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Abstract—Feature selection is an important problem for pattern classification systems.We study how to select good features according

to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the

maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for

first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more

sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform

extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector

machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and

lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.

Index Terms—Feature selection, mutual information, minimal redundancy, maximal relevance, maximal dependency, classification.

�

1 INTRODUCTION

IN many pattern recognition applications, identifying the
most characterizing features (or attributes) of the ob-

served data, i.e., feature selection (or variable selection,
among many other names) [30], [14], [17], [18], [15], [12],
[11], [19], [31], [32], [5], is critical to minimize the classifica-
tion error. Given the input data D tabled as N samples and
M features X ¼ fxi; i ¼ 1; . . . ;Mg, and the target classifica-
tion variable c, the feature selection problem is to find from
the M-dimensional observation space, RM , a subspace of
m features, Rm, that “optimally” characterizes c.

Given a condition defining the “optimal characteriza-
tion,” a search algorithm is needed to find the best subspace.
Because the total number of subspaces is 2M , and the
number of subspaces with dimensions no larger than m is
�m

i¼1
M
i

� �
, it is hard to search the feature subspace exhaus-

tively. Alternatively, many sequential-search-based approx-
imation schemes have been proposed, including best
individual features, sequential forward search, sequential
forward floating search, etc., (see [30], [14], [13] for a detailed
comparison.).

The optimal characterization condition often means the
minimal classification error. Inanunsupervisedsituationwhere
theclassifiersarenotspecified,minimalerrorusuallyrequires
themaximal statistical dependency of the target class c on the
data distribution in the subspace Rm (and vice versa). This
scheme ismaximal dependency (Max-Dependency).

One of the most popular approaches to realize Max-
Dependency is maximal relevance (Max-Relevance) feature
selection: selecting the features with the highest relevance to
the target class c. Relevance is usually characterized in terms
of correlation ormutual information, ofwhich the latter is one
of the widely used measures to define dependency of
variables. In this paper, we focus on the discussion of
mutual-information-based feature selection.

Given two random variables x and y, their mutual
information is defined in terms of their probabilistic density
functions pðxÞ, pðyÞ, and pðx; yÞ:

Iðx; yÞ ¼
ZZ

pðx; yÞ log pðx; yÞ
pðxÞpðyÞ dxdy: ð1Þ

In Max-Relevance, the selected features xi are required,
individually, to have the largest mutual information Iðxi; cÞ
with the target class c, reflecting the largest dependency on
the target class. In terms of sequential search, the m best
individual features, i.e., the top m features in the descent
ordering of Iðxi; cÞ, are often selected as the m features.

In feature selection, it has been recognized that the
combinations of individually good features do not necessa-
rily lead to good classification performance. In other words,
“them best features are not the bestm features” [4], [3], [14],
[30]. Some researchers have studied indirect or direct means
to reduce the redundancy among features1 (e.g., [4], [14], [19],
[15], [22], [12], [5]) and select features with the minimal
redundancy (Min-Redundancy). For example, in the sequen-
tial forward floating search [25], the joint dependency of
features on the target class ismaximized; as a by-product, the
redundancy among featuresmight be reduced. In [12], Jaeger
et al. presentedaprefilteringmethod togroupvariables, thus,
redundant variables within each group can be removed. In
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1. Minimal redundancy has also been studied in feature extraction,
which aims to find good features in a transformed domain. For instance, it
has been well addressed in various techniques such as principal component
analysis and independent component analysis [10], neural network feature
extractors (e.g., [22]), etc.
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[5], we proposed a heuristic minimal-redundancy-maximal-
relevance (mRMR) framework to minimize redundancy, and
used a series of intuitive measures of relevance and
redundancy to select promising features for both continuous
and discrete data sets.

Our work in this paper focuses on three issues that have
not been touched in earlier work. First, although both Max-
Relevance and Min-Redundancy have been intuitively used
for feature selection, no theoretical analysis is given on why
they can benefit selecting optimal features for classification.
Thus, the first goal of this paper is to present a theoretical
analysis showing that mRMR is equivalent to Max-Depen-
dency for first-order feature selection, but is more efficient.

Second, we investigate how to combine mRMR with
other feature selection methods (such as wrappers [18], [15])
into a two-stage selection algorithm. By doing this, we show
that the space of candidate features selected by mRMR is
more characterizing. This property of mRMR facilitates the
integration of other feature selection schemes to find a
compact subset of superior features at very low cost.

Third, through comprehensive experiments we compare
mRMR, Max-Relevance, Max-Dependency, and the two-
stage feature selection algorithm, using three different
classifiers and four data sets. The results show that mRMR
and our two-stage algorithm are very effective in a wide
range of feature selection applications.

This paper is organized as follows: Section 2 presents the
theoretical analysis of the relationships of Max-Dependency,
Max-Relevance, andMin-Redundancy. Section 3presents the
two-stage feature selection algorithm, including schemes to
integrate wrappers to select a squeezed subset of features.
Section 4 discusses implementation issues of density estima-
tion for mutual information and several different classifiers.
Section 5 gives experimental results on four data sets,
including handwritten characters, arrhythmia, NCI cancer
cell lines, and lymphoma tissues. Sections 6 and 7 are
discussions and conclusions, respectively.

2 RELATIONSHIPS OF MAX-DEPENDENCY,
MAX-RELEVANCE, AND MIN-REDUNDANCY

2.1 Max-Dependency

In terms of mutual information, the purpose of feature
selection is to find a feature set Swithm features fxig, which
jointly have the largest dependency on the target class c. This
scheme, called Max-Dependency, has the following form:

maxDðS; cÞ; D ¼ Iðfxi; i ¼ 1; . . . ;mg; cÞ: ð2Þ
Obviously, when m equals 1, the solution is the feature

that maximizes Iðxj; cÞð1 � j � MÞ. When m > 1, a simple
incremental search scheme is to add one feature at one time:
given the set with m� 1 features, Sm�1, the mth feature can
be determined as the one that contributes to the largest
increase of IðS; cÞ, which takes the form of (3):

IðSm; cÞ ¼
ZZ

pðSm; cÞ log
pðSm; cÞ
pðSmÞpðcÞ

dSmdc

¼
ZZ

pðSm�1; xm; cÞ log
pðSm�1; xm; cÞ
pðSm�1; xmÞpðcÞ

dSm�1dxmdc

¼
Z

� � �
Z

pðx1; � � � ; xm; cÞ log
pðx1; � � � ; xm; cÞ
pðx1; � � � ; xmÞpðcÞ

dx1 � � � dxmdc:

ð3Þ

Despite the theoretical value of Max-Dependency, it is
often hard to get an accurate estimation for multivariate
density pðx1; . . . ; xmÞ and pðx1; . . . ; xm; cÞ, because of two
difficulties in the high-dimensional space: 1) the number of
samples is often insufficient and 2) the multivariate density
estimation often involves computing the inverse of the
high-dimensional covariance matrix, which is usually an ill-
posed problem. Another drawback of Max-Dependency is
the slow computational speed. These problems are most
pronounced for continuous feature variables.

Even for discrete (categorical) features, the practical
problems in implementing Max-Dependency cannot be
completely avoided. For example, suppose each feature has
three categorical states and N samples. K features could
have a maximum minð3K;NÞ joint states. When the number
of joint states increases very quickly and gets comparable to
the number of samples, N , the joint probability of these
features, as well as the mutual information, cannot be
estimated correctly. Hence, although Max-Dependency
feature selection might be useful to select a very small
number of features when N is large, it is not appropriate for
applications where the aim is to achieve high classification
accuracy with a reasonably compact set of features.

2.2 Max-Relevance and Min-Redundancy

As Max-Dependency criterion is hard to implement, an
alternative is to select features based on maximal relevance
criterion (Max-Relevance). Max-Relevance is to search
features satisfying (4), which approximates DðS; cÞ in (2)
with the mean value of all mutual information values
between individual feature xi and class c:

maxDðS; cÞ; D ¼ 1

jSj
X
xi2S

Iðxi; cÞ: ð4Þ

It is likely that features selected according to Max-
Relevance could have rich redundancy, i.e., the dependency
among these features could be large. When two features
highly depend on each other, the respective class-discrimi-
native power would not change much if one of them were
removed. Therefore, the following minimal redundancy (Min-
Redundancy) condition can be added to select mutually
exclusive features [5]:

minRðSÞ; R ¼ 1

jSj2
X

xi;xj2S
Iðxi; xjÞ: ð5Þ

The criterion combining the above two constraints is
called “minimal-redundancy-maximal-relevance” (mRMR)
[5]. We define the operator �ðD;RÞ to combineD and R and
consider the following simplest form to optimize D and R
simultaneously:

max�ðD;RÞ;� ¼ D�R: ð6Þ

Inpractice, incremental searchmethods canbeused to find
thenear-optimal featuresdefinedby�ð:Þ.Supposewealready
have Sm�1, the feature set with m� 1 features. The task is to
select themth feature fromthe setfX � Sm�1g. This isdoneby
selecting the feature that maximizes �ð:Þ. The respective
incremental algorithm optimizes the following condition:

max
xj2X�Sm�1

Iðxj; cÞ � 1
m�1

X
xi2Sm�1

Iðxj;xiÞ
" #

: ð7Þ
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The computational complexity of this incremental search
method is OðjSj �MÞ.

2.3 Optimal First-Order Incremental Selection

We prove in the following that the combination of Max-

Relevance and Min-Redundancy criteria, i.e., the mRMR

criterion, is equivalent to the Max-Dependency criterion if

one feature is selected (added) at one time. We call this type

of selection the “first-order” incremental search. We have

the following theorem:

Theorem. For the first-order incremental search, mRMR is
equivalent to Max-Dependency (2).

Proof. By definition of the first-order search, we assume
that Sm�1, i.e., the set of m� 1 features, has already been
obtained. The task is to select the optimal mth feature xm

from set fX � Sm�1g.
The dependency D in (2) and (3) is represented by

mutual information, i.e., D ¼ IðSm; cÞ, where Sm ¼
fSm�1; xmg can be treated as a multivariate variable.
Thus, by the definition of mutual information, we have:

IðSm; cÞ ¼ HðcÞ þHðSmÞ �HðSm; cÞ
¼ HðcÞ þHðSm�1; xmÞ �HðSm�1; xm; cÞ;

ð8Þ

where Hð:Þ is the entropy of the respective multivariate
(or univariate) variables.

Now, we define the following quantity JðSmÞ ¼
Jðx1; . . . ; xmÞ for scalar variables x1; . . . ; xm,

Jðx1; x2; . . . ; xmÞ ¼Z
� � �

Z
pðx1; . . . ; xmÞ log

pðx1; x2; . . . ; xmÞ
pðx1Þ � � � pðxmÞ

dx1 � � � dxm:
ð9Þ

Similarly, we define JðSm; cÞ ¼ Jðx1; . . . ; xm; cÞ as

Jðx1; x2; . . . ; xm; cÞ ¼Z
� � �

Z
pðx1; . . . ; xm; cÞ log

pðx1; x2; . . . ; xm; cÞ
pðx1Þ � � � pðxmÞpðcÞ

dx1 � � � dxmdc:

ð10Þ

We can easily derive (11) and (12) from (9) and (10),

HðSm�1; xmÞ ¼ HðSmÞ ¼
Xm
i¼1

HðxiÞ � JðSmÞ; ð11Þ

HðSm�1; xm; cÞ ¼ HðSm; cÞ ¼ HðcÞ þ
Xm
i¼1

HðxiÞ � JðSm; cÞ:

ð12Þ

By substituting them to the corresponding terms in
(8), we have

IðSm; cÞ ¼ JðSm; cÞ � JðSmÞ
¼ JðSm�1; xm; cÞ � JðSm�1; xmÞ:

ð13Þ

Obviously, Max-Dependency is equivalent to simul-
taneously maximizing the first term and minimizing the
second term.

We can use the Jensen’s Inequality [16] to show the
second term JðSm�1; xmÞ is lower-bounded by 0. A

related and slightly simpler proof is to consider the
inequality logðzÞ � z� 1 with the equality if and only if
z ¼ 1. We see that

� Jðx1; x2; . . . ; xmÞ

¼
Z
� � �
Z

pðx1; . . . ; xmÞ log
pðx1Þ � � � pðxmÞ
pðx1; . . . ; xmÞ

dx1 � � � dxm

�
Z
� � �
Z

pðx1; . . . ; xmÞ
pðx1Þ � � � pðxmÞ
pðx1; . . . ; xmÞ

� 1

� �
dx1 � � � dxm

¼
Z
� � �
Z

pðx1Þ � � � pðxmÞdx1 � � � dxm

�
Z
� � �
Z

pðx1; � � � ; xmÞdx1 � � � dxm

¼1� 1 ¼ 0:

ð14Þ

It is easy to verify that the minimum is attained when

pðx1; . . . ; xmÞ ¼ pðx1Þ � � � pðxmÞ, i.e., all the variables are

independent of each other. As all the m� 1 features have

been selected, this pair-wise independence condition

means that the mutual information between xm and any

selected feature xiði ¼ 1; . . . ;m� 1Þ is minimized. This is
the Min-Redundancy criterion.

We can also derive the upper bound of the first term in

(13), JðSm�1; c; xmÞ. For simplicity, let us first show the

upper bound of the general form Jðy1; . . . ; ynÞ, assuming

there are n variables y1; . . . ; yn. This can be seen as follows:

Jðy1; y2; . . . ; ynÞ

¼
Z
� � �
Z

pðy1; . . . ; ynÞ log
pðy1; . . . ; ynÞ
pðy1Þ � � � pðynÞ

dy1 � � � dyn

¼
Z
� � �
Z

pðy1; . . . ; ynÞ log
pðy1 jy2 ;...;ynÞpðy2 jy3 ;...;ynÞ���pðyn�1 jynÞpðynÞ

pðy1Þ���pðyn�1ÞpðynÞ
dy1 � � � dyn

¼
Xn�1

i¼1

HðyiÞ�Hðy1jy2; . . . ; ynÞ�Hðy2jy3; . . . ; ynÞ�Hðyn�1jynÞ

�
Xn�1

i¼1

HðyiÞ:

ð15Þ

Equation (15) can be easily extended as

Jðy1; y2; . . . ; ynÞ � min

Xn
i¼2

HðyiÞ;
Xn

i¼1;i 6¼2

HðyiÞ; � � � ;
Xn

i¼1;i6¼n�1

HðyiÞ;
Xn�1

i¼1

HðyiÞ
( )

:

ð16Þ

It is easy to verify the maximum of Jðy1; . . . ; ynÞ or,
similarly, the first term in (13), JðSm�1; c; xmÞ, is attained
when all variables are maximally dependent. When Sm�1

has been fixed, this indicates that xm and c should have the
maximaldependency.This is theMax-Relevance criterion.

Therefore, according to (13), as a combination of Max-

Relevance and Min-Redundancy, mRMR is equivalent to

Max-Dependency for first-order selection. tu
Note that the quantity Jð:Þ in (9) and (10) has also been

called“mutual information” formultiple scalarvariables [10].

We have the following observations:
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1. Minimizing JðSmÞ only is equivalent to searching
mutually exclusive (independent) features.2 This is
insufficient for selecting highly discriminative
features.

2. Maximizing JðSm; cÞ only leads to Max-Relevance.
Clearly, the difference between mRMR and Max-
Relevance is rooted in the different definitions of
dependency (in terms of mutual information). Equa-
tion (10)doesnot consider the joint effect of featureson
the target class.Onthecontrary,Max-Dependency ((2)
and (3)) considers the dependency between the data
distribution in subspaceRm and the target class c. This
difference is critical in many circumstances.

3. The equivalence between Max-Dependency and
mRMR indicates mRMR is an optimal first-order
implementation scheme of Max-Dependency.

4. Compared to Max-Dependency, mRMR avoids the
estimation of multivariate densities pðx1; . . . ; xmÞ
and pðx1; . . . ; xm; cÞ. Instead, calculating the bivariate
density pðxi; xjÞ and pðxi; cÞ could be much easier
and more accurate. This also leads to a more efficient
feature selection algorithm.

3 FEATURE SELECTION ALGORITHMS

Our goal is to design efficient algorithms to select a compact

set of features. In Section 2, we propose a fast mRMR

feature selection scheme (7). A remaining issue is how to

determine the optimal number of features m. Since a

mechanism to remove potentially redundant features from

the already selected features has not been considered in the

incremental selection, according to the idea of mRMR, we

need to refine the results of incremental selection.
We present a two-stage feature selection algorithm. In

the first stage, we find a candidate feature set using the

mRMR incremental selection method. In the second stage,

we use other more sophisticated schemes to search a

compact feature subset from the candidate feature set.

3.1 Selecting the Candidate Feature Set

To select the candidate feature set, we compute the cross-

validation classification error for a large number of features

and find a relatively stable range of small error. This range

is called �. The optimal number of features (denoted as n�)

of the candidate set is determined within �. The whole

process includes three steps:

1. Use mRMR incremental selection (7) to select n (a
preset large number) sequential features from the
input X. This leads to n sequential feature sets
S1 � S2 � . . . � Sn�1 � Sn.

2. Compare all the n sequential feature sets S1; . . . ;
Sk; . . . ; Sn; ð1 � k � nÞ to find the range of k, called �,
within which the respective (cross-validation classifi-
cation) error ek is consistently small (i.e., has both
small mean and small variance).

3. Within �, find the smallest classification error
e� ¼ min ek. The optimal size of the candidate feature
set,n�, ischosenasthesmallestk thatcorrespondstoe�.

3.2 Selecting Compact Feature Subsets

Many sophisticated schemes can be used to search the
compact feature subsets from the candidate set Sn� . To
illustrate that mRMR can produce better candidate features,
which favors better combination with other methods, we
use wrappers to search the compact feature subsets.

A wrapper [15], [18] is a feature selector that convolves
with a classifier (e.g., naive Bayes classifier), with the direct
goal to minimize the classification error of the particular
classifier. Usually, wrappers can yield high classification
accuracy for a particular classifier at the cost of high
computational complexity and less generalization of the
selected features onother classifiers. This is different from the
mRMR method introduced above, which does not optimize
the classification error directly. The latter type of approach
(e.g., mRMR and Max-Relevance), sometimes called “filter”
[18], [15], often selects features by testing whether some
preset conditions about the features and the target class are
satisfied. In practice, the filter approach has much lower
complexity than wrappers; the features thus selected often
yield comparable classification errors for different classifiers,
because such features often form intrinsic clusters in the
respective subspace.

By using mRMR feature selection in the first-stage, we
intend to find a small set of candidate features, in which the
wrappers can be applied at a much lower cost in the second-
stage. We will continue our discussion on this point in
Section 3.3.

In this paper, we consider two selection schemes of
wrapper, i.e., the backward and forward selections:

1. The backward selection tries to exclude one redun-
dant feature at a time from the current feature set Sk

(initially, k is set ton� obtained in Section 3.1), with the
constraint that the resultant feature set Sk�1 leads to a
classification error ek�1 no worse than ek. Because
every feature inSk canbe considered in removal, there
are k different configurations of Sk�1. For each
possible configuration, the respective classification
error ek�1 is calculated. If, for every configuration, the
corresponding ek�1 is larger than ek, there is no gain in
either classification accuracy or feature dimension
reduction (i.e., every existing feature in Sk appears to
be useful), thus, the backward selection terminates
(accordingly, the sizeof the compact feature subset,m,
is set to k). Otherwise, among the k configurations of
Sk�1, the one that leads to the largest error reduction is
chosen as the new feature set. If there are multiple
configurations leading to the same error reduction,
one of them is chosen randomly. This decremental
selection procedure is repeated until the termination
condition is satisfied.

2. The forward selection tries to select a subset of
m features from Sn� in an incremental manner.
Initially, the classification error is set to the number
of samples, i.e., N . The wrapper first searches for the
feature subset with one feature, denoted as Z1, by
selecting the feature x�

1 that leads to the largest error
reduction. Then, from the set fSn � Z1g, the wrapper
selects the feature x�

2 so that the feature set Z2 ¼
fZ1; x

�
2g leads to the largest error reduction. This

incremental selection repeats until the classification
error begins to increase, i.e., ekþ1 > ek. Note that we
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allow the incremental search to continue when ekþ1

equals ek, becausewewant to search a space as large as
possible. Once the termination condition is satisfied,
the selected number of features, m, is chosen as the
dimension for which the lowest error is first reached.
For example, suppose the sequence of classification
errors of the first six features is [10, 8, 4, 4, 4, 7]. The
forward selection will terminate at five features, but
only return the first three features as the result; in this
way we obtain a more compact set of features that
minimizes the error.

3.3 Characteristic Feature Space

Given two feature sets S1
n and S2

n both containing n features,
and a classifier �, we say the feature space of S1

n is more
characteristic if the classification error (using classifier�) onS1

n

issmaller thanonS2
n.Thisdefinitionofcharacteristicspacecan

be extended recursively to the subsets (subspaces) of S1
n and

S2
n. Supposewehave a feature selectionmethodF to generate

a series of feature subsets in S1
n : S1

1 � S1
2 � . . . � S1

k �
. . . � S1

n�1 � S1
n, and, similarly, a series of subsets in

S2
n : S2

1 � . . . � S2
k � . . . � S2

n. We say S1
n is recursively more

characteristic (RM-characteristic) than S2
n on the range

� ¼ ½klower; kupper�ð1 � klower < kupper � nÞ, if for every k 2 �,
the classificationerroronS1

k is consistently smaller thanonS2
k .

To determine which one of the feature sets S1
n and S2

n is
superior, it is often insufficient to compare the classification
errors for a specific size of the feature sets. A better way is
to observe which set is RM-characteristic for a reasonably
large range �. In the extreme case, we use � ¼ ½1; n�. Given
two feature selection methods F 1 and F 2, if, the feature sets
generated by F 1 are RM-characteristic than those generated
by F 2, we believe the method F 1 is better than F 2.

Let us consider the following example to compare
mRMR and Max-Relevance based on the concept of RM-
characteristic feature space. As a comprehensive study, we
consider both the sequential and nonsequential feature sets
as follows (more details will be given in experiments):

1. A direct comparison is to examine whether the
mRMR sequential feature sets are RM-characteristic
than Max-Relevance sequential feature sets. We use
both methods to select n sequential feature sets S1 �
. . . � Sk � . . . � Sn and compute the respective
classification errors. If, for most k 2 ½1; n�, we obtain
smaller errors on mRMR feature sets, we can
conclude that mRMR is better than Max-Relevance
for the sequential (or incremental) feature selection.

2. We also use other feature selection methods (e.g.,
wrappers) in the second stage of our feature-selection
algorithmtoprobewhethermRMRisbetter thanMax-
Relevance fornonsequential feature sets. For example,
for the mRMR and Max-Relevance candidate feature
sets with n� features, we use the backward-selection-
wrapper to produce two series of feature sets with
k ¼ n� � 1; n� � 2; . . . ;m features by removing some
nonsequential features that arepotentially redundant.
Then, the respective classification errors of these
feature sets are computed. If, for most k, we find the
mRMR nonsequential feature subset leads to lower
error, we conclude themRMR candidate feature set is
(approximately) RM-characteristic than the Max-
Relevance candidate feature set.

3. Both the forward and backward selections of
wrapper are used. Different classifiers (as discussed
later in Section 4.2) are also considered in wrappers.
We use both mRMR and Max-Relevance methods to
select the same number of candidate features and
compare the classification errors of the feature
subsets thereafter selected by wrappers. If all the
observations agree that the mRMR candidate feature
set is RM-characteristic, we have high confidence
that mRMR is a superior feature selection method.

4. Given two feature sets, if S1
n is RM-characteristic

than S2
n, then it is faithful to compare the lowest

errors obtained for the subsets of S1
n and S2

n.

Clearly, for feature spaces containing the same number
of features, wrappers can be applied more effectively on the
space that is RM-characteristic. This also indicates that
wrappers can be applied at a lower cost, by improving the
characterizing strength of features and reducing the
number of pre-selected features.

In real situations, it might not be possible to obtain e1k < e2k
for every k in �. Hence, we can define a confidence score 0 �
� � 1 to indicate thepercentageofdifferentkvalues forwhich
the e1k < e2k condition is satisfied. For example, when � ¼ 0:90
(90 percent k-values correspond to the e1k < e2k condition), it is
safe to claim thatS1

n is approximatelyRM-characteristic thanS2
n

on �. As can be seen in the experiments, usually this
approximation is sufficient to compare two series of feature
subsets.

4 IMPLEMENTATION ISSUES

Before presenting the experimental results in Section 5, we
discuss two implementation issues regarding the experi-
ments: 1) calculation of mutual information for both discrete
and continuous data and 2) multiple types of classifiers used
in our experiments.

4.1 Mutual Information Estimation

We consider mutual-information-based feature selection for
both discrete and continuous data. For discrete (categorical)
feature variables, the integral operation in (1) reduces to
summation. In this case, computing mutual information is
straightforward, because both joint and marginal probabil-
ity tables can be estimated by tallying the samples of
categorical variables in the data.

However, when at least one of variables x and y is
continuous, their mutual information Iðx; yÞ is hard to
compute, because it is often difficult to compute the integral
in thecontinuousspacebasedonalimitednumberofsamples.
One solution is to incorporate data discretization as a
preprocessing step. For some applications where it is unclear
how toproperlydiscretize the continuousdata, an alternative
solution is to use density estimation method (e.g., Parzen
windows)toapproximateIðx; yÞ,assuggestedbyearlierwork
in medical image registration [7] and feature selection [17].

Given N samples of a variable x, the approximate
density function p̂pðxÞ has the following form:

p̂pðxÞ ¼ 1

N

XN
i¼1

�ðx� xðiÞ; hÞ; ð17Þ

where �ð:Þ is the Parzenwindow function as explainedbelow,
xðiÞ is the ith sample, and h is the window width. Parzen has
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proven that, with the properly chosen �ð:Þ and h, the
estimation p̂pðxÞ can converge to the true density pðxÞ when
N goes to infinity [21]. Usually, �ð:Þ is chosen as the Gaussian
window:

�ðz; hÞ ¼ exp � zT��1z

2h2

� ��
ð2�Þd=2hdj�j1=2

n o
; ð18Þ

where z ¼ x� xðiÞ; d is the dimension of the sample x and� is
the covariance of z. When d ¼ 1, (17) returns the estimated
marginal density; when d ¼ 2, we can use (17) to estimate the
density of bivariate variable ðx; yÞ; pðx; yÞ, which is actually
the joint density of x and y. For the sake of robust estimation,
ford � 2,� isoftenapproximatedbyitsdiagonalcomponents.

4.2 Multiple Classifiers

Our mRMR feature selection method does not convolve
with specific classifiers. Therefore, we expect the features
selected by this scheme have good performance on various
types of classifiers. To test this, we consider three widely
used classifiers, i.e., Naive Bayes (NB), Support Vector
Machine (SVM), and Linear Discrimant Analysis (LDA).

NB [20] is one of the oldest classifiers. It is based on the
Bayes rule and assumes that feature variables are indepen-
dent of each other given the target class. Given a sample
s ¼ fx1; x2; . . . ; xmg for m features, the posterior probability
that s belongs to class ck is

pðckjsÞ /
Ym
i¼1

pðxijckÞ; ð19Þ

where pðxijckÞ is the conditional probability table (or
densities) learned from examples in the training process.
The Parzen-window density-approximation in (17) and (18)
can be used to estimate pðxijckÞ for continuous features.
Despite the conditional independence assumption, NB has
been shown to have good classification performance for
many real data sets, on par with many more sophisticated
classifiers [20].

SVM [29], [2] is a more modern classifier that uses kernels
to construct linear classification boundaries in higher dimen-
sional spaces. We use the LIBSVM package [9], which
supports both 2-class and multiclass classification.

As one of the earliest classifiers, LDA [30] learns a linear
classification boundary in the input feature space. It can be
used for both 2-class and multiclass problems.

5 EXPERIMENTS

We tested our feature selection approach on two discrete
and two continuous data sets. For these data sets, we used
multiple ways to calculate the mutual information and
tested the performance of the selected features based on
three classifiers introduced above. In this way, we provided
a comprehensive study on the performance of our feature
selection approach under different conditions.

This section is organized as follows: After a brief introduc-
tion of data sets in Section 5.1, we compare mRMR against
Max-Dependency in terms of both feature selection complex-
ity and feature classification accuracy in Section 5.2. These
results demonstrate the practical advantages of our mRMR
scheme and provide a direct verification of the theoretical
analysis in Section 2. Then, in Sections 5.3 and 5.4, we show a
detailed comparison ofmRMRandMax-Relevance, the latter

ofwhichhasbeenwidelyused inpractice.Wedonot showthe
comparison of mRMR with Min-Redundancy since Min-
Redundancy alone usually leads to poor classification (and is
seldomused to select features in real applications). Due to the
space limitation, in the following,wealwaysdemonstrate our
comprehensive study with the most representative results.
For simplicity, we use MaxDep to denote Max-Dependency
andMaxRel todenoteMax-Relevance throughout the figures,
tables, and texts in this section.

5.1 Data Sets

The four data sets we used are shown in Table 1. They have
been extensively used in earlier studies [1], [13], [26], [27], [5].
The first two data sets, HDR-MultiFeature (HDR) and
Arrhythmia (ARR), are also available on the UCI machine
learning archive [28]. The latter two, NCI and Lymphoma
(LYM), are available on the respective authors’ Web sites. All
the raw data are continuous. Each feature variable in the raw
data was preprocessed to have zero mean-value and unit
variance (i.e., transformed to their z-scores). To test our
approaches on both discrete and continuous data, we
discretized the first two data sets, HDR and ARR. The other
two data sets, NCI and LYM, were directly used for
continuous feature selection.

The data set HDR [6], [14], [13], [28] contains 649 features
for 2,000 handwritten digits. The target class has 10 states,
each ofwhich has 200 samples. Todiscretize the data set, each
featurevariablewasbinarizedat themeanvalue, i.e., it takes 1
if it is larger than the mean value and -1 otherwise. We
selected and evaluated features using 10-fold Cross-Valida-
tion (CV).

The data setARR [28] contains 420 samples of 278 features.
The target class has two states with 237 and 183 samples,
respectively. Each feature variable was discretized into three
states at the positions �� � (� is the mean value and � the
standarddeviation): it takes -1 if it is less than�� �, 1 if larger
than�þ �, and 0 if otherwise.Weused 10-foldCV for feature
selection and testing.

The data set NCI [26], [27] contains 60 samples of
9,703 genes; each gene is regarded as a feature. The target
class has nine states corresponding to different types of
cancer; each type has two to nine samples. Since the sample
number is small, we used the Leave-One-Out (LOO) CV
method in testing.

The data set LYM [1] has 96 samples of 4,026 gene
features. The target class corresponds to nine subtypes of
the lymphoma. Each subtype has two to 46 samples. The
sample numbers for these subtypes are highly skewed,
which makes it a hard classification problem.

Note that the feature numbers of these data sets are large
(e.g.,NCIhasnearly10,000features).Thesedatasetsrepresent
some real applications where expensive feature selection
methods (e.g., exhaustive search) cannot be used directly.
They differ greatly in sample size, feature number, data type
(discrete or continuous), data distribution, and target class
type (multiclass or 2-class). In addition, we studied different
mutual information calculation schemes for bothdiscrete and
continuous data and provided results using different classi-
fiers and different wrapper selection schemes. We believe
these data andmethods provide a comprehensive testing suit
for feature selection methods under different conditions.
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5.2 Comparison of mRMR and Max-Dependency

The mRMR scheme is a first-order approximation of the
Max-Dependency (or MaxDep) selection method. We
compared their performances in terms of both feature
selection complexity and feature classification accuracy.
These comparisons indicate their applicability for real data.

5.2.1 Feature Selection Complexity

In practice, for categorical feature variables, we can
introduce an intermediate “joint-feature” variable for
MaxDep selection, so that the complexity would not
increase much in selecting additional features (the compar-
ison results against mRMR are omitted due to space
limitation). Unfortunately, for continuous feature variables,
it is hard to adopt a similar approach. For example, we

compared the average computational time cost to select the
top 50 mRMR and MaxDep features for both continuous
data sets NCI and LYM, based on parallel experiments on a
cluster of eight 3.06G Xeon CPUs running Redhat Linux 9,
with the Matlab implementation.

The results in Fig. 1 demonstrate that the time cost for
MaxDep to select a single feature is a polynomial function of
the number of features, whereas, for mRMR, it is almost
constant. For example, for NCI data, MaxDep takes about 20
and 60 seconds to select the 20th and 40th features,
respectively. In contrast,mRMRalways takesabout 2 seconds
to select any features. For the LYMdata,MaxDep needsmore
than 200 seconds to find the 50th feature, while mRMR uses
only 5 seconds. We can conclude that mRMR is computa-
tionally much more efficient than MaxDep.
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Fig. 1. Time cost (seconds) for selecting individual features based on mutual information estimation for continuous data sets. (a) Time cost for
selecting each NCI feature. (b) Time cost for selecting each LYM feature.



5.2.2 Feature Classification Accuracy

The selected features for the four data sets were tested using
all the three classifiers introduced in Section 4.2.However, for
both clarity and briefness, we only plot several representa-
tives of the cross-validation classification error-rate curves in
Fig. 2. Similar results were obtained in other cases.

Fig. 2a shows that, for the HDR data, the overall
performance of MaxDep andmRMR is similar. MaxDep gets
slightly lower errors when the feature number is relatively
small, within the range between 1 and 20. When the feature
number is larger than 30, the MaxDep features lead to a
significantly greater error rate than mRMR features, as
indicated in the blow-up windows. For example, 50 mRMR
features lead to 6 percent error, in contrast to the 11 percent
error of 50 MaxDep features. Noticeably, the two error-rate
curves have distinct tendency. For mRMR, the error rate
constantlydecreasesandthenconvergesat somepoint.Onthe
contrary, the error rate forMaxDepdeclines for small feature-
numbers and then starts to increase for greater feature-
numbers, indicating that more features lead to worse
classification.

Figs. 2b, 2c, and 2d show the respective comparison results
for ARR, NCI, and LYM data sets. The different tendency of
the mRMR and MaxDep error-rate curves can be seen more
prominently for these three data sets. For example, in Fig. 2b,
we see that only with the first three to five features, MaxDep
has a slightly lower error rate thanmRMR, but the respective
error rates are far away from optimum. For all the other
feature numbers, mRMR features lead to consistently lower
errors than MaxDep. For NCI data in Fig. 2c, MaxDep is
better than mRMR only when less than seven features are

used, but its overall classification accuracies are very poor.
For a larger feature number, mRMR features lead to only half
of the error rate of MaxDep features, indicating a greater
discriminating strength. For LYM data in Fig. 2d, MaxDep
features are never better than mRMR features.

Why does mRMR tend to outperform MaxDep when the
feature number is relatively large? This is because, in high-
dimensional space, the estimation of mutual information
becomes much less reliable than in two-dimensional space,
especially when the number of data samples is compara-
tively close to the number of joint states of features. This
phenomenon is seen more clearly for continuous feature
variables, i.e., the NCI and LYM data sets.

This also explains why, for HDR data, the difference
between mRMR and MaxDep is not as prominent as those
of the three other data sets. Because the HDR data set has a
much larger number of data samples than ARR, NCI, and
LYM data sets, the accuracy of mutual information
estimation for HDR data does not degrade as quickly as
those for the other three data sets.

Since the complexity of MaxDep in selecting features is
higher and the classification accuracy usingMaxDep features
is lower, it is much more appealing to make use of mRMR
instead ofMaxDep in practical feature selection applications.
In the following sections, wewill focus on comparingmRMR
against the most widely used MaxRel selection method.

5.3 Comparison of Candidate Features Selected by
mRMR and MaxRel

MaxRel and mRMR have similar computational complexity.
The mRMR method is a little bit more expensive, but the
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difference is minor. Thus, we focus on comparing the
feature classification accuracies.

5.3.1 Discrete Data

Figs. 3 and 4 show results of the incremental feature
selection and classification for discrete data sets. The feature
number ranges from 1 to 50.

For HDR data set, Figs. 3a, 3b, and 3c show the
classification error rates with classifiers NB, SVM, and
LDA, respectively. Clearly, features selected by mRMR
consistently attain significantly lower error rates than those
selected by MaxRel. In other words, feature sets selected by
mRMR are RM-characteristic than those selected by MaxRel.
In this case, it is faithful to compare the lowest classification
errors obtained for bothmethods. As illustrated in the zoom-
inwindows, withNB, the lowest error rate ofmRMR is about
6percent,while that ofMaxRel is about 10percent;with SVM,
the lowest error rate ofmRMR is about 3.5 percent, the lowest
error rateofMaxRel is about5.5percent;withLDA, the lowest
error rate ofmRMR features is around7percent,whereas that
of MaxRel is around 11 percent.

Figs. 4a, 4b, and4c showtheclassificationerror rates for the
ARR data. Similar to those of the HDR data, features selected
by mRMR significantly and consistently outperform those
selected by MaxRel. When nearly 50 features are used, the
performance of mRMR and MaxRel become close. Overall,
theperformanceofmRMRismuchbetter than thatofMaxRel,
since 15 mRMR features lead to better classification accuracy
than 50 MaxRel features.

Results in this section show that, for discrete data sets,

the candidate features selected by mRMR are significantly

better than those selected by MaxRel. These effects are

independent of the concrete classifiers we used.

5.3.2 Continuous Data

Tables 2 and 3 show the results of the incremental feature

selection and classification for continuous data sets. The

feature number ranges from 1 to 50 (to save space, we only

list results of 1; 5; 10; 15; . . . ; 50 features).
Table 2 shows that, for NCI data, features selected by

mRMR lead to lower error rates than those selected by

MaxRel. The differences are consistent and significant. For

example, with NB and more than 40 features (for simplicity,

this combination is called ”NB+40features”), we obtained an

error rate around20percent formRMRandaround33percent

forMaxRel.With SVM+40features,we obtained the error rate

23-26 percent formRMR, and 35-38 percent forMaxRel.With

LDA+40features, the results are similar.
Table 3 shows that, for LYMdata, mRMR features are also

superior toMaxRel features (e.g., 3 percent versus 15 percent

for LDA+50features).
Results in this section show that, for continuous data,

mRMR also outperforms MaxRel in selecting RM-character-

istic sequential featuresets.Theyalso indicate that theParzen-

window-based density-estimation for mutual information

computation can be effectively used for feature selection.
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Fig. 3. 10-fold CV error rates of HDR data using mRMR and MaxRel features. (a) NB classifier error rate. (b) SVM classifier error rate. (c) LDA

classifier error rate.

Fig. 4. 10-fold CV error rates of ARR data using mRMR and MaxRel features. (a) NB classifier error rate. (b) SVM classifier error rate. (c) LDA

classifier error rate.



5.4 Comparison of Compact Feature Subsets
Selected by mRMR and MaxRel

The results of incrementally selected candidate features have
indicated that, with the same number of sequential features,
mRMR feature set has more characteristic strength than
MaxRel feature set. Here, we investigate that, given the same
number of candidate features, whether the mRMR feature
space isRM-characteristic and contains amore characterizing
nonsequential feature subspace than theMaxRel feature space.
This canbeexaminedusing thewrappermethods inSection3.

Since the first 50 features lead to reasonably stable and
small error for every data set and classification method we
tested (see Figs. 3 and 4 and Tables 2 and 3), we used the
first 50 features selected by MaxRel and mRMR as the
candidate features.

Both forward and backward selection wrappers were
used to search for the optimal subset of features. If the
candidate feature space of mRMR is RM-characteristic than
that of MaxRel, wrappers should be able to find combina-
tions of mRMR features that correspond to better classifica-
tion accuracy.

As an example, Fig. 5 shows the classification error rates
of optimal feature subsets selected by wrappers for HDR
data set and NB classifier. Figs. 5a and 5b (the zoom-in

view of Fig. 5a) clearly show that forward-selection-
wrapper can consistently find a significantly better subset
of features from the mRMR candidate feature set than from
the MaxRel candidate feature set. This indicates that the
mRMR candidate feature set is RM-characteristic for the
forward-selection of wrapper. For MaxRel, wrapper obtains
the lowest error 6.45 percent by selecting 18 features; more
features will increase the error (thus, the wrapper selection
is terminated). In contrast, by selecting 18 mRMR features,
wrapper has ~ 4 percent classification error; it achieves
even lower classification error with more mRMR features,
e.g., 3.2 percent error for 26 features.

Fig. 5c shows that the backward-selection-wrapper also
finds superior subsets from the candidate features generated
by mRMR. Such feature subset always lead to significantly
lower error rate than the subset selected from MaxRel
candidate features. This indicates the space of candidate
features generated by mRMR does embed a subspace in
which the data samples can be more easily classified.

Table 4 summarizes the results obtained for all four data
sets and three classifiers. Obviously, similar to theHDRdata,
for almost all combinations of data sets, wrapper selection
methods, and classifiers, lower error rates are attained from
the mRMR candidate features, indicating that wrappers find
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LOOCV Error Rate (%) of NCI Data Using mRMR and MaxRel Features

TABLE 3
LOOCV Error Rate (%) of LYM Data Using mRMR and MaxRel Features

Fig. 5. The wrapper selection/classification results (HDR + NB). (a) Forward selection. (b) Forward selection (zoom-in). (c) Backward selection.



more characterizing feature subspaces from the mRMR
features than from MaxRel features. We can conclude that
mRMR candidate feature sets do cover a wider spectrum of
the more characteristic features. (There are two exceptions in
Table 4, for which the obtained feature subsets are compar-
able: 1) “NCI+LDA+Forward,” where five mRMR features
lead to 20 errors (33.33 percent) and seven MaxRel features
lead to 19 errors (31.67 ercent) and 2) “LYM+SVM+Back-
ward,” the same error (3.13 percent) is obtained.)

6 DISCUSSIONS

In our approach, we have stressed that a well-designed filter
method, such as mRMR, can be used to enhance the wrapper
feature selection, in achieving both high accuracy and fast
speed. Our method uses an optimal first-order incremental
selection to generate a candidate list of features that cover a
wider spectrum of characteristic features. These candidate
features have similar generalization strength on different
classifiers (as seen in Figs. 3 and 4 and Tables 2 and 3). They
facilitate effective computation of wrappers to find compact
feature subsets with superior classification accuracy (as
shown in Fig. 5 and Table 4). Our algorithm is especially
useful for large-scale feature/variable selection problems
where there are at least thousands of features/variables, such
asmedicalmorphometry [23], [8], gene selection [32], [31], [5],
[12], etc.

Ofnote, thepurposeof themRMRapproach studied in this
paper is tomaximize the dependency. This typically involves
the computation of multivariate joint probability, which is
nonetheless difficult and inaccurate. Combining both Max-
Relevance and Min-Redundancy criteria, the mRMR incre-
mental selection scheme provides a better way to maximize
the dependency. In this case, the difficult problem of
multivariate joint probability estimation is reduced to
estimation of multiple bivariate probabilities (densities),
which is much easier. Our comparison in Section 5.2
demonstrates that mRMR is a very good approximation
scheme to Max-Dependency. In most situations, mRMR
reduces the feature selection time dramatically for contin-
uous features and improves the classification accuracy
significantly. For data sets with a large number of samples,
e.g., the HDRdata set, the classification accuracy of mRMR is
close to or better than that of Max-Dependency. We notice
that the mRMR approach could also be applied to other
domains where the similar heuristic algorithms are applic-
able to maximize the dependency of variables, such as

searching (learning) the locally optimal structures of Baye-
sian networks [24].

Our scheme of mRMR does not intend to select features
that are independent of each other. Instead, at each step, it
tries to select a feature that minimizes the redundancy and
maximizes the relevance. For real data, the features selected
in this way will have more or less correlation with each
other. However, our analysis and experiments show that
the joint effect of these features can lead to very good
classification accuracy. A set of features that are completely
independent of each other usually would be less optimal.

All of the feature selection methods used in this paper,
including incremental search, forward, or backward selec-
tion, etc., are heuristic search methods. None of them can
guarantee theglobalmaximizationof a criterion function.The
fundamental problem is the difficulty in searching the whole
space, as pointed out at the beginning of this paper.
Additionally, questing the global optimum strictly might
lead to data overfitting. On the contrary,mRMRseems to be a
practical way to achieve superior classification accuracy in
relatively low computational complexity.

Our experimental results show that, although, in general,
more mRMR features will lead to a smaller classification
error, the decrement of errormight not be significant for each
additional feature, or occasionally there could be fluctuation
of classification errors. For example, in Fig. 3, the fifthmRMR
feature seemingly has not led to a major reduction of the
classification error produced with the first four features.
Many factors count for these fluctuations. One cause is that
additional features might be noisy. Another possible cause is
that themRMRscheme in (6) takes difference of the relevance
term and the redundancy term. It is possible that one
redundant feature also has relatively large relevance, so it
could be selected as one of the top features. A greater penalty
on the redundancy term would lessen this problem. A third
possible cause is that the cross-validationmethodusedmight
also introduce some fluctuations of the error curve. While a
more detailed discussion on this fluctuation problem and
other potential causes is beyond the scope of this paper, away
to solve this problem is to use other feature selectors to
directly minimize the classification error and remove those
potentially unneeded features, as what we do in the second
stage of our algorithm. For example, byusingwrappers in the
second stage, the error curves thus obtained in Fig. 5 are
much smoother than those obtained using the first-stage only
in Fig. 3.

Our results show that for continuous data, density
estimation works well for both mutual information
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calculation and naive Bayes classifier. In earlier work,
Kwak and Choi [17] used the density estimation approach
to calculate the mutual information between an individual
feature xi and the target class c. We used a different
approach based on direct Parzen-window approximation
similar to [7]. Our results indicate that the estimated
density and mutual information among continuous feature
variables can be utilized to reduce the redundancy and
improve the classification accuracy.

Finally, we notice that equation (6) is not the only possible
mRMR scheme. Instead of combining relevance and redun-
dancy terms using difference, we can consider quotient [5] or
othermore sophisticated schemes. The quotient-combination
imposes a greater penalty on the redundancy. Empirically, it
often leads to better classification accuracy than the differ-
ence-combination for candidate features. However, the joint
effect of these features is less robust when some of them are
eliminated; as a result, in the second-stage of feature selection
usingwrappers, the set of features induced fromthequotient-
combination would have a bigger size than that from the
difference-combination. The mRMR paradigm can be better
viewed as a general framework to effectively select features
and allow all possibilities for more sophisticated or more
powerful implementation schemes.

7 CONCLUSIONS

We present a theoretical analysis of the minimal-redun-
dancy-maximal-relevance (mRMR) condition and show that
it is equivalent to the maximal dependency condition for
first-order feature selection. Our mRMR incremental selec-
tion scheme avoids the difficult multivariate density
estimation in maximizing dependency. We also show that
mRMR can be effectively combined with other feature
selectors such as wrappers to find a very compact subset
from candidate features at lower expense. Our comprehen-
sive experiments on both discrete and continuous data sets
and multiple types of classifiers demonstrate that the
classification accuracy can be significantly improved based
on mRMR feature selection.
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