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ABSTRACT
In most IR clustering problems, we directly cluster the documents,
working in the document space, using cosine similarity between
documents as the similarity measure. In many real-world applica-
tions, however, we usually have knowledge on the word side and
wish to transform this knowledge to the document (concept) side.
In this paper, we provide a mechanism for this knowledge trans-
formation. To the best of our knowledge, this is the first model for
such type of knowledge transformation. This model uses a nonneg-
ative matrix factorization model X = FSGT , where X is the word-
document semantic matrix, F is the posterior probability of a word
belonging to a word cluster and represents knowledge in the word
space, G is the posterior probability of a document belonging to a
document cluster and represents knowledge in the document space,
and S is a scaled matrix factor which provides a condensed view
of X . We show how knowledge on words can improve document
clustering, i.e, knowledge in the word space is transformed into the
document space. We perform extensive experiments to validate our
approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering; I.2 [Artificial
Intelligence]: Learning; I.5 [Pattern Recognition]: Applications

General Terms
Algorithms, Experimentation, Measurement, Performance, Theory

Keywords
Clustering, Knowledge Transformation

1. INTRODUCTION
As a fundamental and effective tool for data organization, sum-

marization and navigation, clustering has been receiving a lot of
attention. Clustering is the problem of partitioning a finite set of
points in a multi-dimensional space into classes (called clusters) so
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that (i) the points belonging to the same class are similar and (ii)
the points belonging to different classes are dissimilar [12, 14].

Many clustering algorithms aim at clustering homogeneous data
where the data points are all of a single type [3]. In many real world
applications, however, a typical task often involves more than one
type of data points. For example, in document analysis, there are
terms and documents. Generally the different types of data points
are not independent to each other and there exist close relationships
among them. How to utilize the relationships is a challenging issue.
It is difficult for traditional clustering algorithms to utilize those
relationships efficiently.

Co-clustering algorithms aim at clustering different types of data
simultaneously by making use of the dual relationship information
such as the word-document matrix. For instance, bipartite spectral
graph partitioning approaches are proposed in [8, 28] to co-cluster
words and documents. Cho et al [5] proposed algorithms to co-
cluster the experimental conditions and genes of microarray data
by minimizing the sum-squared residue. Long et al. [20] proposed
a general principled model, called Relation Summary Network, to
co-cluster the heterogeneous data on a k-partite graph.

However, these co-clustering algorithms are unsupervised learn-
ing methods, based on the relationship information provided by the
word-document matrix only. In many applications, we have some
additional/external information. If the additional information is in
document space and we are interested in document clustering, this
topic is called Semi-supervised Clustering, and has been studied
by [24, 4, 26, 6, 2, 7, 19], where the prior knowledge exists in the
form of pairwise constraints (In general, however, prior knowledge
is not easy to be incorporated into clustering; K-means, Gaussian
mixture, and information bottleneck [22] are some of the examples
where prior knowledge is difficult to incorporate.).

In many other cases, we have additional information/knowledge
on the words side and we wish to see if they can influence/help
the clustering of documents. To the best of our knowledge, this
problem has not been investigated before. In this paper, we provide
a model to show that this can be done. We start with a simple
example.

1.1 An Illustrating Example
To demonstrate the usefulness of the additional information in

the word space, we give a simple example in Figure 1. The syn-
thetic dataset contains four research article titles as shown in part
(a). After removing stop words and words appearing in every arti-
cle, the dataset is represented as a word-document matrix as shown
in part (b). The titles are from two topic areas: Information Re-
trieval (IR) and Computer Vision (Vision). If we look at the data
matrix directly, D1 and D3 are similar based on cosine similarity
since their dot product is 1 while D1 and D2 are not similar since
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their dot product is 0. Similarly, D2 and D4 are similar while D3
and D4 are not similar.

If we run K-means on the simple dataset, D1 and D3 will be
grouped into one cluster while D2 and D4 will be grouped into an-
other cluster. Clearly, this result is not satisfactory as it can not
reflect the topic areas of the titles. Now suppose we have addi-
tional knowledge on the words side. In our example, clustering,
and classification belongs to word category Learning; illumina-
tion and texture belongs to word category Graphics; webpage and
hyperlink belongs to word category Web. Using the additional in-
formation on word space, we can obtain perfect clustering since D1
and D2 are associated with word categories Learning and Web,
while D3 and D4 are associated with word categories Learning
and Graphics. Later on, in Section 2.2, we will illustrate in detail
on how knowledge in the word space is transformed into the docu-
ment space for this example. We will also present the computation
results of our proposed method on the example in Section 2.3.

Figure 1: An Illustrating Example. The standard word-
document matrix is the transpose of the table given in Part (b).

1.2 Organization of the Paper
In this paper, we provide a model to show that additional infor-

mation/knowledge on the word side can influence/help the cluster-
ing of documents. This mechanism allows us to transform knowl-
edge in the word space to the document space. In the following,
we present the model in details, and provide a theoretical analysis
of the knowledge transfer model. We provide a concrete computa-
tional algorithm to solve the model, and also prove the correctness
and convergence of the algorithm based on constrained optimiza-
tion theory. Since the word-document matrix is just an example of
two-way data, our knowledge transformation mechanism can ap-
ply to any two-way data, such as the DNA microarray data where
knowledge on the genes (rows) can be transformed to that of patient
tissue samples (columns).

The rest of the paper is organized as follows: Section 2 intro-
duces the basic model for enabling knowledge transformation from
the word space to the document space. In particular, Section 2.2
gives a theoretical analysis on the effects of the prior knowledge in
the word space; Section 2.3 presents a computational algorithm for
solving the model. Section 3 proposes the method for knowledge
transformation when knowledge in the word space is in the form of
pairwise relations. Section 4 show our experiments on real-world
datasets. Finally Section 5 concludes.

2. BASIC MODEL
In this paper, we provide a mechanism for knowledge transfor-

mation from the word space to the document space. This model
uses a nonnegative matrix factorization model [11, 18]

X ≈ FSGT . (1)

where X is a m× n word-document semantic matrix, F is an m×
k nonnegative matrix representing knowledge in the word space,
i.e., i-th row of F represents the posterior probability of word i
belonging to the k classes, and G is an n× k nonnegative matrix
representing knowledge in document space, i.e., the i-th row of G
represents the posterior probability of document i belonging to the
k classes. S is an k× k nonnegative matrix providing a condensed
view of X .

We show how information on F help clustering documents on
G. We have two different ways to incorporate knowledge in the
word space. The first is a categorization of words, represented by a
complete specification of F . This is presented in Section 2.1. An-
other way is partial knowledge on words, for example, two words
are known to be highly related and must be grouped into the same
word cluster. This is discussed in Section 3.

Our model is similar to the probabilistic latent semantic indexing
(PLSI) model [13]. In PLSI, X is treated as the joint distribution
between words and documents by the scaling X → X̄ = X/∑i j Xi j
thus ∑i j X̄i j = 1). X̄ is factorized as

X̄ ≈W SDT ,∑
k

Wik = 1,∑
k

D jk = 1,∑
k

Skk = 1. (2)

where X is the m×n word-document semantic matrix, X = W SD,
W is the word class-conditional probability, and D is the document
class-conditional probability and S is the class probability distribu-
tion.

PLSI provides a simultaneous solution for the word and docu-
ment class conditional distribution. Our model provides simultane-
ous solution for clustering the rows and the columns of X . To avoid
ambiguity, we impose the orthogonality condition

FT F = I, GT G = I. (3)

which enforce each row of F and G has only one nonzero entry.
This form gives a good framework for simultaneously clustering
the rows (words) and columns (documents) of X [8, 28, 17].

2.1 Representing Knowledge in Word Space
The prior knowledge in the word space can be represented as F0.

This information is incorporated into the unsupervised clustering
frame as a constraint

min
F,G,S
‖X−FSGT‖2 +α‖F−F0‖

2, (4)

Where α > 0 is a parameter which determines the extent to which
we enforce F ≈ F0. The constraint ensures that the solution for F in
the otherwise unsupervised learning problem be close to the prior
knowledge F0.

The above model is generic and it allows certain flexibility. For
example, in some cases, our prior knowledge on F0 is not very accu-
rate and we use smaller α so that the final results are not dependent
on F0 very much, i.e., the results are mostly unsupervised learning
results.

2.2 Analysis: How Knowledge in Word Space
is Transformed into Document Space

Here we give a theoretical analysis to show the effects due to
F0, the prior knowledge in the word space. For this reason, we as-
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sume our knowledge is certain and we set α→∞; The optimization
simplifies to

min
G,S
‖X−F0SGT‖2 (5)

THEOREM 1. The optimization of Eq.(5) with orthogonality con-
straints GT G = I FT

0 F0 = I, is identical to the optimization of

max
G

Tr GT XT F0FT
0 XG. (6)

Proof: J = ||X−F0SGT ||2 = Tr(XT X−2FT
0 XGST +SST ). Now

0 = ∂J/∂S⇒ S = FT
0 XG. Thus J = Tr(XT X −GT XT F0FT

0 XG).

TrXT X is a constant and the second term is the desired result. u–
By the K-means and Principle Component Analysis (PCA) equiv-

alence theorem [27, 10], the clustering of Eq.(6) uses XT F0FT
0 X as

the pairwise similarity. whereas the standard K-means uses X T X
as the pairwise similarity. For the example of Section 1.1,

XT X =









2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2









and the K-means clustering will produce (D1,D3) as a cluster and
(D2,D4) as another cluster.

Now with the knowledge F0 in the word space,

XT F0FT
0 X =









1 1 1
2

1
2

1 1 1
2

1
21

2
1
2 1 1

1
2

1
2 1 1









where we have set

FT
0 = 2−1/2





1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1



 (7)

Clearly, using this similarity, K-means clustering will generate (D1,D2)
as a cluster and (D3,D4) as another cluster.

We may see more directly how knowledge in the word space
is transformed into the document space. Let the square root of
the semi-definite positive matrix be P: F0FT

0 = PT P. We have
XT F0FT

0 X = (PX)T (PX) which means we cluster the data using
the transformed data

X̃ = PX = (F0FT
0 )1/2X .

For the example in Section 1.1,

X̃ = 2−1/2















1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1















X = 2−1/2















1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0















It is obvious that on this transformed data, D1 and D2 will be
clustered into one cluster, D3 and D4 will be clustered into another
cluster. This analysis show directly how the knowledge in the word
space is transformed into the document space.

2.3 Computational Algorithm
The optimization problem in Eq.( 4) can be solved using the fol-

lowing update rules

G jk← G jk
(XT FS) jk

(GGT XT FS) jk
, (8)

Sik← Sik
(FT XG)ik

(FT FSGT G)ik
. (9)

Fik← Fik
(XGST +αF0)ik

(FFT XGST +αFFT F0)ik
. (10)

The algorithm consists of an iterative procedure using the above
three rules until convergence:
Initialization. Initialize F = F0,G to K-means clustering results,
and S = [(FT F)−1FT XG(FT F)−1]+.
Update G. Fixing F,S, updating G
Update F. Fixing S,G, updating F
Update S. Fixing F,G, update S

For the example given in Section 1.1, using the above algorithm
procedure, we initialize F = F0 as in Eq.( 7), after convergence, we
obtain

G =









0.0031 0.6099
0.0037 0.7903
0.6108 0.0005
0.7896 0.0021









,S =





0.9997 0.9969
1.0017 0.0000
0.0000 1.0017





Thus based on G, D1 and D2 is grouped together into one cluster
and D3 and D4 is grouped together into another cluster. In addi-
tion, S clearly shows the association relationships between topic
areas and word categories. In the first column of S, large values
in the top two entries indicating that topic cluster 1 (e.g., Vision
area) is associated with word category 1 (e.g., Learning) and word
category 2 (e.g., Graphics). Similarly, IR area is associated with
Learning and Graphics categories. However, if we initialize F
randomly, after convergence, we obtain

G =









0.7071 0.0000
0.0000 0.7071
0.7071 0.0000
0.0000 0.7071









,S =





1.7321 0.0000
0.0000 1.6762
0.0003 0.4363



 .

We can not obtain good clustering results from G.

2.4 Algorithm Correctness and Convergence
We prove rigorously two theorems on correctness and Conver-

gence of the algorithm:

THEOREM 2. The above iterative algorithm converge.

THEOREM 3. At convergence, the solution satisfies the Karuch,
Kuhn, Tucker optimality condition, i.e., the algorithm converged
correctly to a local optima.

The proof of Theorem 2 is given in the Appendix.
Proof of Theorem 3. Following the theory of constrained opti-
mization [21], we introduce the Lagrangian multipliers λ (a sym-
metric matrix of size K×K) and minimize the Lagrangian function

L(F) = ||X−FSGT ||2 +α‖F−F0‖
2 +Tr[λ(FT F− I)]. (11)

Note ||X−FSGT ||2 = Tr(XT X−2FT XGST +SGT GST FT F). The
gradient is

∂L
∂F =−2XGST +2F(SGT GST +λ+α)−2αF0. (12)

The KKT complementarity condition for the non-negativity of Fik
gives

[−2XGST +2F(SGT GST +λ+α)−2αF0]ikFik = 0. (13)

This is the fixed point relation that local minima for F must satisfy.
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The standard approach is to solve the couple equations Eq.(13)
with constraints using a nonlinear method such as Newton’s method.
However, this system of nonlinear equations is generally difficult to
solve. In this paper, we provide a much simpler algorithm to com-
pute the solution. From the KKT complementarity condition, sum
over i, we have

(−FT XGST +(SGT GST +λ+α)−αFT F0)kk = 0
(14)

This gives the diagonal elements of the Lagrangian multiplier

λkk = (FT XGST +αFT F0−SGT GST −α)kk
(15)

For non-diagonal elements, we use the gradient zero condition and
obtain,

λkk′ = (FT XGST +αFT F0−SGT GST −α)′kk (16)

Now substitute λ into Eq.(10), the updating rule for F is identical
to the KKT condition of Eq.(13). The correctness of updating rules
for G in Eq.(8) and S in Eq.(9) have been proved in [11]. u–

3. OTHER FORMS OF KNOWLEDGE
IN WORD SPACE

Sometimes our knowledge in the word space are in the form of
a set of pairwise relations. For example, we think algorithm and
computation should be in one class, whereas economy and basket-
ball should be in different classes. More formally, we have two
types of pairwise word association constraints [24]: (1) Must-link
word pairs encoded by a matrix

A = {(i1, j1), · · · ,(ia, ja)},a = |A|,

containing pairs of words wi1 ,w j1 which are considered similar and
must be clustered into the same word cluster, and (2) Cannot-link
word pairs encoded by a matrix

B = {(i1, j1), · · · ,(ib, jb)},b = |B|,

where each pair of words are considered dissimilar and are not to
be clustered into the same word cluster.

We treat them as constraints on the class posterior probability
F . A must-link pair (i1, j1) implies that the overlap hi1kh j1k > 0
for some class k. Thus ∑K

k=1 hi1kh j1k = (FFT )i1 j1 should be maxi-
mized. Thus we express the must-link condition as

max
F ∑

(i j)∈A
(FFT )i j = ∑

i j
Ai j(FFT )i j = TrFT AF.

For a cannot-link pair (i2, j2), hi2kh j2k = 0 for all k. We treat this
as a constraint and minimize ∑K

k=1 hi2kh j2k = (FFT )i2 j2 . since hik
are nonnegative. We write this condition as

∑
(i j)∈B

(FFT )i j = TrBFFT = 0, or min
F

TrFT BF.

Putting these conditions together, we can cast the knowledge trans-
formation model as the following optimization problem

min
F,G,S
‖X −FSGT ‖2 +Tr(−βFT AF + γFT BF) (17)

where β,γ are two positive constants to adjust the strength of the
knowledge. A theoretical analysis similar to that of Section 2.2
can be carried out for understanding how knowledge embedded in
pairwise relations in A,B can transform into the document space.

The procedure for computing an optimal solution is an iterative
algorithm. The updating rules for G,S are the same as in Eqs.(8,9).
The updating rules for F is

Fik← Fik

√

(XGST +βAF)ik
(F(SGT GST +λ)+ γBF)ik

(18)

where the Lagrangian multiplier k-by-k matrix λ for enforcing the
orthogonality FT F = I is given by

λ = FT XGST +βFT AF− γFT BF−SGT GST (19)

Similar to Section 2.3, we have

THEOREM 4. The above iterative algorithm converge.

THEOREM 5. At convergence, the solution satisfies the KKT
optimality condition, i.e., the algorithm converged correctly to a
local optima.

The proof of Theorem 4 is given in Appendix.
Proof of Theorem 5 We write down the Lagrangian function

L1(F) = ‖X−FSGT ‖2 +Tr[−βFT AF + γFT BF +λ(FT F− I)]
(20)

and obtain the KKT condition for the non-negativity of F:

[−2XGST +2F(SGT GST +λ)−2βAF +2γBF]ikFik = 0 (21)

From this, we can obtain the Lagrangian multiplier as in Eq.(19)
We can easily see that at convergence, the solution satisfy

[−2XGST +2F(SGT GST +λ)−2βAF +2γBF]ikF2
ik = 0

which is identical to the KKT condition: either the first factor is
zero, or the Fik is zero. If the firs factor is zero, the two equation are
identical. If Fik is zero, then F2

ik is also zero, vice versa. Thus, we
have prove that if the iteration converges, the converged solution
satisfies the KKT condition, i.e., it converges correctly to a local
minima.

4. EXPERIMENTAL RESULTS
4.1 Datasets

We use the following four datasets in our experiments and their
characteristics are summarized in Table 1. The Mallet 1 software
package is used in our experiments for text processing.

• DBLP Dataset: This dataset is obtained from DBLP Com-
puter Science Bibliography 2. We extract the paper titles
published by 552 relatively productive researchers from 9
categories: database, data mining, software engineering, the-
ory, computer vision, operating system, machine learning,
networking, and natural language processing. For easy com-
parison purpose, we only consider the publications over the
last 20 years (from 1988 to 2007, inclusive). Using the ACM
Keywords Taxonomy3 , we obtain the category information
for terms and use it as the prior knowledge in the word space.

1It can be downloaded from http://mallet.cs.umass.
edu/index.php/Obtaining_MALLET.
2The dblp.xml file is available for download at http://www.
informatik.uni-trier.de/~ley/db/.
3Available on the page of http://www.computer.org/
portal/pages/ieeecs/publications/author/
ACMtaxonomy.html.
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Table 1: Document Data Description
DataSet # of Instances # of Instance Clusters # of Words # of Word Clusters
DBLP 552 9 1000 11
CSTR 550 4 1000 11
Artist 450 15 601 20
BBS 1309 12 1200 12

• CSTR Dataset: This dataset contains the abstracts of techni-
cal reports (TRs) published in the Department of Computer
Science at University of Rochester from 1991 to 2007. There
are 550 abstracts and they are divided into four research ar-
eas: Natural Language Processing(NLP), Robotics/Vision,
Systems, and Theory. We also use the category information
of terms obtained from ACM Keywords Taxonomy as prior
knowledge.

• Artist Dataset: The genre and style descriptions of famous
artists are publicly available on All Music Guide website
(http://www.allmusic.com). We collect the infor-
mation of 2431 artists who have both the genre and style
descriptions from this website. There are altogether 15 gen-
res (such as Jazz, Rock, Country), and 601 style terms (nouns
like Electric Chicago Blues, Greek Folk, and Chinese Pop, as
well as adjectives like Joyous, Energetic, and New Roman-
tic). These style terms are classified into 20 categories by
domain experts. Each artist is represented as a word vector
using the style terms and we cluster the artists into different
groups. The genre information is treated as the ground truth
for artist clusters and the style category is used as additional
information in the word space.

• BBS Dataset: This is a dataset sampled from the Bulletin
Board Systems (BBS) data in [15]. A BBS system contains
many boards with similar themes. The boards are named
to reflect the contents of the articles contained in them [15].
Once a user posts an initial article on a board, the others can
show their opinions using reply articles. The initial article
and reply articles constitute a topic. People’s behaviors on
the BBS usually reflect their interests. For example, people
who post articles in the same topic may share similar inter-
ests, and people who are interested in the same boards or
discussion fields may have something in common (e.g., sim-
ilar background and education level) [25]. Here we cluster
users into groups based on their activities. The user-topic
matrix was constructed with the articles each user posted in
each topics with TF-IDF normalization [1]. The topics are
organized into different boards and we use the categories of
the topics as external information for clustering users. The
board on which a user is most active (e.g., a user has posted
the largest number of articles in this board among all boards)
is treated as the ground truth for the user clusters.

4.2 Evaluation Measures
To measure the clustering performance, we use accuracy and

normalized mutual information as our performance measures. Ac-
curacy discovers the one-to-one relationship between clusters and
classes and measures the extent to which each cluster contained
data points from the corresponding class. It sums up the whole
matching degree between all pair class-clusters. Its value is be-
tween [0,1]. Accuracy can be represented as:

ACC = max( ∑
Ci,L j

T (Ci,L j))/N, (22)

where Ci denotes the i-th cluster, and L j is the j-th class. T (Ci,L j)
is the number of entities which belong to class j are assigned to
cluster i. Accuracy computes the maximum sum of T (Ci,L j) for all
pairs of clusters and classes, and these pairs have no overlaps [11].
Generally, the greater accuracy means the better clustering perfor-
mance.

Normalized mutual information (NMI) is another widely used
performance evaluation measure for determining the quality of clus-
ters [23]. For two random variables X and Y, the NMI is defined
as

NMI(X,Y) =
I(X,Y)

√

H(X)H(Y)
, (23)

where I(X,Y) is the mutual information between X and Y, and
H(X) and H(Y) are the entropies of X and Y, respectively. Clearly,
NMI(X,X) = 1 and this is the maximum possible value of NMI.
Given a clustering result, NMI in Eq.( 23) is estimated as follows:

NMI =
∑k

i=1 ∑k
j=1 ni jlog(

n·ni j
ni·n̂ j

)
√

(∑k
i=1 nilog ni

n )(∑k
j=1 n̂ jlog n̂ j

n )
(24)

where ni denotes the number of data points contained in the cluster
Ci(1≤ i≤ k), n̂ j is the number of data points belonging to the j-th
class (1 ≤ j ≤ k), and ni j denotes the number of data points that
are in the intersection between the cluster Ci and the j-th class. In
general, the larger the NMI value, the better the clustering quality.

4.3 Results Analysis
4.3.1 Experiments Using Prior Knowledge

DBLP CSTR Artist BBS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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cu

ra
cy

CP
FC
TNMF
K−means
ITCC
ECC
FE

Figure 2: Accuracy results on four datasets

We denote our method utilizing prior knowledge as CP (Cluster-
ing with Prior knowledge). In our experiments, we compare our
method (CP) with the following methods:

• Four document clustering methods: K-means, Tri-Factor Non-
negative Matrix Factorization (TNMF) [11], Information-Theoretic
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DBLP CSTR Artist BBS
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Figure 3: NMI results on four datasets

Co-clustering (ITCC) [9], and Euclidean Co-clustering algo-
rithm (ECC) [5]. These methods do not make use of knowl-
edge in the word space.

• Two simple methods of incorporating prior knowledge. (1)
Feature Ensemble (FE): In this approach, we divide the word
space into different classes (using prior knowledge) and per-
form K-means clustering on documents based on each indi-
vidual word group. Then an ensemble clustering algorithm
is applied to obtain a final document clustering results [23].
(2) Feature Centroid (FC): In this approach, we replace each
word (e.g., each row of the word-document matrix) using the
corresponding category centroid and then perform K-means
clustering on the documents. In other words, knowledge in
the word space is utilized to perform a dimensionality reduc-
tion here.
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Figure 4: Accuracy results with different numbers of words on
CSTR dataset.

Figure 2 shows the experimental results on four datasets using
accuracy as the performance measure, and Figure 3 present the
NMI results. The results are obtained by averaging 20 runs. From
the experimental comparisons, we observe that:

• Prior knowledge in the word space improves clustering re-
sults. Our proposed method CP achieves the highest perfor-
mance on three datasets: DBLP, CSTR and BBS while FC
achieves the highest performance on Artist.
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Figure 5: Accuracy results with different numbers of words on
DBLP dataset.

• Our proposed method CP can effectively transfer knowledge
from the word space to the document space for improving
clustering results. On all datasets, the performance of CP is
always better than the performances of those methods that do
not make use of prior knowledge. In fact, on four datasets,
CP ranks first 3 times (it actually outperforms all other meth-
ods by a large margin on the three datasets).
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Figure 6: Accuracy results with different numbers of pairwise
word relations

4.3.2 Effects of Number of Words
In this section, we perform experiments on DBLP dataset and

CSTR dataset to investigate the effects of the size of word space
on clustering performance. The word selection is performed using
Mallet toolkit with information gain criteria. Figure 4 and Figure 5
show the accuracy results with different numbers of selected words
on CSTR dataset and DBLP dataset, respectively. From Figure 4
on CSTR dataset, our proposed method (CP) outperforms all other
methods at different word sizes (except one case at 500 words).
From Figure 5 on DBLP dataset, CP outperforms all other meth-
ods. The two naive ways for incorporating the word space knowl-
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Figure 7: NMI results with different numbers of pairwise word
relations

edge, FE and CE, do not perform well, due to the unsophisticated
clustering methods used. Similar behavior are also observed for the
NMI measure (results are not shown due to lack of space).

4.3.3 Experiments Using Pairwise Relations
In this section, we perform experiments when prior knowledge

is in the form of pairwise relations. We use the algorithm presented
in Section 3 to transform the pairwise relations in the word space
into the document space. The relations are generated as follows:
we pick out a pair of words randomly from the word space (the cat-
egory information of which are available). If this pair of words are
in the same word category, then we generate a must-link relation. If
they are in different categories, a cannot-link relation is then gener-
ated. Figure 6 and Figure 7 present the experimental results of our
algorithm with different number of pairwise relations in the word
space. In all the experiments, the results are averaged over 20 trials.
As you can observe from these Figures, the clustering performance
generally improves as the number of pairwise relations increases.
The experimental results confirms the ability of our proposed algo-
rithm for transferring the pairwise relations in the word space into
the document space which improves clustering results.

5. CONCLUSION
In this paper, we provide a model for enabling knowledge trans-

formation from the word space to the document space. Two forms
of prior knowledge in the word space (categorization of words and
pairwise relations between words) are presented, which can be ef-
fectively incorporated into the model and transformed into knowl-
edge in the document space. We give detailed theoretical analysis
of the model and propose computational algorithms with rigorous
proofs of their correctness and convergence. We experiment on
4 real-world datasets and compare with six other methods. The
results show our proposed method consistently outperform other
methods. Our model can be applied to any two-way data to effec-
tively transform knowledge from one side to another side. For ex-
ample, on DNA microarray data, our model can transform knowl-
edge on the gene side (rows of the data matrix) to knowledge on
the patient tissue sample side (columns of the data matrix).
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6. APPENDIX

6.1 Proof of Theorem 2 in Section 2.3
We use the auxiliary function approach [16]. A function Z(F, F̃)

is called an auxiliary function of L(F) if it satisfies

Z(F, F̃)≥ L(F), Z(F,F) = L(F), (25)

for any F, F̃. Define

F(t+1) = argmin
F

Z(F,F(t)). (26)

By construction, L(F(t)) = Z(F(t),F(t))≥ Z(F(t+1),F(t))≥
L(F(t+1)). Thus L(F(t)) is monotonic decreasing (non-increasing).
The key is to find appropriate Z(F, F̃) and its global minima.

We write L of Eq.(11) as

L(F) = Tr[−2FT XGST +(SGT GST +λ+α)FT F−2αFT F0],

where we ignore the constraints XT X , Trλ, and Tr(FT
0 F0). Now we

show that the following function

Z(F,F′) = −∑
ik

2(FT XGST )ik

+ ∑
ik

(F ′(SGT GST +λ+α)]ikF2
ik

F ′ik
−2α(FT F0)ik

is an auxiliary function of L(F). First, it is obvious that when F ′ =
F the equality holds Z(F,F′) = L(F). Second, the inequality holds
Z(F,F′) ≥ L(F), because: the second term in Z(F,F ′) is always
bigger than the second term in L(F), due to an inequality

∑
ik

(AFT F)ik ≤∑
ik

(F ′A)ikF2
ik

F ′ik

for any A,F,F′ ≥ 0 (We skip the proof due to lack of space). Thus
the conditions of Eq.(25) are satisfied.

Now according to Eq.(26), we need to find the global minimum
of f (F) = Z(F,F′) fixing F ′. We first compute the gradient

∂Z(F,F′)
∂Fik

(27)

= −2(XGST )ik +2 [F ′(SGT GST +λ+α)]ikFik
F ′ik

−2α(F0)ik.

and the Hessian (2nd order derivatives) are

∂2Z
∂Fik∂Fjk′

= 2 [F ′(SGT GST +λ+α)]ik
F ′ik

δi jδkk′ (28)

Thus the Hessian is semi-positive definite, i.e., Z(F,F’) is a convex
function. It’s global minima is obtained by setting ∂Z/∂Gik = 0,
we obtain

Fik = F ′ik
(XGST +αF0)ik

[F(SGT GST +λ+α)]ik
(29)

Now according to Eq.(26), F(t+1) = F and F ′ = F(t), we recover
Eq.( 10).
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6.2 Proof of Theorem 4 in Section 3
First we find the auxiliary function of L1(F) in Eq.(20). We can

show that the following function
Z1(F,F ′) =

∑
ik

[−2F ′ik(1+ log Fik
F ′ik

)(XGST )ik +
(F ′(SGT GST +λ))ikF2

ik
F ′ik

(30)

+βF ′ik(AF ′)ik(1+ log
FikFjk
F ′ikF ′ik

)+ γ
(BF ′)ikF2

ik
F ′ik

] (31)

is an auxiliary function, ignoring the constant terms. Now, the gra-
dient is

∂Z
∂Fik

= −2
F ′ik
Fik

(XGST )ik +2 [F ′(SGT GST +λ)]ikFik
F ′ik

(32)

−2β
F ′ik(AF ′)ik

Fik
+2γ

(BF ′)ikFik
F ′ik

(33)

and the Hessian is
∂2Z

∂Fik∂Fjk′
= [ 2

F ′ik
F2

ik
(XGST )ik +2 [F ′(SGT GST +λ)]ik

F ′ik
(34)

2β
F ′ik(AF ′)ik

F2
ik

+2γ
(BF ′)ik

F ′ik
]δi jδkk′ (35)

Thus the Hessian is semi-positive definite, i.e., Z(F,F’) is a convex
function. It’s global minima is obtained by setting ∂Z/∂Gik = 0,
we obtain

F ′ik
Fik

(XGST +βAF ′)ik =
Fik
F ′ik

(F ′(SGT GST +λ+ γBF ′) (36)

or

F2
ik = F ′2ik

(XGST +βAF ′)ik
(F ′(SGT GST +λ)+ γBF ′)ik

(37)

Now according to Eq.(26), F(t+1) = F and F ′ = F(t), we recover

Fik← Fik

√

(XGST +βAF)ik
(F(SGT GST +λ)+ γBF)ik

(38)
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