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Dynamic Cluster Formation Using
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Abstract— Density-based clustering has the advantagesacquisition and discovery from such data become an
for (i) allowing arbitrary shape of cluster and (i) not important issue. One common technique to analyze
requiring the number of clusters as input. However, when q5tg isclustering which aims at grouping entities
clusters touch each other, both the cluster centers and i gimilar characteristics together so that main
cluster boundaries (as the peaks and valleys of the density .
distribution) become fuzzy and difficult to determine. We tre_nds_or unusual patterns may be dlscovgred. Clus-
introduce the notion of cluster intensity function (CIF) tering is an example of unsupervised learning. There
which captures the important characteristics of clusters. IS N0 provision of any training examples to guide
When clusters are well-separated, CIFs are similar to the grouping of the data. In the other words, cluster
density functions. But when clusters become closed toanalysis can be applied withoatpriori knowledge
each other, CIFs still clearly reveal cluster centers, cluster of the class distribution. We refer the reader to

boundaries, and degree of membership of each data .
point to the cluster that it belongs. Clustering through [1], [2] for more detailed examples of the usage

bump hunting and valley seeking based on these functions Of clustering teChnique_S in a variety of context.
are more robust than that based on density functions A successful clustering task depends on a number

obtained by kernel density estimation, which are often of factors: collection of data, selection of variables,
oscillatory or over-smoothed. These problems of kernel cleaning of data, choice of similarity measures,
density estimation are resolved using.evel Set Methodand choice of a clustering algorithm, and interpretation

related techniques. Comparisons with two existing density- f clustering results. In this paper. we focus on
based methods, valley seeking and DBSCAN, are presentedo 9 ' paper,

which illustrate the advantages of our approach. proposing a general-purpo_se clustering algori_thm.
We assume that we are given a set of data in an

Euclidean space, i.e. each object is described by a
set of numerical attributes, and pair-wise dissimi-
larity is measured by Euclidean distance. We also
assume that preprocessing steps such as variable
. INTRODUCTION selection, data cleaning, and missing value impu-

ECENT computer, internet and hardware a\é@\tion are treated separately. However, the proposed
Rvances produce rr,1assive data which are accigorithm is robust to noise and outliers. Thus it

mulated rapidly. Applications include sky surveys(f ;
genomics, remote sensing, pharmacy, network gé@'l?r?;rr]gare a number of paradigms to define clus

it lysis. tedly, knowl i : . g
curity and web analysis. Undoubtedly, know edgteers. Our approach is density-based. The idea is
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comply with such a robustness requirement. As[@]. A generalization of the:-means objective and
result, natural clusters are split into pieces due kdoyd's Algorithm to Bregman Divergence can be
the artifactitious differential densities. found in [8]. Algorithms for optimizing thek-

To remedy such a problem, we propose a partialedoids objective, a variant df-means which is
differential equation model to detect high densitgnore robust to outliers, include PAM [3], CLARA
regions. The model has a built-in mechanism, whi¢B] and CLARANS [9].
can be thought of adding surface tension to cluster(ii) Hierarchical methods. They aim at produc-
boundaries, to overcome the localized roughnessing a hierarchical tree (dendrogram) which depicts
the density landscape. To implement the dynamidhle successive merging (agglomerative methods) or
evolution of cluster boundaries, we employ thsplitting (divisive methods) of clusters. Examples of
Level Set Methods which allow moving boundarieBierarchical methods include DIANA, Single Link-
to split or merge easily. We further introduce thage, Average Linkage, Complete Linkage, Centroid
concept of cluster intensity functions which clearlpnd Ward’s methods [3]. Different agglomerative
reveals cluster structures. Partitioning data accomiethods differ by the way that the similarity be-
ing valleys of such functions provides an extrtween two clusters is updated. If the linkage satisfies
degree of robustness. a cluster aggregate inequality, then the algorithm

The organization of the rest of the paper is asn be implemented efficiently at a time complex-
follows. In the next subsection, we give a briety of O(N?) only [10]. A more recent method
review of clustering algorithms. Then, we highlighCHAMELEON [11] uses a sophisticated merging
some characteristics of density-based methods amderion which takes the clusters’ internal structure
some related concepts §hl. In §llI, we outline the into account as well.
main steps of our methodologies. The initialization (iii) Density-based methods. They are based on
steps of our method is presentedsitv. Followed the idea that clusters are high density regions sep-
next in §V is the major step, which is to advancearated by low density regions. Methods of this
cluster boundaries robustly. A novel concept, clutype include Valley Seeking [12], DBSCAN [13],
tering intensity function, for finalizing the cluster’SDBSCAN [14], CLIQUE [15], DENCLUE [16]
is introduced in§VI. Experimental results are thenand OPTICS [17]. Our approach is density-based.
presented igVIIl. Finally, some conclusion remarksWe will further elaborate the pros and cons of this
are given ingVlIIl. paradigm in the next section.

(iv) Grid-based methods. The feature space is
projected onto a regular grid. Presumably, most non-
empty grid cells are highly populated. Thus, by

To facilitate a better understanding of our densitytsing a few representatives or summary statistics
based method, we include a brief summary &br each grid cell, a form of data compression is
various classes of clustering algorithms so as ébtained. Such an approach is usually used for large
contrast the different assumptions underlying eadatabases. STING [18] and WaveCluster [19] fall
class of algorithms. Pointers to the literature are algto this category.
given. A more thorough discussion of density-based(v) Graph-based methods. Data points are rep-
methods and relevant concepts is presented in teeented by nodes and pair-wise similarity are de-
next section. For more detailed reviews of clusterirgicted by the edge weights. Once a graph is con-
techniques, we refer the reader to [1], [2], [3], [4]structed, graph partitioning methods can be used to

(i) Optimization-based methods. They seek for @btain clusters of data points. Examples of graph-
partition of the dataset so as to optimize an objebased methods are Spectral Min-Max Cut [20] and
tive. Usually, a measure of within-cluster similarityShared Nearest Neighbors [21].
is maximized and/or a measure of between-cluster(vi) Model-based methods. They are application-
dissimilarity is maximized. Constraints such aspecific. They assume the knowledge of a model
number of clusters or minimum separation betweeavhich prescribes the nature of the data. CLICK [22]
clusters may be incorporated [5]. Perhaps the mastes a finite mixture model [23] to model pair-wise
well-known algorithm of this type is the Lloyd’ssimilarity between points in the same cluster and
Algorithm [6] for optimizing thek-means objective points in different clusters.

A. A Review of Clustering Algorithms
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II. DENSITY-BASED APPROACHES ANDLEVEL In this paper, we adopt the framework of bump-
SET METHODS hunting but with several new ingredients incorpo-

' rated to overcome problems that many density-based

A. Density-based Approaches algorithms share. The major steps of our method are

Among various classes of clustering algorithm&S follows: (i) obtain a probability density function

density-based methods are of special interest {5DF) by Kernel Density Estimatian(ii) identify
their connections to statistical models which aRfakK regions of the density function using a surface
very useful in many applications. Density-basegolution equat.|or1_|mplemented by theevel Set
clustering has the advantages for (i) allowing ap/ethods (LSM); (iii) construct a distance-based

bitrary shape of cluster and (i) not requiring thé&:nction called Cluster Intensity FunctionCIF);
number of clusters as input, which is usually diffil’v) apply Valley Seekingn the CIF. In the next
cult to determine. subsections, we describe each of the above four

There are several basic approaches for densiﬂ?—t'ons'
based clustering:

(A1) A common approach is so-called bumpB. Kernel Density Estimation (KDE)

hunting: first find the density peaks or *hot |, gensity-based approaches, one must need to es-
spots” and then expand the cluster boundarigg,ate the density of data. We particularly consider
outward until they meet somewhere, presunfhe yse of kernel density estimation [24], [25], a
ably in the valley regions (local minimums) of,on_parametric technique to estimate the underlying
density contours. The CLIQUE algorithm [15}opapility density from samples. More precisely,

adopted this methodology. given a set of datgx;}Y, c R?, the probability
(A2) Another direction is to start from valley ré-gensity function (PDF) is defined to be
gions and gradually work uphill to connect

data points in low-density regions to clusters 1 X X — X;
defined by density peaks. This approach has f(x) = ) ZK( - ) 1)
been used in Valley Seeking [12] (see below) =1
and DENCLUE [16]. . where K (x) is a positive kernel and is a scale
(A3) A recent approach, DBSCAN [13], is to comparameter. Clusters may then be obtained according
pute reachability from some seed data ang the partition defined by the valleys of. An
then connect those “reachable” points to theificient valley seeking algorithm is reviewed below.
corresponding seed. Here, a pojnis reach-  There are a number of important advantages of
able from a pointg (with respect toMinPts kerel density approach. Identifying high density
and Eps) if there is a chain of pointg: = regions is independent of the shape of the regions.
q; D2, - -+ o = p SUCh that, for each the Eps-  gmoothing effects of kernels make density estima-
neighborhood ofy; contains at leasblinPts tiong robust to noise. Kernels are localized in space
points and containg;y,. A variant, called g4 that outliers do not affect the majority of the data.
OPTICS, has been proposed in [17] whickne number of clusters is automatically determined
orders the data in such a way that clusteringgm, the estimated density function, but one needs
at dl_fferent density parameters are efficiently, adjust the scale parametérto obtain a good
obtained. estimate. Whe is chosen too large’, will be over-
When clusters are well-separated, density-bassdoothed and will become unimodal eventually as
methods work well because the peak and valléy — oo. On the other hand, wheh is chosen
regions are well-defined and easy to detect. Whao small, f may contain many spurious peaks and
clusters are closed to each other, which is oftevill eventually contain one peak for each data point
the case in real situations, both the cluster centas/”2 — 0. Theoretically, an optimah is the one
and cluster boundaries (as the peaks and valleysadfich minimizes the integrated squared error (ISE)
the density distribution) become fuzzy and difficuli,(f(x) — fiue(x))?dx or the expected value of
to determine. In higher dimension, the boundari¢SE where f;.... is the (unknown) underlying true
become wiggly and over-fitting often occurs. density. A common practice is to apply heuristics
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such as cross-validation to obtain a reasonably gotidtance functiomyr(x) for numerical accuracy

estimate of the optimak [26]. reasons [27]. Our convention is that< 0 inside
Despite the numerous advantages of kernel ddi#) and¢ > 0 outsidel'(t).

sity methods, there are some fundamental draw-In general, the signed distance function with

backs which deteriorate the quality of the resultingespect to a set of surfacésis defined by

clusterings. PDFs obtained through KDE are very

often oscillatory (uneven) since they are constructe B

by adding many kernels together. Such an oscilla" x) = { min ||x —y|l2  if x lies outsidel’,

tory nature may lead to the problem of over-fitting, ver ()

whereas a smooth cluster boundary between fere| - ||, denotes the Euclidean norm. To evolve

clusters are usually preferred than an oscillatofy ) (whereT'(0) is the initial data) with speed =
one. Last but not least, valleys and peaks of PDE$y 1) the equation is given by

are often very vague especially when clusters are

—min||x —yl||2 if x lies insideT’
yel

closed together. 9 _ 3
= = BVl ©
C. Level Set Methods (LSM) which is known as the level set equation [28]. Our

PDE also takes this form. The art is to design the

We recognize that the key issue in density-basgfeed functions effectively to achieve one’s goal.
approach is how to advance the boundary either

from peak regions outward towards valley regions, _ _

or the other way around. In this paper, we en- Cluster Intensity Functions (CIF)

ploy LSM, which are effective tools for computing We may use LSM strictly as an effective mech-
boundaries in motion, to resolve the boundary adnism for advancing boundaries. For example, in
vancing problem. LSM have well-established mathhe above approach (Al), once the density peaks
ematical foundations and have been successfullse detected, we may advance cluster boundaries
applied to solve a variety of problems in imag&wards low-density regions using LSM. This would
processing, computer vision, computational fluide a LSM-based bump hunting approach.
dynamics and optimal design. LSM use implicit However, it turns out that utilizing LSM we can
functions to represent complicated boundaries cdiarther develop a new and useful concepthfster
veniently. While implicit representation of static surintensity function A suitably modified version of
faces have been widely used in computer graphitsSM becomes an effective mechanism to formulate
LSM move one step further allowing the surfaceSIFs in a dynamic fashion. Therefore our approach
to dynamically evolve in an elegant and highlgoes beyond the three approaches (Al)-(A3) de-
controllable way, see [27], [28] for details. scribed earlier.

Advantages of LSM include: (i) the boundaries CIFs are effective to capture important character-
in motion can be made smooth conveniently arnstics of clusters. When clusters are well-separated,
smoothness can be easily controlled by a parame@Fs become similar to density functions. But when
that characterizes surface tension; (ii) merging awctlusters become closed to each other, CIFs still
splitting of boundaries can be easily done in @early describe the cluster structure whereas den-
systematical way. Property (ii) is very important isity functions and hence cluster structure become
data clustering as clusters can be merged or splitdlurred. In this sense, CIFs are a better representa-
an automatic fashion. Furthermore, the advancingtin of clusters than density functions.
boundaries is achieved naturally within the frame- CIFs resolve the problems of PDFs while ad-
work of partial differential equation (PDE) whichvantages of PDFs are inherited. Although CIFs are
governs the dynamics of the boundaries. also built on the top of PDFs, they are cluster-

In LSM, a surfacel'(¢) at timet is represented oriented so that only information contained in PDFs
by the zero level set of a Lipschitz functioh = that is useful for clustering is kept while other
o(x,t), i.e,, I'(t) = {x : ¢(x,t) = 0}. The value irrelevant information is filtered out. We have shown
of ¢ at non-zero level sets can be arbitrary, butthat such a filtering process is very important in
common practice is to choosg to be thesigned clustering especially when the clusters touch each
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other. On the other hand, it is well-known that wherefers to the interface between two clusters, i.e., a
the clusters are well-separated, then valley seekisigrface separating two clusters. A CCC is usually
on PDFs results in very good clusterings. Sindecated near a density peak while a cluster bound-
the valleys of CIFs and PDFs are very similar, iiry is located at the valley regions of a density
not identical, when the clusters are well-separatetistribution. Here, a poink is said to belong to
clustering based on CIFs is as good as that baseudalley region off if there exists a direction along
on PDFs. However, advantages of CIFs over PDiahich f is a local minimum. The gradient and the
become very significant when the clusters are closkdplacian of a functiory are denoted bywg and
together. Ag respectively.

Our method consists of the following main steps

E. Valley Seeking whi;:_h will be elaborated in details in the next
sections:

In a graph-based version described in [12], the =~ =~ : ,
idea is to connect each point to another point nearfy) g}gﬂze CCCs to surround high density re-

having a higher density. In this way, we obtain : . .
forest where each tree is a cluster. Presumably, t??e) Sg\aﬁg?e the CCCs using LSM to find density

f h is | [ i k
root node of each tree is located in a density peazs) apply valley seeking algorithm on the CIF con-

whereas most leaf nodes are in valley regions. . )
This method starts off with a density estimation structed from the final CCCs to obtain clusters.

evaluated at each data point. The density can be

obtained using the PDF described in (1) or using the V. INITIALIZATION OF CLUSTER CORE
k-nearest neighbor method [25]. In the experiments CONTOURS(CCC)

below, we use the PDF. For each pointx;,
denote byN,(x;) the set of neighboring points of
x; within a distance ofr, excludingx; itself. For
eachx; € N,(x;), the directional derivation of at
x; alongx; — x; is estimated bys;(j) = [f(x;) —
f(xi)]/]|x; —Xil|2. Let jmax = argmax; s;(j). Next,

if s;(jmax) < 0, theni is set to be a root node. If
si(Jmax) > 0, then the poink; that maximizes;;(j)  refer them amon-cluster regionsSuch an interface
is set to be the parent node &f. If si(jmax) = I is constructed as follows.

0 and if x; is connected to a root node, then npefinition 1: An initial set of CCCsI, is the set
the root node is assigned to be the parenof o ,arq crossings o f, the Laplacian off. Here, a
otherwise,x; becomes a root node. When all th oint x is a zero crossing i\ f(x) = 0 and within

points are visited, a forest will be co_nstructed a y arbitrarily small neighborhood of, there exist
each connected component (a tree) is a cluster. .+ 504x~ such thatA f(x ) > 0 andA f(x~) < 0.

In our method, once the CIF is obtained, cluster We note thatl, often contains several closed

Iabel; can be e_asily assigngd by aPp'ying the ab(g’l?rfaces, denoted b{fy;}. The idea of using zero
algorithm but with the density function replaced th@rossings of Af is that it outlines the shape of

distance-based CIF. datasets very well and that for many commonly used
kernels (e.g. Gaussian and cubic B-spline) the sign
[Il. AN OUTLINE OF OUR CLUSTERFORMATION  f A f(x) indicates whethex is inside (A f(x) < 0)
STRATEGIES or outside A\ f(x) > 0) Ig.

Our clustering method consists of several major Complete reasons for using zero crossinga\gf
components. We here give a high-level descriptida outline the shape of datasets are several folds: (a)
of the method in order to provide a global picturethe solution is a set of surfaces at whigk f||, is

We start by introducing some terminologies. Aelatively large; (b) the resultinh, is a set of closed
cluster core contour(CCC) is a closed surfacesurfaces; (cX'y well captures the shape of clusters;
surrounding the core part/density peak of a cluster(af) the Laplacian operator is an isotropic operator
which density is relatively high. &luster boundary which does not bias towards certain directions; (e)

We now describe how to construct an initial
cluster core contourk, effectively. The basic idea
is to locate the contours at whighhas a relatively
large (norm of) gradient. In this way, regions inside
'y would contain most of the data points — we refer
these regions asluster regions Similarly, regions
outsidel', would contain no data point at all and we
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the equation is simple and easy to solve; (f) it
coincides with the “definition” of edges in the case
of image processing. In fact, a particular application
of zero crossings of Laplacian in image processing
is to detect edges to outline objects [29]; (g) the sign
of Af(x) indicate whethek is inside (negative) or
outside (positive) of a cluster region.

Analytic formula for Af is often available. In
case of Gaussian kernels, we have

Ix —xil5 — X — X;
Z hp+4 27r p/2 K h ’

In Fig. 1(a) and (b), we show a dataset drawn
from a mixture of three Gaussian components and
the PDF f obtained by KDE respectively. The
dataset is generated so that the three clusters ar
closed to each other whilst the Gaussian mixture
still has three distinct peaks theoretically. Such a
dataset is expected to be tough for most clustering

algorithms. We observe that the valleys and peaks™ 002

correspond to the two smaller large clusters of the
PDF are very vague or may even not exist. Thus,
the performance of PDF-based bump-hunting and/or
valley seeking could be poor. In Fig. 1(c), we show
the initial CCCs juxtaposed with the dataset. We
observe that the CCCs capture the shape of the
dataset very well.

V. ADVANCING CLUSTER CORE CONTOURS

Next, we discuss how to advance the initial CCCs
to obtain peak regions through hill climbing in a
smooth way. We found that this is a key issue
in density-based approaches and is also how ideas
from LSM come into play. More precisely, we
employ PDE techniques to advance contours in an
elegant way.

A. Evolution Equation
Since each initial CCOY; in I'y changes its

0.01 -

0044

8

4t

(©)

shape as evolution goes on, we parameterize stghl.
a family of CCCs by a time variablg i.e., thei-
th CCC at timet is denoted byl';(¢). Moreover,

T'(0) = L.

Using a level set representation, timean curva-
ture k = k(x,t) (see [28]) of['(¢) at x is given

by

K(x,t) = V- ( Vox, ) ) |

IVo(x,1)]l2

(a) A mixture of three Gaussian distributions. (b) The PDF

f using Gaussian kernel with window siZe = 1. (c) The initial

CCC. In (b), peaks and valleys corresponding to the two smaller
large clusters are very vague that the performance of applying bump-
hunting and/or valley seeking algorithm based on the PDF is expected
to be poor. Clusters obtained from our method are shown in Fig. 3. In
(c), we observe that the initial CCCs capture the shape of the dataset
and that the resulting boundaries capture the hot spots of the dataset
very well.
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Roughly speaking, the value of at x indicates the CCCs at time¢ can be expressed as (see [31]):
how curve the surfacdx : ¢(x,t) = 0} is at
x. Moreover, if the surface is convex (respectively /|VH(¢(X, t))|dx
concave) atx, thenx > 0 (respectivelyx < 0).

Given the initial CCCsI'(0) represented by thewhere H(z) is the Heaviside function defined by
zero level set of¢(x,0) (which is chosen to be

the signed distance functiogir((x)), the time H(x) :{ (1) :; v ig
dependent PDE that we employ for hill climbing =
on density functions is given by Then the derivative of the length/surface area with

respect top gives the curvature ob.

5 ( : )
— = |V tar ) IVl (4)
ot L+ |V £l ? B. Dynamic Adjustment af

¢(x,0) = re(x). The scalara > 0 controls the amount of ten-
sion added to the surface and will be adjusted
This equation is solved independently for each clugynamically during the course of evolution. At the
ter region defined according 10(¢). During evolu- beginning of evolution of each;(0), we setow = 0
tion, each contour and hence each cluster regipn order to prevent smoothing out of important
may split. For example, if an initial CCC enclosefeatures. After a CCC is split into pieces, tension
two density peaks, then the CCC will eventuallls added and is gradually decreased to 0. In this
split into two as it climbs uphill. Evolution is way, spurious oscillations can be removed without
stopped when no further splitting occurs. destroying other useful features. Such a mechanism
The aim of the factot /(14 ||V f||») is to perform is similar to cooling in simulated annealing. In our
hill climbing to look for density peaks. Moreoverjmplementation, the PDE (4) is solved at discrete
the factor also adjusts the speed of each point on tivae ¢, = kAt. The « for each component contour
CCCsin such a way that the speed is lowd|Nff|>, T is dynamically adjusted as follows:
is larger. Thus the CCCs stay in steep regiong of , Setq = 0 for eachlI; initially.

where peak regions are defined better. In the |Im|t|ng. At each time poinﬁk and for each Component
case wheref has a sharp jump||¥/flls — o0), I;, if I; is split into two contourd’;, andl';,,

the CCCs actually stop moving at the jump. We  then set they for both T';, andT;, to be cyax.
remark that in traditional steepest descent methods Qtherwise, replace the for I'; by v where

for solving minimization problems, the speed (step ( < v < 1is a fixed constant.
size) is usually higher if|V f|, if larger, which is |, o experiments, we fixi.. = 1 and~ = 0.99.

opposite to what we do. This is because our goglirically, we found that the evolution is quite
Is to locate steep regions of rather than local st 1o the choice of. For example, one may
minimums. _ set~y to be any number betweeh8 and 1.0. The
The curvatures exerts surface tension to smootharametery should be chosen to be small so that the
out the CCCs[30]. In contrast, without exertingominated motion is hill climbing. The purpose of
surface tension, the CCCs could become wigglMe curvature term is to regularize the way that the
which may lead to the common problem of ovelsontours climb up the hill. I is set to be too large,

fitting of PDFs. Therefore, we employ the temn then the motion of the contours will have nothing
to resolve such a problem. In fact, & is kept to do with the PDFf at all.

to be a signed distance function for &l i.e.,

IVo|l2 = 1, thenk = A¢ so that¢ is smoothed o _

out by Gaussian filtering. In the variational point- Términation of Evolution

of view, the curvature term exactly corresponds to If we do not stop the evolution, then the contours
the steepest descent of the length (in 2-dimensionéll reach the peak regions, presumably one contour
case) and surface area (irdimensional case wherefor each peak. Eventually, sincgV f|| is never

n > 3) of the CCCs. More precisely, under thénfinity in practice (and hence the speed of the
level set representation, the length/surface areacwointours is neveb), each contour will shrink into a
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point and disappear in finite time. Ideally, we waris a decreasing function ¢fVVu(x)||» and is zero at
to stop the evolution when each contour enclosas edge. If we defing by

one density peak. In this case, there will be no 1
further splitting of the contours. However, it is 9([[Vu(x)ll2) = T
generally difficult to determine in advance whether + Vel
the contours will split at a later time or not. then we have
Our strategy is to let the contours evolve until 0p(x,t)
they disappear. But we keep in record the contours ot
right after each splitting. More precisely, If; is 1
split into two contoursl’;, andT},, then we store = 1 [Vu(x)[, e+ K66 O VO(x, )2

I';, andl';, and deletel’; from our record. In this Thi i is similar t PDE (4 t
way, we can retain the earliest contours which Wi# IS equation ‘1S simiiar 1o our (4) excep
or the coefficient ofx. Presumably, contours will

not be split any further. Let’ be the earliest time : . .
so that no splitting will occur at a later time anc'f‘tOIO at the edges of the objects in the image. The

let ¢” be the time where all contours disappea?#;[/iuijsrergﬁ[gt Itso ?ﬁ:dn;?s;ei%lulﬁgzifn;hee motion so
In most situqtions, we have > t//._ t SO,,th.at Remark 2: While our approach d?/n;elmically
g;ﬁa%og%?r'gg \?v?tintth%? g[]me tt}}m e interyet"] is evolves a set of contours to detect density peaks,
’ another approach callesupport vector clustering
[33] obtains a set of static surfaces where each
D. A Summary of the Evolution Equation of them encloses one cluster. The idea is to first
_ _ _ .. use kernel methods to map the data to a high
In summary, the PDE simply (i) moves the initiajimensional feature space. Then, find the sphere
CCCs uphill in order to locate peak regions; (ilith the smallest radius which encloses most of the
adjusts the speed according to the slope of the PQfz3 noints in the feature space (a few outliers are
(i) rremoves small osm!latlc_)ns _of _the CCCs b3é||owed). Finally, apply the inverse mapping to map
adding tension so that hill climbing is more robus},e sphere back to the original space. The sphere in
to the unevenness of the PDF (c.f. Examples 1 aggl original space becomes a set of surfaces where
2 in §VII). In addition to these, the use of LSMgach of them encloses one cluster. In this method,
allows the CCCs to change their topology easily. there is no control over the smoothness of the back
In Fig. 3(a)—(c), we show the CCCs during thgansformed surfaces in the original space. Thus, it
course of evolution governed by (4). We observgyn pe clearly seen from their experiments that the

that the contours are attracted to density peakgyfaces are very wiggly (for example, see Fig. 3 in
When a contour is split into several contours, thagzyy.
pieces are not very smooth near the splitting points.
Since tension is added in such cases, the contours VI. CLUSTER INTENSITY EUNCTIONS
are straightened quickly.

Numerical implementation of our method is given In non-parametric modelling, one may obtain
in the Appendix. clusters by employing valley seeking on PDFs.

However, as mentioned above, such methods per-

form well only when the clusters are well-separated
E. Some Remarks and of approximately the same density in which
ase peaks and valleys of the PDF are clearly
efined. On the other hand, even though we use the
density peaks identified by our PDE (4) as a starting
point, if we expand the CCCs outward according to
9p(x, 1) the PDF, we stiII_ have to fac_e the probl_ems of the
= g([[Vu(x)|2) [c + k(x,1)] [Vo(x,t)[2.  PDF; we may still get stuck in local optimum due

to its oscillatory nature.
Herec is a nonnegative constant(x) is the given In this section, we further explore cluster inten-
image andy(||Vu(x)||2) is an edge-detector whichsity functions which are a better representation of

. . C

Remark 1:Our evolution equation (4) resemblea

some features of thgeometric active contourfor
image segmentation [32]:
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clusters than that by PDFs. Due to the advantages
of CIFs, we propose to perform valley seeking on

CIFs to construct clusters, rather than on PDFs.
Here, CIFs are constructed based on the final CCCs

15r

1k

0.5r

obtained by solving the PDE (4). N

CIFs capture the essential features of clusters
and inherit advantages of PDFs while information
irrelevant to clustering contained in PDFs is filtered
out. Moreover, peaks and valleys of CIFs stand out
clearly which is not the case for PDFs. The principle S L S E ]
behind is that clustering should not be done solely ' Cooa '
based on density. Instead, it is better done based on
both density and distance. For example, it is well-
known that the density-based algorithm DBSCAN
[13] cannot separate clusters that are closed togethe
even though their densities are different and the
density-based algorithm OPTICS [17] cannot sep- N
arate the clusters when they have similar densities. . *°7

CIFs, however, are constructed by calculating 1y
signed distancérom CCCs (which are constructed 154
based on density). Thus, CIFs combine both density
and distance information about the dataset. This is
a form of regularization to avoid over-specification
of density peaks.

The definition of a CIF is as follows.

Definition 2: Given a set of closed hypersurfaces

i i i Fig. 2. (a) Two “C” shape clusters juxtaposed with the zero crossings
L (t.he final CCCS)’ the CIED with respect tal Is of Af and the valleys of the CIF. (b) The CIF constructed from the
defined to be zero crossings of\ f. In (a), the valleys of the CIF clearly separate
the two clusters. This cannot be done effectively by distance-based
methods such ak-means.

-1.5F

oL

(b)

p(x) = —¢r(x)

wherer is the signed distance function in (2). ) _
The value of a CIF ak is simply the distance We remark that the use of signed distance as CIFs

betweenx and I' with its sign being positive if has a property that their valleys are nothing but the
x lies insideT and negative ifx lies outsideT. equidistant surfaces between the CCCs. Moreover,

Roughly speaking, a large positive (respectivefjuster core contours play a similar role as cluster
negative) value indicates that the point is deep insi@8Nters in thek-means algorithm [7]. Thus, our
(respectively outside) while a small absolute valueMethod may be treated as a generalization ofithe
indicates that the point lies close to the interfad8&ans algorithm in the sense that a “cluster center”
I'. To illustrate the expressive power of CIFs, affi@y be of arbitrary shape instead of just a point.
example based on the “C"-shape clusters is shownUnder LSM framework, valleys and peaks are
in Fig. 2. easily obtained. The valleys are just the singularities
In Fig. 3(d), the CIF constructed from the cccef the level set function (i.e. CIF)‘havmg .negatlve
in Fig. 3(c) is shown. The peaks correspond to twglues. On the_ other hand, th_e_ singularities of the
three large clusters can be clearly seen which sholf¥e! set function having positive values are the
that our PDE is able to find cluster cores effectivelf)€aKS Or ridges of the CIF (also known as skeleton).

Based on the CIF, valley seeking (céfll) can
be easily done in a very robust way. In Fig. 3(e), VII. EXPERIMENTS
we show the valleys of the CIF juxtaposed with the In addition to the examples shown in Figs. 1-
dataset and the final CCCs. 3, we give more examples to further illustrate the
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Fig. 3. Evolution of cluster core contours (CCC) using the bump hunting PDEs (4). The dataset is the one used in Fig. 1. (a) Initial CC
(b) Intermediate CCCs. (c) Final CCCs. (d) CIF constructed from the contours in (c). Peaks corresponding to the three large clusters
clearly seen. (e) Valleys of the CIF. In (e), the three cluster cores are well-discovered.
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usefulness of the concepts introduced. Comparisdnamn text documents in three newsgroups. For the
with valley seeking [12] and DBSCAN [13] al-ease of visualization, the dataset is first projected
gorithms (c.f. §ll) are given in Examples 1 andto a 2-D space using principle component analysis
2. Clustering results of two real datasets are alfgb]. The results in Fig. 7 show that the clustering
presented. For visualization of CIFs which is oneesults agree with the true clustering very well.
dimension higher than the datasets, two dimensional
datasets are used while the theories presented above VIIl. CONCLUDING REMARKS
apply to any number of dimensions.

When applying DBSCAN, the paramete[0

MinPts is fixed atd as suggested by the aUthorE’amdscape for data clustering. The method relies on

in [13]. advancing contours to form cluster cores. One key

Example 1:We illustrate how the problem of oint is that during contour advancement, smooth-
over-fitting (or under-fitting) of PDFs is resolved usP : 9 O
ness is enforced via LSM. Another point is that

ing our method. In Fig. 4, we compare the CIUSterInPnportant features of clusters are captured by cluster

results of valley seeking using the scale parame#ﬁ{ensit functions which serve as a form of regular-
h = 0.6,0.7 and the DBSCAN algorithm using. y 9

Eps = 0.28.0.29. The best result is observed in l:iglzatlon. The usual problem of roughness of density

4(a) but it still contains several small clusters due {8nctlons 's overcome. The method is shown to be

: o more robust and reliable than traditional methods
the spurious oscillations of the PDF. For other Cases, . perform bump hunting or valley seeking on

a mixture of many small clusters and some over-__ . .
density functions.

sized Cll.JSter.S are present. In contrast, our meth.OdOur method can also identify outliers effectively.
(shown in Fig. 3) resolves these problems by.(ther the initial cluster core contours are con-

outlining the shape of the dataset well by keepmsqructed outliers are clearly revealed and can be

the CCCs smooth; (ii) using curvature motion tOasily identified. In this method, different contours

smooth out oscillations due to unevenness of PD%/'olve indenendently. Thus outliers do not affect
Example 2: A dataset with 4000 uniformly dis- b Y-

tributed points lying in two touching circles is Con_normal cluster formation via contour advancing.

sidered. The dataset together with the zero crossirgq%(:h. a nice property does not hold for clustering
gorithms such as the-means where several out-

of Af are shown in Fig. 5(a). The result of OufiIers could skew the clustering.

method is in Fig. 5(b). We observe that the fina ,
CCCs adapt to the size of the clusters suitably. TheOur method for contour advancement given by (4)

results of valley seeking on PDF& & 0.05, 0.06) IS"based on the dynamics of interface propagation

N in LSM. A more elegant approach is to recast the
are shown in Fig. 5(c) and (d) where the unevenness ; R

o cluster core formation as a minimization problem
of the PDFs result in either 2 or 4 large clusters. T%ﬁere the boundarv advancement can be derived
results of DBSCAN withEps = 0.010,0.011 are in y

Fig. 5(e) and (f) which contain many small clusterfr(t)gr] S;;tefrlnuples which will be presented in a

In addition, this example also makes it clear that
density functions must be regularized which is done
implicitly by adding surface tension in our method. APPENDIX
Example 3:This example uses a dataset con- NUMERICAL IMPLEMENTATIONS
structed from the co-expression patterns of the gene§o solve the PDE (4) numerically, we apply
in yeast during cell cycle [34]. Clusters of thestandard finite difference schemes for level set equa-
data are expected to reflect functional modules. Ttiens. We refer the readers to [27], [28], [36] for ex-
results are shown in Fig. 6. We observe that tleellent overviews of level set methods, evolutionary
valleys of the CIF in Fig. 6(c) are right on the lonequations and numerical implementations.
density regions and thus a reasonable clustering iConsider a grid(i; Az, i2Ax, ..., i,Az) where
obtained. We also notice that the clusters are veryis,...,1, are integersAz is the spatial step size.
close, if not overlapped, to each other, especiaMe recall thatp is the dimensionality of the data.
the two clusters at the bottom. The time variable is discretized t@\¢ wherek is
Example 4:0Our next example uses a real datasah integer andAt¢ is the temporal step size. Let

In the paper, we introduced level set methods
identify density peaks and valleys in density
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Fig. 4. Clusters obtained from applying valley seeking and DBSCAN to the dataset in Fig. 1. (a) Valley seeking=nilé. (b) Valley
seeking withh = 0.7. (¢) DBSCAN with Eps = 0.28. (d) DBSCAN with Eps = 0.29. In (a) and (c), many small clusters are present due
to unevenness of the density functions. These results are not as good as the results using our method as shown in Fig. 3

i = (i1,%2,...,1y). The sample ofg(x,t) at the Similarity, define the backward difference operator
grid point (i;Az,i;Ax, ..., i,Az) at time kAt is in the j-th spatial dimensiorD; by:
denoted byp:. .

To obtain the initial data(x, 0) in (4), we need to Dk = O — i
compute the signed distance from the initial cluster s Ax
core contours. This requires solving the Eikonal A first order accurate upwind scheme for the level
equation set equation

with boundary conditiong)(x) = 0 on I'(0) which o~ PxDIVeE 12

can be done fast by the Fast Marching Method [27] given by

or Fast Sweeping Method [37]. Since the impleézﬁ“ .

mentation is straightforward and has been detail — ¢ _ gk Y ok _

in [27], we omit the details. At [max(=47, 0)V" +min(—G, 0) V]
Let e; be the vector(0,...,0,1,0,...,0) whose \yhere

j-th entry is anl and the other entries afe Define

the forward difference operator in theth spatial V' = [max(Dy,0) +min(Dy,0) + ... +
dimensionD’ by: max(D,’,0) + min(D;, 0)]"/?
koo gk V™ = [max(Dj,0)+min(D;,0) + ...+
Dok = T T % b o
i Pic Ar max(D,,0) + min(D,,0)]"/7,
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Fig. 5. Comparisons of our method with valley seeking and DBSCAN. (a) Dataset with the zero crosairfgsofperimposed. (b) Final
CCCs (the closed curves in red and blue) and the valleys of the CIF (the line in black). (c) Valley seekihg=nti)5. (d) Valley seeking
with A = 0.06. () DBSCAN with Eps = 0.010. (f) DBSCAN with Eps = 0.011. The CCCs are able to capture the cluster shape while
valley seeking and DBSCAN seem to suffer from over-fitting and result in many small spurious clusters.
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(€) (d)

Fig. 6. (a) DNA gene expression dataset. (b) Zero crossingsfof(c) The final CCCs and the valleys of the CIF. (d) The CIF. The cluster
cores are well-retrived and the valleys successfully separate the data into clusters of relatively high density.

see [36, p.80] and also [27, p.65]. In our PDE (4jpoints, then the number of grid points (in space) is

the speed is given by nP. Using sparse grids, which are optimally chosen
1 subsets of grid points, we can reduce the number of
f(x,t) = ————+akr grid points toO(n(logn)P~1) with a fairly small loss
L+ V2 in accuracy. Indeed, sparse grids techniques have
_ 1 +aVv- ( Vo ) already been successfully applied to a number of
L+ [V £l IVlla data mining problems [40]-[42]. We have yet to

which is approximated by central difference to olfXPlore this direction.

tain F. For higher order accurate schemes, see [27,
pp.66—-67]. ACKNOWLEDGMENTS
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(a) A dataset of 3 internet newsgroups with 100 news items in each group (news items in the same group are displayed with

same symbol). (b) The zero crossings/®f. (c) Clustering results (lines are valleys of the final CIF and closed curves are the cluster cores).
(d) The CIF.
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