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Abstract

Dimension reduction methods, such as Latent Semantic Indexing (LSI), when ap-

plied to semantic space built upon text collections, improve information retrieval, infor-

mation filtering and word sense disambiguation. A new dual probability model based

on the similarity concepts is introduced to provide deeper understanding of LSI. Se-

mantic associations can be quantitatively characterized by their statistical significance,

the likelihood. Semantic dimensions containing redundant and noisy information can

be separated out and should be ignored because their contribution to the overall sta-

tistical significance is negative. LSI is the optimal solution of the model. The peak in

likelihood curve indicates the existence of an intrinsic semantic dimension. The impor-

tance of LSI dimensions follows the Zipf-distribution, indicating that LSI dimensions

represent the latent concepts. Document frequency of words follow the Zipf distribu-

tion, and the number of distinct words follows log-normal distribution. Experiments

on five standard document collections confirm and illustrate the analysis.

Keywords: Latent Semantic Indexing, intrinsic semantic subspace, dimension reduc-

tion, word-document duality, Zipf-distribution.

1 Introduction

As computers and Internet become part of our daily life, effective and automatic information

retrieval and filtering methods become essential to deal with the explosive growth of accessi-

ble information. Many current systems, such as Internet search engines, retrieve information

by exactly matching query keywords to words indexing the documents in the database. A

well-known problem (Furnas et al., 1987) is the ambiguity in word choices. For example,

one searches for “car” related items while missing items related to “auto” (synonyms prob-

lem). One looks for “capital” city, and gets venture “capital” instead (polysemy problem).

Although both “land preserve” and “open space” express very similar ideas, Web search

engines will retrieve two very different sets of webpages with little overlap. These kinds of

problems are well-known.
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One solution is to manually classify information into different categories by using human

judgement. This categorized or filtered information, in essence, reduces the size of the

relevant information space and is thus more convenient and useful. Hyperlinks between

webpages and anchored words proved useful (Larson, 1996; Li, 1998; Chakrabarti et al.,

1998).

A somewhat similar, but automatic approach is to use dimension reduction (data re-

duction) methods such as the Latent Semantic Indexing (LSI) method (Deerwester et al.,

1990; Dumais, 1995; Berry et al., 1995). LSI computes a much smaller semantic subspace

from the original text collection, which improves recall and precision in information retrieval

(Deerwester et al., 1990; Bartell et al., 1995; Zha et al., 1998; Hofmann, 1999), (Husbands

et al., 2004), information filtering or text classification (Dumais, 1995; Yang, 1999; Baker

and McCallum, 1998), and word sense disambiguation (Schutze, 1998) (see §3).

The effectiveness of LSI in these empirical studies is often attributed to the reduction of

noise, redundancy, and ambiguity. Synonyms and polysemy problems are somehow allevi-

ated in the process. Several recent studies (Bartell et al., 1995; Papadimitriou et al., 1998;

Hofmann, 1999; Zha et al., 1998; Dhillon, 2001) shed some lights on this direction (see §9
for detailed discussions).

A central question, however, remains unresolved. Since LSI is a pure “numerical” and

automatic procedure, the noisy and redundant semantic information must be associated

with a numerical quantity that was reduced or minimized in LSI. But how can one define a

quantitative measure for semantic information? How can one verify that this quantitative

measure of semantic information is actually reduced or minimized in LSI?

In this paper we address these questions by introducing a new probabilistic model based

on document-document and word-word similarities, and show that LSI is the optimal solution

of the model (see §5). Furthermore, we use the statistical significance, i.e., the likelihood,

as a quantitative measure of the LSI semantic dimensions. We calculate likelihood curves

of five standard document collections; as LSI subspace dimension k increases (Figure 1), all

likelihood curves arise very sharply in the beginning, then gradually turn into a convex peak,

and decrease steadily afterwards. This unambiguously demonstrates that the dimensions

after the peak contain no statistically meaningful information — they represent noisy and

redundant information. The existence of these limited dimension subspaces that contains the

maximum statistically meaningful information, the “intrinsic semantic subspace”, provides

an explanation of the observed performance improvements for LSI (see §6).

Our model indicates that the statistical significance of LSI dimensions is related to the

square of its singular values. For all the five document collections, the statistical significance

of LSI dimensions is found to follow a Zipf-law, indicating LSI dimensions represent latent

concepts in the same way as webpages, cities, and English words do (see §7).

We further study the word document frequency distribution, which helps to explain the

Zipf-law characteristics of LSI dimensions. We also investigate the distribution of distinct
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words, which reveals some internal structure of document collections (see §8). Overall,

our results provide a statistical framework for understanding LSI type dimension reduction

methods. Preliminary results of this work have been presented in conferences (Ding, 1999,

2000).

2 Semantic Vector Space

One of the fundamental relationships in human language is the dual relationship, the mu-

tual interdependence, between words and concepts. Concepts are expressed by the choice

of words, while the meanings of words are inferred by their usage in different contexts.

Casting this relationship into mathematical form leads to the semantic vector space (Salton

and McGill, 1983). A document (title plus abstract or first few paragraphs) is represented

by a vector in a linear space indexed by d words (word-basis vector space). Similarly, a

word (term) is represented by a vector in a linear space spanned by n document/contexts

(document-basis vector space). These dual representations are best captured by the word-

to-document association matrix X,

X =







x1
1 . . . x1

n
...

. . .
...

xd
1 . . . xd

n







≡ (x1 · · ·xn) ≡






t1

...

td




 (1)

where each column xi represents a document1, and each row tα represents a word (term)1.

The matrix entry xα
i ≡ (xi)

α ≡ (tα)i. The matrix element xα
i contains the term frequence

(tf) of term α occurring in the document i, properly weighted by other factors (Salton and

Buckley, 1988). For the common tf.idf weighting, xα
i = tf

α
i · log(1 + n/dfα) where the

document frequence df
α is the number of documents in which the word α occurs.

3 Dimension Reduction: Latent Semantic Indexing

In the initial semantic vector space, the word-document relations contain redundancy, am-

biguity, and noise — the subspace containing meaningful semantic associations is much

smaller than the initial space. One method to obtain the subspace is to perform a dimension

reduction (data reduction) to a semantic subspace that contains essential and meaningful

associative relations.

LSI is one such dimension reduction method. It automatically computes a subspace which

contains meaningful semantic associations and is much smaller than the initial space. This

1In this paper, capital letters refer to matrices, bold face lower-case letters to vectors: vectors with

subscript represent documents and vectors with superscript represent terms; α, β sum over all d terms and

i, j sum over all n documents.
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is done through the singular value decomposition (SVD) 2 of the term-document matrix:

X =
r∑

k=1

ukσkv
k = UrΣrV

T
r , (2)

where r is the rank of the matrix X, Σr ≡ diag(σ1 · · ·σr) are the singular values, Ur ≡
(u1 · · ·ur) and Vr ≡ (v1 · · ·vr) are left and right singular vectors. Typically the rank r is

order min(d, n), which is about 10,000. However, if we truncate the SVD and keep only

the first k largest terms, the resulting X ' UkΣkV
T
k is a good approximation. Note here,

k ∼ 200 and r ∼ 10, 000, thus a substantial dimensionality reduction. (Good illustrative

examples were given in (Deerwester et al., 1990; Berry et al., 1995).)

Document retrieval for a query q is typically handled by keyword matching, which is

equivalent to a dot-product between the query and a document (variable document length is

accounted for by normalizing document vectors to unit length). Relevance scores for each of

the n documents form a row vector, which are calculated as s = qT X. Documents are then

sorted according to their relevance scores and returned to user. In a LSI k-dim subspace,

a document xi is represented by its projection in the subspace, UT
k xi, and all n documents

(x1 · · ·xn) are represented as UT
k X = ΣkV

T
k . Queries and mapping vectors are transformed

in the same way as documents. Therefore, the score vector in LSI subspace is evaluated as

s = (UT
k q)T (UT

k X) = (qT Uk)(ΣkV
T
k ). (3)

Using these LSI dimensions in document retrieval, both recall and precision are improved,

compared to the baseline keyword matching (Deerwester et al., 1990; Bartell et al., 1995;

Zha et al., 1998; Hofmann, 1999; Husbands et al., 2004; Caron, 2000).

LSI has also been applied to information filtering (text categorization), such as classifying

an incoming news item into predefined categories. An effective method is using the centroid

vectors (c1, · · · , cm) ≡ C for the m categories (Dumais, 1995). Another method (Yang, 1999)

view C as mapping vectors and obtain them by minimizing ||CT X − B||2, where the m×n

matrix B defines the known categories for each document and ||B||2 =
∑n

i=1

∑m
k=1(B

k
i )2.

Using LSI, the centroid matrix or mapping matrix is reduced from d×m to k×m, reduces

the complexity and noise (Dumais, 1995; Yang, 1999). LSI is also effective in Naive Bayes

categorization (Baker and McCallum, 1998).

In word sense disambiguation (Schutze, 1998), the calculation involves a collocation ma-

trix, where each column represent a context, words that collocate with the target word

within a text window. These contexts are then clustered to find different senses of the target

word. LSI dimension reduction is necessary to reduce the computational complexity in the

clustering process and leads to better disambiguation results (Schutze, 1998).

The usefulness of LSI has been attributed to that the LSI subspace captures the essential

associative semantic relationships better than the original document space, and thus par-

2Good textbooks on SVD and matrix algebra are (Golub and Loan, 1996; Strang, 1998)
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tially resolves the word choice (synonyms) problem in information retrieval, and redundant

semantic relationships in text categorization.

Mathematically, LSI with a truncated SVD is the best approximation of X in the reduced

k-dim subspace in L2 norm (Eckart-Young Theorem (Eckart and Young, 1936)). However,

the improved results in information retrieval and filtering indicate that LSI seems to go

beyond mathematical approximation.

From statistical point of view, LSI amounts to an effective dimensionality reduction,

similar to the Principal Component Analysis (PCA) in statistics 3 Dimensions with small

singular values are often viewed as representing semantic noise and thus are ignored. This

generic argument, considering its fundamental importance, needs to be clarified. For exam-

ple, how small do the singular values have to be in order for the dimensions to be considered

noise? A small singular value only indicates that the corresponding dimension is not as

important as those with large singular values, but “less important” in itself does not directly

imply “noise” or “redundancy”.

Thus the question becomes how to quantitatively characterize and measure the associa-

tive semantic relationship. If we have a quantitative measure, we can proceed to verify if

dimensions with smaller singular values do indeed represent noise.

Directly assigning an appropriate numerical score to each associative relationship appears

to be intangible. Instead, we approach the problem with a probabilistic model, and use sta-

tistical significance, the likelihood, as the quantitative measure for the semantic dimensions.

The governing relationship in the probabilistic model is the similarity relationship between

documents and between words, which we discuss next.

4 Similarity Matrices

It is generally accepted that the dot-product between two document vectors (normalized to 1

to account for different document lengths) is a good measure of the correlation or similarity

of word usages in the two documents; therefore the similarity between two documents is

defined as

sim(xi,xj) = xi · xj =
∑

α

xα
i xα

j = (XTX)ij. (4)

3PCA uses the eigenvectors of the covariance matrix S = X̃X̃T , where X̃ = (x1 − x̄, · · · ,xn − x̄) uses the

centered data while LSI does not. Thus the difference between LSI and PCA are tiny: The first principal

dimensions (singular vectors) of LSI are nearly identical to row and column means of X , which are subtracted

out in PCA. The second principal dimensions of LSI are nearly identical to first principal dimensions of PCA;

The third principal dimensions of LSI match the second principal dimensions of PCA; etc.
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XTX contains similarities between all pairs of documents, and is the document - document

similarity matrix. Similarly, the dot-product between two word vectors

sim(tα, tβ) = tα · tβ =
∑

i

xα
i xβ

i = (XXT )αβ (5)

measures their co-occurrences through all documents in the collection, and therefore their

closeness or similarity. XXT contains similarities between all pairs of words and is the

word-word similarity matrix. If we assign binary weights to term-document matrix elements

xα
i , one can easily see that XXT contains the word-word co-occurrence frequency when the

context window size is set to the document length.

These similarity matrices define the semantic relationships, and are of fundamental impor-

tance in information retrieval (Salton and McGill, 1983). Note that document-document sim-

ilarity is defined in the word-vector-space, while word-word similarity is defined in document-

vector-space. This strong dual relationship between documents and words is a key feature

of our model.

5 Dual Probability Model

In recent years, statistical techniques and probabilistic modeling are widely used in IR. Here

we propose a probabilistic model to address some of the questions on LSI in §3. Traditional

IR probabilistic models (van Rijsbergen, 1979; Fuhr, 1992) focus on relevance to queries.

Our approach focuses on the data, the term-document association matrix X. Query-specific

information is ignored at present, but may be included in future developments.

Documents are data entries in the d-dimensional word-vector-space; they are assumed

to be distributed according to certain probability density function in the probabilistic ap-

proach. The form of the density function is motivated by the following considerations: (1)

The probability distribution is governed by k characteristic (normalized) document vectors

c1 · · · ck (collectively denoted as Ck), (2) The occurrence of a document xi is proportional to

its similarity to c1 · · · ck. When projecting onto a dimension cj, ± signs are equivalent, thus

we use (cj · x)2 instead of cj · x; (3) c1 · · · ck are statistically independent factors; (4) Their

contribution to total probability for a document is additive. With these considerations, and

further motivated by Gaussian distribution, we consider the following probability density

function:

Pr(xi|c1 · · ·ck) = e(xi·c1)2 · · · e(xi·ck)2/Z(Ck) (6)

where Z(Ck) is the normalization constant

Z(Ck) =
∫

· · ·
∫

e(x·c1)2+···+(x·ck)2dx1 · · ·dxd. (7)

This probabilistic model can be seen as a generalization of the loglinear model (Bookstein
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et al., 1992). Consider the case of k = 1 and ignore the square of the projection, we have

Pr(x|c) =
1

Z
ex·c =

1

Z
ex1c1+···+xdcd

=
1

Z
γ1

x1 · · ·γd
xd

(8)

where γα = exp(cα) is the weight for the word α. Log-linear model ignore the correlation

between features (words), i.e., the occurence of each word is independent of other words. Fur-

thermore, if we extend to two factors (characteristic vectors) by using ex·c1+x·c2 = ex·(c1+c2),

we end up with only one factor c = c1+c2. The squaring of x ·c1 accounts for the correlation

between different words; it also make it easy to extend to multiple factors.

Given the form of a probabilistic density function and the data (in the form of matrix X),

the maximum likelihood estimation(MLE) is the most widely used method for obtaining the

optimal values for the parameters in the density function 4. (Another method to determine

parameters is the method of moments, which is used in §8.2.) In our case, the parameters

for the probability model are c1 · · ·ck. In the following, we use MLE to determine these

parameters. First, we note that assumption (3) requires c1 · · ·ck to be mutually orthogo-

nal. Assuming xi are independently, identically distributed, the (logarithm of) probability

likelihood of the entirely data under this model is

`(Ck) ≡ log
n∏

i=1

Pr(xi|c1 · · · ck) (9)

which becomes

`(Ck) =
n∑

i=1

[
k∑

j=1

(xi · cj)
2 − logZ(Ck)] =

k∑

j=1

cT
j XXTcj − nlogZ(Ck) (10)

after some algebra and noting
∑n

i=1(xi · c)2 =
∑

i(
∑

α xα
i cα)(

∑

β xβ
i cβ) =

∑d
α,β=1 cα(XXT )αβcβ

for any given c = cj. Note that in Eq.(10), it is the word-word similarity matrix XXT (the

word co-occurrence matrix) that arises here as a natural consequence of MLE, rather than

the document-document similarity matrix that one might have expected. This is because of

the dual relationship between documents and words. Rephrasing it differently, documents

are data points which live in the index space (word vector space). XXT measures the “corre-

lation” between components of data points, i.e., correlation between words. When properly

normalized, XXT would not change much if more data points are included, thus serving a role

similar to the covariance matrix in principal component analysis. Therefore, understanding

document relationship is ultimately related to the understanding of word co-occurrence. Al-

though this fact is known, it is interesting to see its mathematical demonstration as an result

of our model.

In MLE, the optimal values of Ck are those that maximizes the log-likelihood `(Ck). This

usually involves a rather complex numerical procedure, particularly due to the analytically

4A good textbook on statistics is (Rice, 1995)
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intractable Z(Ck) as a high (d = 103 − 105) dimensional integral. Here we attempt to obtain

an approximate optimal solution. This is based on the observation that nlogZ(Ck) is a very

slow changing function in comparison to
∑

j cT
j XXTcj: (1) In essence, cj is similar to the

mean vector µ in Gaussian distribution, where the normalization constant is independent of

µ. Thus Z(Ck) should be nearly independent of cj. (2) The logarithm of a slow changing

function changes even slower. Thus nlogZ(Ck) can be regarded as fixed, and we concentrate

on maximizing the first term in Eq.(10).

The symmetric positive-definite matrix XXT has a spectral decomposition (eigenvector

expansion): XXT =
∑r

i=1 λiuiu
T
i , λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0, here λi and ui are the ith

eigenvalue and eigenvector (XXTui = λiui). Therefore the optimal solution for characteristic

dimensions c1 · · · ck in maximizing
∑

j cT
j XXTcj are u1 · · ·uk (for more details, see §4.2.2 in

(Horn and Johnson, 1985)). They are precisely the left singular vectors u1 · · ·uk in SVD of

X used in LSI. Thus LSI is the optimal solution of our model, and we will refer to u1 · · ·uk

as LSI dimensions. The final maximal likelihood is

`(Uk) = λ1 + · · ·+ λk − nlogZ(Uk). (11)

We can also model words as defined by their occurrences in all documents, the document

vector space. In this space, data points are words and coordinates are documents. Words

are represented as row vectors in the word-document matrix X. Consider k (normalized)

row vectors r1 · · · rk (collectively denoted as Rk) representing k characteristic words. Using

the word-word similarity, we assume the probability density function for the occurrence of

word tα to be

Pr(tα|r1 · · · rk) = e(tα
·r

1)2 · · · e(tα
·r

k)2/Z(Rk). (12)

The log-likelihood becomes

`(Rk) ≡ log
d∏

α=1

Pr(tα|r1 · · · rk) =
k∑

j=1

rjTXTXrj − dlogZ(Rk), (13)

after some algebra, and noting
∑d

α=1 tαi tαj =
∑d

α=1 xα
i xα

j = (XTX)ij. The document-document

similarity matrix XTX arises here. To determine Rk, we maximize the log-likelihood Eq.(13).

Following the same line of reasoning for `(Ck) of Eq.(10), we see that the second term,

dlogZ(Rk), is a slow changing function; thus we only need to maximize the first term in

Eq.(13). XTX has a spectral decomposition: XTX =
∑r

α=1 ξα(vα)Tvα, ξ1 ≥ ξ2 ≥ · · · ≥
ξr ≥ 0, here ξα and vα are the αth eigenvalue and eigenvector, XTXvα = ξαv

α. The

optimal solution for characteristic words r1 · · · rk in maximizing
∑

j rjTXTXrj are v1 · · ·vk

(see §4.2.2 in (Horn and Johnson, 1985)). By construction, v1 · · ·vk are precisely the right

singular vectors of SVD of X. Therefore, v1 · · ·vk of LSI are the optimal solution of the

document-space model, and the maximal log-likelihood is

`(Vk) = ξ1 + · · ·+ ξk − nlogZ(Vk). (14)
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Eqs.(6,12) are dual probability representations of the LSI. This dual relation is further

enhanced by the facts: (a) XXT and XTX have the same eigenvalues

λj = ξj = σ2
j , j = 1, · · · , k; (15)

(b) left and right LSI vectors are related by

uj = (1/σj)X(vj)T ,vj = (1/σj)u
T
j X. (16)

Thus both probability representations have the same maximum log-likelihood

`k = σ2
1 + · · · + σ2

k (17)

up to a small and slowly changing normalization constant. This is the direct consequence of

the dual relationship between words and documents. In particular, for statistical modeling

of the observed word-text co-occurrence data, both probability models should be considered

with the same number k, as is the case in the SVD.

Eq.(17) also suggests that the contribution (or the statistical significance ) of each LSI

dimension is approximately the square of its singular value. This quadratic dependence

indicates that LSI dimensions with small singular values are much more insignificant than

have been perceived earlier: previously it was generally thought that contributions of LSI

dimensions are proportional to singular values linearly, since their singular values appear

directly in SVD (cf. Eq.2). Suppose we have two LSI dimensions with singular values 10 and

1 respectively. Compared to the importance of the first dimension, the second dimension

is only 1% (rather than 10%) as important. This result gives the first insight as to why

one needs to keep only a small number of LSI dimensions and ignore the large number of

dimensions with small singular values.

6 Intrinsic Semantic Subspace

The central theme in LSI is that the LSI subspace captures the essential meaningful semantic

associations while reducing redundant and noisy semantic information. Our model provides

a quantitative mechanism to verify this claim by studying the statistical significance of the

semantic dimensions: If a few LSI semantic dimensions can effectively characterize the data

statistically, as indicated by the likelihood of the model, we believe they also effectively

represent the semantic meanings/relationships as defined by the cosine similarity. In other

words, if the inclusion of a LSI dimension increases the model likelihood, this LSI dimension

represent meaningful semantic relationships. We further conjecture that semantic dimensions

with small eigenvalues contain statistically insignificant information, and their inclusion in

the probability density will not increase the the likelihood. In LSI, they represent redundant

and noisy semantic information.
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Thus the key to resolving this central question relies on the behavior of the log-likelihood

as a function of k. In the word-space model it is given by Eq.(11). The analytically in-

tractable Z(Uk) = Z(u1 · · ·uk) can be evaluated numerically by statistical sampling. We

generate uniform random numbers in the domain of the integration: on the unit sphere

in d-dimensional space, restricted in the positive quadrant. This sampling method con-

verges very quickly. It achieves an accuracy of 4 decimal places with merely 2000 points for

d = 2000 − 5000 dimensions.

The log-likelihood of LSI word dimensions (defined in document-space model) (cf. Eq.14)

can be calculated similarly. Due to the fact that column vectors of X are normalized to 1,

the matrix norm of X is ||X||2 = n. Thus the normalization of terms, i.e., row vectors,

should be

||tα||2 =
n∑

i=1

(xα
i )2 = n/d, α = 1, · · · , d, (18)

and the domain of integration is the positive quadrant on the sphere of radius
√

n/d in

n-dimensional document space.

Likelihood curves are calculated for five standard test document collections in IR: CRAN

(1398 document abstracts on Aeronautics from Cranfield Institute of Technology), CACM

(3204 abstracts of articles in Communications of ACM), MED (1033 abstracts from National

Library of Medicine), CISI ( 1460 abstracts from Institute of Scientific Information). and

NPL (11429 titles from National Physical Laborotry). In the term-document matrices we use

the standard term frequency- inverse document frequency (tf.idf) weighting. The calculated

likelihood curves are shown in Figures 1 and 2.

For all five collections, both word-space and document-space likelihoods grow rapidly

and steadily as k increases from 1 up to kint , clearly indicating that the probability models

provide better and better statistical descriptions of the data. They reach a peak at kint .

However, starting from k >kint , the likelihood decreases steadily, indicating no meaningful

statistical information is represented by those LSI dimensions with smaller eigenvalues. For

all four collections, the intrinsic dimensions determined from document-space, k
(u)
int , and

from word-space, k
(v)
int , are fairly close as indicated in Figure 1.

Note that the theoretical kint from the likelihood curve for CACM is quite close to that

experimentally determined for text classification (Yang, 1999). For Medline, however, k
(v)
int is

larger than the experimentally determined value (Deerwester et al., 1990; Zha et al., 1998),

based on the 11-point average precision for 30 standard queries. Since the model contains no

information on the queries, these reasonable agreements indicate that the statistical model

and the statistical significance-based arguments capture some essential relationships involved.

Overall, the general trend for the five collections is quite clear. These likelihood curves

quantitatively and unambiguously demonstrate the existence of an intrinsic semantic sub-

space: dimensions with small eigenvalues do represent redundant or noisy information, and

contributes negatively to the statistical significance. This is one of the main results of this

10



0 500 1000 1500
−200

0

200

400

600

800

1000

k

Lo
g−

Li
ke

lih
oo

d

CRAN 2331 x 1398

0 1000 2000 3000

0

500

1000

1500

k

Lo
g−

Li
ke

lih
oo

d

CACM 3510 x 3204

0 500 1000
0

200

400

600

800

1000

k

Lo
g−

Li
ke

lih
oo

d

CISI 5081 x 1460

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

k

Lo
g−

Li
ke

lih
oo

d

MEDLINE 3709 x 1033

Figure 1: Log-likelihood curves for CRAN, Medline, CACM and CISI collections. Solid

lines for moduling documents in word space, `(Uk), and dashed lines for moduling words in

document space, `(Vk). The intrinsic semantic subspace dimension, k
(u)
int for word space and

k
(v)
int for document space, are also indicated. Number of words d and number of documents

n for each collection is given after the collection name.

work.

7 Do LSI Dimensions Represent Concepts?

LSI dimensions are optimal solutions for the characteristic document vectors introduced in

the dual probability model. Note that the similarity relationship, i.e., the dot-product, can

also be viewed as projection of document xi onto characteristic vector cj (see Eq.6). Thus

LSI dimensions are actually projection directions, which is obvious from the SVD point of

view.

Besides the projection directions, do these LSI dimensions represent something about

the document collection? Or equivalently, do the projection directions mean something?

As explained in the original paper (Deerwester et al., 1990), the exact meaning of those
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Figure 2: Log-likelihood (in word space) and statistical significance for NPL.

LSI dimensions are complex and can not directly inferred (thus named “latent” semantic

indexing).

Our probability model provides additional insights to this issue. The statistical signifi-

cance or importance of each LSI dimension directly relates to its singular value squared (cf.

Eq.17). They are calculated for all five document collections and shown in Figures 2 and 3.

The statistical significance of LSI dimensions clearly follow a Zipf law, σ2
i = a · ib, with

the exponent b very close to −1. These fits are very good: the data and the fits are almost

indistinguishable for all 4 collections. In addition, Zipf-law also fits well for NPL and TREC6

collections (Husbands et al., 2004). We conjecture that the Zipf-law is obeyed by singular

values squared of most if not all document collections.

Zipf-law (Zipf, 1949) is the observation that frequency of occurrence f , as a function of

the rank i, is a power-law function

fi = a · i b (19)

with the exponent b close to −1. There are a wide range of social phenomena that obey Zipf-
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Figure 3: Statistical significance σ2
i of the LSI/SVD dimensions for CRAN, MEDLINE,

CACM and CISI. The Zipf-law with only two parameters fits the data extremely well: the

original data and fit are essentially indistinguishable.

law. The best known example is the frequency of word usage in English and other languages.

Ranking all cities in the world according to their population, they also follow Zipf-law. Most

recently on the Internet, if we rank the website by their popularity, the number of user visits,

the webpage popularity also obey the Zipf-law (Glassman, 1994).

One common theme among English words, cities, webpages, etc, is that each one has

distinct characters or identities. Since LSI dimensions on all document collections display

very clear Zipf-distribution, we may infer that LSI dimensions represent some latent concepts

or identities in a similar manner as English words, cities, or webpages do. However, the exact

nature of LSI dimensions remains to be explored (see§10.4).
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8 Characteristics of Document Collections

To provide a perspective on the statistical approach discussed above, we further investigate

the characteristics of the four document collections. There are many studies on statistical

distributions in the context of natural language processing (see (Manning and Schuetze, 1999)

and references there). One of the emphasis there is the word frequency distribution in doc-

uments, ranging from the simple Poisson distribution to the K-mixture distribution (Katz,

1996). Here we studied the two distributions that have close relations to the probablistic

model discussed above.

8.1 Document Frequency Distribution

We first study the document frequency (df) of each word, i.e., the number of document a

word occurs in. In the term-document matrix X, this corresponds to the number of nonzero

elements in each row.
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Figure 4: Distributions of document frequency for terms in the four collections. The Zipf-law

fits are also shown.

In Figure 5, we show the distribution of document frequency for four document collec-

tions. Plotted are the number of words at a given document frequency, the histogram. For

all four collections, there are large number of words which have small df. For example, for
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CRAN, there are 466 words with df=2, 243 words with df=3, etc. On the other hand, the

number of words with large df is small. There are only a total number of 186 words which

has df ≥ 100, although df can reach as high as 860 for one word.

From earlier discussions, this kind of distribution can be described by the Zipf distribution

(more precisely, the power law),

N(df) = a · dfb

In fact, the Zipf-law fits data very well for all four collections, as shown in Figure 5. The

exponents are generally close to −1. Zipf-law originally describe the frequency of word usage;

Here we see that Zipf-law also governs the document frequence of content words.

The distribution of document frequency gives a better understanding of the LSI dimen-

sions discussed in previous section. Since LSI dimensions are essentially linear combinations

of the words, we may say that the Zipf-law behavior of the words directly implies that the

statistical significance of the LSI dimensions also follow the Zipf-law. This analogy further

strengthen our previous arguments that LSI dimensions represent latent concepts, in much

the same way as the indexing words do.

In the literature, the average document frequency is often quoted as a numerical charac-

terization of the document collection. For Gaussian type distributions, the mean (average)

is the center of the bell-shaped curve and is a good characterization of the distribution;

however, for scale-free Zipf type of distributions, the mean does not capture the essential

features of the distribution. Whether df=1 words are included or not will change the mean

quite significantly since they dominate the averaging process; but the Zipf-curve will not

change much at all. For this reason, parameters a, b are better characteristic quantities for

document frequences since they uniquely determine their distribution. a, b also have clear

meaning: b is the exponent that governs the decay; a is the expected number of words with

df=1 according to the Zipf-curve. The fact that we can know the expected number of df=1

words without actually counting df=1 words indicates the value of the analysis of document

frequence distribution.

Since document frequency is very often used as the global weighting for document rep-

resentation in the vector space (as in tf.idf weighting), knowing their distribution will help

to understand the effects of weighting and to further improve the weighting.

8.2 Distribution of Distinct Words

Next we investigate the number of distinct words (terms) in each document. This is the

number of nonzero elements in each column in the term-document matrix X. In Figure 5,

we plot the distribution of this quantity, i.e., the number of documents for a given number

of distinct words. For the Cranfield collection, the minimum number of distinct words for a

document is 11 (document # 506), and the maximum is 155 (document # 797). The peak

point (40, 39) in the histogram indicates there are 39 documents in the collection, each of
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which has 40 distinct words.

This leads to a distribution very different from the Zipf distribution for document fre-

quency above. The distribution appears to follow a log-normal distribution (Hull, 2000),

which has the following probability density function

p(x) =
1√

2πσx
exp (−(logx − µ)2

2σ2
) (20)

with mean and variance:

x̄ = eµ+σ2/2, v = 〈(x − x̄)2〉 = e2µ+σ2

(eσ2 − 1). (21)

Calculating the mean x̄ and variance v directly from the data, we can solve Eq.(21) to obtain

the parameters µ, σ. The probability density function can be drawn (the smooth curves in

Figure 4). This simple procedure provides a very good fit to the data.
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Figure 5: Distribution of distinct words for four document collections. Smooth curves are

from the log-normal distribution (see text).

For three document collections, Cranfield, Medline, and CISI, the number of distinct

words follow log-normal distributions. Normally, we expect this quantity to follow a normal

(Gaussian) distribution. However, due to the fact that the quantity is a non-negative count

variable, we expect the logarithm of the variable to follow a Gaussian distribution with mean

µ and variance σ2. This leads to the log-normal distribution for the original variable.

16



At first look, the histogram for CACM seems to deviate substantially from the log-normal

distribution, as shown by the smooth single peak curve determined by the mean and variance

of the entire data points in CACM. However, a careful examination of the two-peak pattern

indicates that each of them can be fitted by a log-normal distribution; the second peak

part is quite similar to those of all three other collections. In fact, a simple fit of the CACM

histogram with two log-normal distributions p(x) = w1p1(x)+w2p2(x) is also shown in Figure

4, with µ1 = 1.75, σ1 = 0.472 and µ2 = 3.57, σ2 = 0.415. The fit is quite good. From the

weights w1, w2, we can calculate the number of documents in each log-normal distribution.

The calculated values are 1633 docs for the left peak part, and 1571 docs for the right peak

part.

The CACM collection consists of titles and abstract of articles in Communications of

ACM. However, out of the 3204 CACM documents, 1617 documents contain titles only, and

therefore have much less number of distinct words per document (around 5). The remaining

1587 documents contain both a title and an abstract, therefore have number of distinct words

around 30-40. Our statistical analysis automatically picks up the substantial difference and

gives very close estimates of documents in each category: 1633 vs 1617 for the title-only

documents and 1571 vs 1587 for the title+abstract documents. This indicates the usefulness

of statistical analysis of document collections.

9 Related Work

With the contexts and notations provided above, we give pertinent descriptions of related

work on probabilistic interpretation of LSI. Traditional IR probabilistic models, such as the

binary independence retrieval model (van Rijsbergen, 1979; Fuhr, 1992) focus on relevance

to queries. There, relevance to a specific query is pre-determined or iteratively determined

in the relevance feedback, on individual query basis. Our new approach focuses on the term-

document matrix using a probabilistic generative model. This occurrence probability could

also be used in the language modeling approach for IR (Ponte and Croft, 1999).

Similarity matrices XXT and XTX are key considerations of our model. XTX is used as

the primary goal in the multi-dimensional scaling interpretation[6] of LSI where it is shown

that LSI is the best approximation to XTX in the reduced k-dimensional subspace. There,

the document-document similarity is also generalized to include arbitrary weighting, which

improved the retrieval precision.

If the first k singular values of SVD are well separated from the rest, i.e., σi has a sharp

drop near i = k, the k-dim subspace is proved to be stable against smaller perturbations

in (Papadimitriou et al., 1998; Azar et al., 2001). A probabilistic corpus model built upon

k topics is then introduced and is shown to be essentially the LSI subspace (Papadimitriou

et al., 1998). Our calculations in Figure 2 show that singular values obey Zipf distribution

which drop off steadily and graduately for all k.
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Introducing a latent class variable in the joint probability for P (document,word), the

resulting probability of the aspect model (Hofmann, 1999) follows the chain rule and can

be written quite similarly as UΣV T of the SVD. This probabilistic LSI formalism is further

developed to handle queries and its effectiveness is shown. The latent class and the concept

vector/index have many common features. This is further analyized in (Azzopardi et al.,

2003).

A subspace model using the low-rank-plus-shift structured is introduced in (Zha et al.,

1998) and lead to a relation to determine optimal subspace dimension kint from the singular

values. The relation was originally developed for array signal processing using minimum

description length principle.

Using a spherical K-means method for clustering documents (Dhillon, 2001) leads to

the concept vectors (centroids of each clusters), which are compared to LSI vectors. The

subspace spanned by the concept vectors are close to the LSI subspace. This method is

further developed into concept indexing (Karypis and Han, 2000).

A “dimension equalization” of LSI is proposed in (Jiang and Littman, 2000) and devel-

oped into trans-lingual method document retrival. Another development is iterative scaling

of LSI, which appears to improve the retrieval precision (Ando and Lee, 2001). The deter-

mination of the optimal dimension were examined in many of aboved mentioned studies and

are also investigated in (Story, 1996; Efron, 2002; Dupret, 2003).

One advantage of LSI is the reduced storage kd on the database, by storing only a small

number of k singular vectors, rather than the original term-document matrix. However, the

original term-document matrices in information retrieval are usually very sparse (the fraction

of nonzeros f < 1% ). Thus the breakeven point is kd ≤ fdN or k ≤ fN . For k ' fN ,

there is no storage saving for LSI. Several recently developed methods further significantly

reduce the storage of singular vectors by either using a discrete approximation (Kolda and

O’Leary, 1998) or thresholding on values of the LSI/SVD vectors (Zhang et al., 2002).

10 Discussions

In this paper, we focus on term-document association X, and study four distributions, the

distributions of the the columns (documents) and rows (words) of X, and the distributions

of the number of nonzero elements in each row (document frequency) and the number of

nonzero elements in each column (number of distinct words in each document). Here we

point out several more features on these distributions.
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10.1 Invariance Properties

LSI has several invariance properties. First, the model is invariant with respect to (w.r.t.)

the order that words or documents are indexed, since they depend on the dot-product which

is invariant w.r.t. the order. The singular vectors and values are also invariant, since they

depends on XXT and XTX , both of which are invariant w.r.t. the order.

Second, the similarity relations between documents and between words are preserved in

the k-dim LSI subspace. In the LSI subspace, documents are represented as their projections,

i.e., columns of UT
k X = ΣkV

T
k ; words are represented as the rows of XVk = UkΣk. The

document-document similarity matrix in the LSI subspace is

(ΣkV
T
k )T (ΣkV

T
k ) = (UkΣkV

T
k )T (UkΣkV

T
k ) ' XTX, (22)

up to the minor difference due to the truncation in SVD. Similarly, the term-term similarity

matrix in LSI subspace is

(UkΣk)(UkΣk)
T = (UkΣkV

T
k )(UkΣkV

T
k )T ' XXT , (23)

up to the minor difference due to the truncation in SVD.

Note that the self similarities, i.e., the diagonal elements in the similarity matrices, are

the length of the vectors (L2 norm). Thus, if document vectors are normalized in the original

space, they remain approximately normalized in the LSI subspace. For this reason, we believe

that documents should be normalized before LSI is applied, to provide a consistent view.

Third, the probabilistic model is invariant with respect to a scale parameter s, an average

similarity, which could be incorporated in Eq.(6) as,

Pr(xi|c1 · · · ck) ∝ e[(xi·c1)2+···+(xi·ck)2]/s2

, (24)

similar to the standard deviation in Gaussian distributions. We can repeat the analysis in

Section 5, and obtain the same LSI dimensions and same likelihood curves except that the

vertical scale is enlarged or shrinked depending on s > 1 or s < 1.

10.2 Normalization Factors

In this paper, we started with documents (columns of X) that are normalized: ||xi|| = 1.

This implies that the cosine similarity is equivalent to the dot-product similarity between

documents:

simcos(x1,x2) = x1 · x2/||x1|| · ||x2|| = simdot(x1,x2).

However, the normalization of columns does not imply that each term (rows of X) are

normalized to
√

n/d (see Eq.18), although they do so on average.

This implies that for words, the dot-product similarity is not equivalent to cosine simi-

larity. This is not a serious problem in itself, since dot-product similarity is a well-defined
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similarity measure. Furthermore, columns and rows can be normalized simultaneously, by

alternatively normalizing rows and columns. We can prove that this process will converge to

a unique final results, independent of whether we first normalize row or columns. Afterwards,

for terms t1, t2 we have

simcos(t
1, t2) = t1 · t2/||t1|| · ||t2|| = (n/d) · t1 · t2 = (n/d) · simdot(t

1, t2),

showing that the dot-product similarity is the same as the cosine similarity (the proportional

constant (n/d) will not change ranking and is thus irrelevant).

10.3 Separation of Term and Document Representations

In the LSI subspace, documents and words are represented by their projections (u1, · · · ,uk)

and (v1, · · · ,vk). The dual relationship between them is no longer directly represented as

rows and columns of the same matrix. Instead, they are related through a filtered procedure,

uj = (1/σj)Xvj. This filtering process can be regarded as a learning process: from several

contexts, the meaning of a word is better described by a number of filtered contexts, instead

of the original raw contexts.

10.4 Cluster Indicator Interpretation of LSI Dimensions

The meaning of LSI dimension are discussed at length in (Landauer and Dumais, 1997) and

briefly in §7. A recent progress (Zha et al., 2002; Ding and He, 2003) on K-means clustering

leads to a new interpretation of LSI dimensions. The widely adopted K-means clustering

(Hartigan and Wang, 1979) minimizes the sum of squared errors,

J =
K∑

k=1

∑

i∈Ck

(xi − µk)
2 =

∑

i

x2
i −

K∑

k=1

1

nk

∑

i,j∈Ck

xT

i xj, (25)

where µk =
∑

i∈Ck
xi/nk is the centroid of cluster Ck and nk is the number of documents

in Ck. The solution of clustering can be represented by K cluster membership indicator

vectors: HK = (h1, · · · ,hK), where

hk = (0, · · · , 0,
nk

︷ ︸︸ ︷

1, · · · , 1, 0, · · · , 0)T/n
1/2
k (26)

In Eq.(25),
∑

i x
2
i is a constant. The second term can be written as Jh = hT

1X
TXh1 + · · · +

hT

kX
TXhk, which is to be maximized. Now we relax the restriction that hk takes discrete

values of {0, 1} and let hk take continuous values. The solution for the maximizing Jh is

given by the principal eigenvectors of XTX, according to a well-known Theorem (Fan, 1949).

In other words, LSI dimensions (eigenvectors of XTX) are the continuous solutions to the

cluster membership indicators in K-means clustering problem. In unsupervised learning,

cluster represent concepts — we may say that LSI dimensions represent concepts.
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11 Summary

In this paper, we introduce a dual probabilistic generative model based on similarity mea-

sures. Similarity matrices arise naturally during the maximum likelihood estimation process,

and LSI is the optimal solution of the model, via maximum likelihood estimation.

Semantic associations characterized by the LSI dimensions are measured by their statis-

tical significance, the likelihood. Calculations on four standard document collections exhibit

a maximum in likelihood curves, indicating the existence of an limited-dimension intrinsic

semantic subspace. The importance (log-likelihood) of LSI dimensions follows a Zipf-like

distribution.

The term-document matrix is the main focus of this study. The number of nonzero

elements in each row of the matrix, the document frequency, follows the Zipf-distribution.

This is the direct reason that the statistical significance of LSI dimensions follow the Zipf

law. The number of nonzero elements in each column of the matrix, the number of distinct

words, follows a log-normal distribution and gives useful insights to the structure of the

document collection.

Besides automatic information retrieval, text classification, and word sense disambigua-

tion, our model can apply to many other areas, such as image recognition and reconstruction,

as long as the relevant structures are essentially characterized or defined by the dot-product

similarity. Overall, the model provides a statistical framework upon which LSI and similar

dimension reduction methods can be analyzed.

Beyond information retrieval and computational linguistics, LSI is used as the basis for

a new theory of knowledge acquisition and representation (Landauer and Dumais, 1997)

in cognitive science. Our results that LSI is an optimal procedure and that the intrinsic

semantic subspace is much smaller than the initial semantic space lend better understanding

and support to that theory.
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