr Accuracy computes the maximum
sum of T(Cy, L) for all pairs of clusters and classes, and
these pairs have no overlaps. The greater accuracy means

the better clustering performance.
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Figure 1. Clustering Accuracy Comparison

The experimental results are shown in Table 4 and Fig-
ure 1. From the experimental comparisons, we observe that:

document datasets are of high dimension. Tri-Factor-
ization provides a good framework for simultaneously
clustering the rows and columns. Simultaneous clus-
tering performs an implicit feature selection at each it-
eration, provides an adaptive metric for measuring the
neighborhood, and thus tends to yield better clustering
results.

As we discussed in Section 7, Tri-Factorization enables
simultaneous clustering of rows and columns and the
multi-peak distribution evaluation approach enables the
systematic analysis of word content. We take a closer
look at the Log dataset and obtain the words in 1-peak,
2-peak, 3-peak and 4-peak categories respectively. The
raw log files contain a free-format ASCII description
of the event. We can derive meaningful common situ-
ations (i.e., row clustering) from the word cluster re-
sults. For example, situatiostart can be described
by 1-peak words such asart, andservice and 2-peak
words such agersion The situatiorconfigure can be
described by 1-peak words suchamfiguration two-
peak words such ggoduct and 3-peak words such as
professional To summarize, the word clustering is ca-
pable of distinguishing the contents of words. The re-
sults of peak words are consistent with what we would
expect from a systematic content analysis.

e NMF-like algorithms generally outperform K-mean
clustering algorithms. As we showed in Section 5.4,
NMF is equivalent to soft K-means and the soft relaxd. Summary
ation improves clustering performance.

« On most of the datasets, NMF gives somewhat better " thiS paper we provide a comparative study on (non-
accuracy than semi-NMF and convex-NMF. The diffefiegative) matrix factorization for clustering. Attempe/e

ences are modest, however, suggesting that the mBReN made to establish the relations among various matrix
highly-constrained'semi-NMI,: and convex-NME mayactorization methods while highlighting their differenc

be worthwhile options if interpretability is viewed as

a goal of the data analysis interpretation and normalization of cluster posterionwr-

reviously unaddressed yet important questions such as the

gence issues, and the benefits and evaluation of simultane-
e The experimental comparisons empirically verify theus clustering have also been studied. We expect our study

equivalence between NMF and PLSI. It can be oleould provide insightful guidances on matrix factorizatio



research for clustering. In particular, the extensiveasse

[16]

and experiments show that NMF provides a new paradigm
for unsupervised learning.
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