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Abstract

Non-negative Matrix Factorization (NMF) and Prob-
abilistic Latent Semantic Indexing (PLSI) have been
successfully applied to document clustering recently.
In this paper, we show that PLSI and NMF optimize the
same objective function, although PLSI and NMF are
different algorithms as verified by experiments. This
provides a theoretical basis for a new hybrid method
that runs PLSI and NMF alternatively, each jumping
out of local minima of the other method successively,
thus achieving better final solution. Extensive exper-
iments on 5 real-life datasets show relations between
NMF and PLSI, and indicate the hybrid method lead to
significant improvements over NMF-only or PLSI-only
methods. We also show that at first order approxima-
tion, NMF is identical toχ2-statistic.

Introduction

Document clustering has been widely used as a fun-
damental and effective tool for efficient document or-
ganization, summarization, navigation and retrieval
of large amount of documents. Generally docu-
ment clustering problems are determined by the three
basic tightly-coupled components: a) the (physical)
representation of the given data set; b) The crite-
rion/objective function which the clustering solutions
should aim to optimize; c) The optimization proce-
dure (Li 2005).

Among clustering methods, the K-means algorithm
has been the most popularly used. A recent devel-
opment is the Probabilistic Latent Semantic Indexing
(PLSI). PLSI is a unsupervised learning method based
on statistical latent class models and has been success-
fully applied to document clustering (Hofmann 1999).
(PLSI is further developed into a more comprehensive
Latent Dirichlet Allocation model (Blei, Ng, & Jordan
2003).)
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Nonnegative Matrix Factorization (NMF) is another
recent development for document clustering. Initial
work on NMF (Lee & Seung 1999; 2001) emphasizes
the coherent parts of the original data (images). Later
work (Xu, Liu, & Gong 2003; Paucaet al. 2004)
show the usefulness of NMF for clustering with in
experiments on documents collections, and a recent
theoretical analysis (Ding, He, & Simon 2005) shows
the equivalence between NMF andK-means / spectral
clustering.

Despite significant research on both NMF and PLSI,
few attempts have been made to establish the con-
nections between them while highlighting their dif-
ferences in the clustering framework. Gaussier and
Goutte (Gaussier & Goutte 2005) made the initial con-
nection between NMF and PLSI, by showing that the
iterative update procedures PLSI and NMF are similar
in that the fixed-point equations for the converged solu-
tions are the same. However, we emphasize that NMF
and PLSI are different algorithms: They converge to
different solutions, even if they start from the same ini-
tial condition, as verified by experiments (see later sec-
tions).

In this paper, we first show that both NMF and PLSI
optimize the same objective function. This fundamen-
tal fact and theL1 normalization NMF ensures that
NMF and PLSI are equivalent.

Second, we show, by an example and extensive ex-
periments, that NMF and PLSI are different algorithms
and they converge to different local minima. This leads
to a new insight: NMF and PLSI are different algo-
rithms for optimizing the same objective function.

Third, we give a detailed analysis about the NMF
and PLSI solutions. They are local minima of the same
landscape in a very high dimensional space. We show
that PLSI can jump out of the local minima where
NMF converges to and vice versa. Based on this, we
further propose a hybrid algorithm to run NMF and



PLSI alternatively to jump out a series of local minima
and finally reach to a much better minimum. Exten-
sive experiments show this hybrid algorithm improves
significantly over the standard NMF-only or PLSI-only
algorithms.

Data Representations of NMF and PLSI
Suppose we haven documents andm words (terms).
LetF = (Fij) be the word-to-document matrix:Fij =
F (wi, dj) is the frequency of wordwi in documentdj .

In this paper, we re-scale the term frequencyFij

by Fij ← Fij/Tw, whereTw =
∑

ij Fij is the to-
tal number of words. With this stochastic normaliza-
tion,

∑
ij Fij = 1. The joint occurrence probability

p(wi, dj) = Fij .

The general form of NMF is

F ≈ CHT , (1)

where the matricesC = (Cik), H = (Hjk) are non-
negative matrices. They are determined by minimizing

JNMF =
m

X

i=1

n
X

j=1

Fij log
Fij

(CHT )ij

− Fij + (CH
T )ij (2)

In PLSI, we approximateFij by P (wi, dj), which is
obtained by maximizing the likelihood

maxJPLSI, JPLSI =

m∑

i=1

n∑

j=1

Fij logP (wi, dj). (3)

HereP (wi, dj) is the factorized (i.e., parameterized )
joint occurrence probability

P (wi, dj) =
∑

k

p(wi|zk)p(zk)p(dj |zk), (4)

where the probability factors follow the normalization
of probabilities

m
X

i=1

p(wi|zk) = 1,

n
X

j=1

p(dj |zk) = 1,

K
X

k=1

p(zk) = 1. (5)

Equivalence of NMF and PLSI
In this section, we present our main results:

Theorem 1. PLSI and NMF are equivalent.

The proof is better described by the following

Proposition 1. The objective function of PLSI is iden-
tical to the objective function of NMF, i.e.,

maxJPLSI ⇐⇒ min JNMF (6)

Proposition 2. Column normalized NMF of Eq.(1)
is equivalent to the probability factorization of Eq.(4),
i.e.,(CHT )ij = P (wi, dj).

Proof of Theorem 1: By Proposition 2, NMF (with
L1-normalization, see§3) is identical to PLSI factor-
ization. By Proposition 1, they minimize the same ob-
jective function. Therefore, NMF is identical to PLSI.
⊓–

We proceed to prove Proposition 1 in this section.

Proof of Proposition 1:
First, we note that the PLSI optimization Eq.(3) can

be written as min
∑m

i=1

∑n

j=1
−Fij logP (wi, dj).

Adding a constant,
∑m

i=1

∑n

j=1
Fij logFij , PLSI is

equivalent to solve

min

m∑

i=1

n∑

j=1

Fij log
Fij

P (wi, dj)
.

This is equivalent to the first term in Eq.(2). By the
Proposition 3 below, the second and third terms in
Eq.(2) cancel out. This completes the proof. ⊓–

Now we show that in NMF, although the approxima-
tion (CHT )ij is not always equals to the original data
Fij for all index pairs(i, j), their row sums and column
sums are the same, i.e., their marginal distributions are
preserved:

Proposition 3. In NMF, under the update rules (Lee &
Seung 2001):

Hjk ←
Hjk

P

i Cik

X

i

Fij

(CHT )ij

Cik,

Cik ←
Cik

P

j Hjk

X

j

Fij

(CHT )ij

Hjk,

we have, at convergence,
m∑

i=1

(CHT )ij =

m∑

i=1

Fij ,

n∑

j=1

(CHT )ij =

n∑

j=1

Fij .

Proof. At convergence, we have

Hjk =
Hjk

P

i
Cik

X

i

FijCik

(CHT )ij

Thus,
X

i′

(CH
T )i′j =

X

i′k

Ci′kHjk =
X

i′k

Ci′kHjk
P

i
Cik

X

i

FijCik

(CHT )ij

=
X

k

Hjk

X

i

FijCik

(CHT )ij

=
X

i

Fij

(CHT )ij

(
X

k

CikHjk)

This proves the equality for column sums. Equality
for row sums can be proved similarly. ⊓–



NMF and χ2-statistic.
JNMF of Eq.(2) has a somewhat complicated expres-

sion. It is related to the Kullback-Leibler divergence.
We give a better understanding by relating it to the fa-
miliar χ2 test in statistics. Since we approximateFij

by (CHT )ij , we may assume

z =
|(CHT )ij − Fij |

Fij

is small; We can write

JNMF =
m

X

i=1

n
X

j=1

[(CHT )ij − Fij ]
2

2Fij

−
[(CHT )ij − Fij ]

3

3F 2

ij

+· · · ,

(7)
This is obtained by settingδij = (CHT )ij − Fij ,
z = δij/Fij , and log(1 + z) = z− z2/2 + z3/3 · · · ;
then theij-th term inJNMF becomes

δij − Fij log

„

1 +
δij

Fij

«

=
1

2

δ2

ij

Fij

−
1

3

δ3

ij

F 2

ij

+ · · · ,

which gives Eq.(8). Clearly, the first term inJNMF is
theχ2 statistic,

χ
2 =

m
X

i=1

n
X

j=1

[(CHT )ij − Fij ]
2

Fij

, (8)

sinceFij is the data and(CHT )ij is the model fit to it.
Therefore, to first order approximation, NMF objective
function is aχ2 statistic. As a consequence, we can
assoicate a confidence to NMF factoriztion. following
χ2 statistic.

The χ2 form of NMF naturally relates to another
NMF cost function, i.e., the sum of squared errors

J
′

NMF =
m

X

i=1

n
X

j=1

[Fij − (CH
T )ij ]

2 = ||F −CH
T ||2F . (9)

In this form, NMF is closely related toK-means clus-
tering (Ding, He, & Simon 2005). Let the columns of
C, F be C = (c1, . . . , ck), H = (h1, . . . ,hk). We
interpreteck as the centroid fork-th cluster, whilehk

as the relaxed (continuous form) cluster indicator.
Both PLSI andK-means are widely used for docu-

ment clustering. A comprehensive comparison among
JNMF, χ

2 andJ ′

NMF forms of NMF would be useful, but
goes beyond the scope of this paper.

Normalizations of NMF
For any given NMF solution(C, H), there exist a
large number of matrices(A, B) such thatABT =
I, CA ≥ 0, HB ≥ 0.. Thus(CA, HB) is also a
solution with the same cost function value. Normaliza-
tion is a way to eliminate this uncertainty. We mostly
consider the normalization of columns ofC, H . Let
the normalized columns be

C̃ = (c̃1, . . . , c̃k), H̃ = (h̃1, . . . , h̃k). (10)

With this normalization, we can write

CHT = C̃SH̃
T , (11)

where

C̃ = CD−1

C , H̃ = HD−1

H , S = DCDH . (12)

DC , DH are diagonal matrices. Depending on the nor-
malizations in the Hilbert space, theLp-normalization,
the diagonal elements are given by

(DC)kk = ||c̃k||p, (DH)kk = ||h̃k||p.

For the standard Euclidean distance normalization, i.e.,
theL2-norm

||c̃k||2 = 1, ||h̃k||2 = 1, (13)

This is the same as in singular value decomposition
where the non-negativity constraint is ignored.

For probabilistic formulations, such as PLSI, we use
theL1 norm.

||c̃k||1 = 1, ||h̃k||1 = 1, (14)

Due to the non-negativity, these are just the condition
that columns sums to 1.DC contains the column sums
of C andDH contains the column sums ofH .

With these clarifications, we prove Proposition 2.

Proof of Proposition 2:
UsingL1-norm, we obviously have

m∑

i=1

C̃ik = 1,

n∑

j=1

H̃jk = 1,

n∑

k=1

Skk = 1,

where the last equality is proved as

1 =
∑

ij

Fij =
m∑

i=1

K∑

k=1

n∑

j=1

C̃ikSkkH̃jk =
K∑

k=1

Skk.

These can be seen as equivalent to the normalization
of probabilities of Eq.(5). Therefore,̃Cik = p(wi|zk)

, H̃jk = p(dj |zk) and Skk = p(zk) . ThusF =

CHT = C̃SH̃
T factorization withL1-normalization

is identical to PLSI factorization ⊓–

An Illustration of NMF/PLSI Difference
Although NMF and PLSI optimize the same objective
function as shown above, they are different computa-
tional algorithms. This fact is obvious from experi-
ments. In all of our extensive experiments, starting
with the same initial startingC0, H0, NMF and PLSI
always converge to different solutions. Here we give
an illustration. The input data matrix is

X =

0

B

B

B

@

.048 .042 .047 .024 .029 .026

.035 .040 .045 .016 .023 .029

.031 .019 .031 .040 .045 .042

.027 .023 .031 .032 .039 .045

.047 .043 .035 .026 .021 .019

1

C

C

C

A

.



The initialC0, S0, H0 are

C0S0H
T
0 =

0

B

B

B

@

.24 .20

.02 .27

.31 .16

.07 .26

.36 .11

1

C

C

C

A

„

.34 0
0 .66

«

0

B

B

B

B

B

@

.18 .19

.15 .18

.15 .21

.18 .12

.18 .14

.16 .16

1

C

C

C

C

C

A

T

Running NMF starting from(C0, S0, H0), the con-
verged solution are

C̃SH̃
T =

0

B

B

B

@

.33 .14

.29 .12

.02 .33

.05 .29

.32 .11

1

C

C

C

A

„

.39 0
0 .61

«

0

B

B

B

B

B

@

.27 .14

.28 .09

.25 .15

.07 .18

.06 .22

.06 .23

1

C

C

C

C

C

A

T

.

Running PLSI starting from(C0, S0, H0), the con-
verged solution are

CSH
T =

0

B

B

B

@

.12 .31

.10 .28

.38 .04

.33 .07

.08 .31

1

C

C

C

A

„

.50 0
0 .50

«

0

B

B

B

B

B

@

.13 .25

.09 .25

.14 .24

.19 .09

.22 .09

.23 .09

1

C

C

C

C

C

A

T

.

One can see NMF solution differs from PLSI solu-
tion significantly. Our example shows that starting at
the same point in the multi-dimensional space, NMF
and PLSI converge todifferentlocal minima.

However, it is interesting and important to note that
the clustering results embedded in the solutions of
NMF and PLSI are identical by an examination ofH
(see footnote 2): the first 3 data points (columns) be-
long to one cluster, and the rest 3 points belong to an-
other cluster. This result is the same as the K-means
clustering. More generally, we introduce a clustering
matrix R = (rij), whererij = 1 if xi,xj belong to
the same cluster;rij = 0 otherwise. Thus the cluster-
ing results can be expressed as

RNMF = RPLSI =

0

B

B

B

B

B

@

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

1

C

C

C

C

C

A

(15)

Comparison between NMF and PLSI
In this section, we compare the clustering performance
of each methods on 5 real-life datasets.

Datasets

We use 5 datasets in our experiments, most of which
are frequently used in the information retrieval re-
search. Table 1 summarizes the characteristics of the
datasets.

Datasets # documents # class
CSTR 476 4
WebKB 4199 4
Log 1367 9
Reuters 2900 10
WebAce 2340 20

Table 1: Dataset Descriptions.

CSTR The dataset contains the abstracts of tech-
nical reports (TRs) published in the Computer Science
Department at the University of Rochester between
1991 and 2002. The dataset has 476 abstracts, which
are divided into four research areas: Natural Language
Processing(NLP), Robotics/Vision, Systems, and The-
ory.

WebKB The dataset contains webpages gathered
from university computer science departments. There
are about 4199 documents and they are divided into 4
categories: student, faculty, course, project.

Log This dataset contains 1367 log text messages
which are grouped into 9 categories, i.e.,configuration,
connection, create, dependency, other, report, request,
start, andstop.

Reuters The Reuters-21578 Text Categorization
Test collection contains documents collected from the
Reuters newswire in 1987. In our experiments, we use
a subset of the data collection which includes the 10
most frequent categories among the 135 topics and has
about 2900 documents.

WebAce The dataset is from WebACE
project (Hanet al. 1998). It contains 2340 doc-
uments consisting news articles from Reuters new
service via the Web in October 1997. These documents
are divided into 20 classes.

To pre-process the datasets, we remove the stop
words using a standard stop list. All HTML tags are
skipped and all header fields except subject and orga-
nization of the posted articles are ignored. In all our
experiments, we first select the top 1000 words by mu-
tual information with class labels.

Evaluation Measures

The above document datasets are standard labeled cor-
pora widely used in the information retrieval litera-
ture. We view the labels of the datasets as the objective
knowledge on the structure of the datasets. To measure
the clustering performance, we use accuracy, entropy,
purity and Adjusted Rand Index (ARI) as our perfor-
mance measures. We expect these measures would
provide us with good insights.

Accuracy discovers the one-to-one relationship be-
tween clusters and classes and measures the extent to
which each cluster contained data points from the cor-
responding class. It sums up the whole matching de-
gree between all pair class-clusters. Accuracy can be



represented as:

Accuracy = Max(
∑

Ck,Lm

T (Ck, Lm))/N, (16)

whereCk denotes thek-th cluster, andLm is them-
th class. T (Ck, Lm) is the number of entities which
belong to classm are assigned to clusterk. Accu-
racy computes the maximum sum ofT (Ck, Lm) for
all pairs of clusters and classes, and these pairs have no
overlaps. The greater accuracy means the better clus-
tering performance.

Purity measures the extent to which each cluster
contained data points from primarily one class. In
general, the larger the values of purity, the better the
clustering solution is. Entropy measures how classes
distributed on various clusters. Generally, the smaller
the entropy value, the better the clustering quality is.
More details on the purity and entropy measures can
be found in (Zhao & Karypis 2004).

The Rand Index is defined as the number of pairs of
objects which are both located in the same cluster and
the same class, or both in different clusters and dif-
ferent classes, divided by the total number of objects.
Adjusted Rand Index which adjusts Rand Index is set
between[0, 1]. The higher the Adjusted Rand Index,
the more resemblance between the clustering results
and the labels.

(a) Purity (b) Entropy

(c) Accuracy (d) Adjust Rand Index

Figure 1: Performance Comparison of NMF and PLSI

Performance Comparison
For each of the five datasets we first run K-means clus-
tering. This serves as a comparison and also initial-
ization. From the K-means solution,H0 is constructed
from the cluster assignments andC0 is simple the clus-
ter centroids (see footnote 2). TheH0 obtained this
way is discrete (0 and 1) and is very sparse (mostly
zeroes). This is generally poor for multiplicative up-
dation algorithms. Thus we smoothH0 by adding 0.2
to every elements ofH0. We then do necessary nor-
malization onC0, H0. Starting from this smoothed K-
means solution, we run NMF or PLSI. From the NMF

or PLSI solution, we harden the posteriorH (see foot-
note 2) to obtain a discreteH (containing 0 and 1).
From here, the performance measures are computed.
We typically run 10 runs and obtain the average.

The clustering solutions of NMF and PLSI are com-
pared based on accuracy, entropy, purity, and Adjust
Rand Index as shown in Figure 1. From these figures,
we observe that NMF and PLSI lead to similar cluster-
ing results. For example, as shown in Figure 1(a), in
terms of purity value, the differences between the clus-
tering solutions obtained by NMF and PLSI are less
than0.02 in all the datasets. We can observe similar
behavior for other performance measures as well1.

Agreements Between NMF and PLSI

However, the closeness of NMF and PLSI on these
four performance measures merely indicates thelevel
of agreement between the NMF clustering solution and
the known class label information is close to thelevel
of agreement between PLSI and known class labels.

To understanding the difference between NMF and
PLSI, we compare NMF and PLSI solutionsdirectly:
We measure the number of difference in clustering of
data pairs using the clustering matrixR in Eq.(15). To
normalize the difference so that datasets of different
sizes can be compared with, we measure the relative
difference:

δ = ||RNMF −RPLSI||F

/√
||RNMF||2

F
/2 + ||RPLSI||2

F
/2

The computed results, the average of 10 different
runs, are listed in line A of Table 2. The results show
that the differences between NMF and PLSI are quite
substantial for WebKB (24%), and ranges between 1%
to 8% in general cases.

WebAce CSTR WebKB Reuters Log
A 0.083 0.072 0.239 0.070 0.010
B 0.029 0.025 0.056 0.051 0.010
C 0.022 0.013 0.052 0.040 0.012

Table 2: Dis-agreements between NMF and PLSI. All
3 type experiments begin with the same smoothed K-
means. (A) Smoothed K-means to NMF. Smoothed
K-means to PLSI. (B) Smoothed K-means to NMF to
PLSI. (C) Smoothed K-means to PLSI to NMF.

Function JNMF defines a surface in the multi-
dimensional space. Because this global objective func-
tion is not a convex function, there are in general

1One thing we need to point out is that, in terms of accu-
racy, NMF and PLSI have a large difference of about0.2 on
WebKBdataset. This is becauseWebKBcontain a lot of con-
fusing webpages that can be assigned to one or more clusters
and the accuracy measure takes into account the entire dis-
tribution of the documents in a particular cluster and not just
the largest class as in the computation of the purity.



a very large number of local minima in the highp-
dimensional space. Our experimental results suggest
that starting with same initial smoothed K-means solu-
tion, NMF and PLSI converge to different local min-
ima. In many cases, NMF and PLSI converge to
nearbylocal minima; In other cases they converge to
not-so-nearbylocal minima.

A Hybrid NMF-PLSI Algorithm

We have seen that NMF and PLSI optimize the same
objective function, but their different detailed algo-
rithms converge to different local minima. An inter-
esting question arises. Starting from a local minimum
of NMF, could we jump out the local minimum by run-
ning the PLSI algorithm? Strictly speaking, if an algo-
rithm makes an infinitesimal step, it will not jump out
of a local minimum (we ignore the situation that the
minimum could be saddle points). But PLSI algorithm
is a finite-step algorithm, so it is possible to jump out
of a local minimum reached by NMF. Vise versa, NMF
is also a finite-step algorithm.

Interestingly, experiments indicate we can jump out
of local minima this way. The results are shown in
Table 2 Lines B & C. In Line B, we start from theK-
means solution with smoothing and converge to a lo-
cal minimum using NMF. Starting from the same local
minimum, we run PLSI till convergence. The solution
changed and the difference is given in Line B. This
change indicates that we jump out of the local mini-
mum. The changes in the solutions are smaller than
Line A, as expected. In Line C, we start from theK-
means solution with smoothing and then run PLSI to
converge to a local minimum; we then jump out of this
local minimum by running NMF. The difference of the
solutions is given in Line C. The changes in the solu-
tions are smaller than line A, as expected. The changes
are also smaller than line B, indicating the local mini-
mum reached by PLSI is perhaps slightly deeper than
the local minima reached by NMF.

Based on the ability of NMF for jumping out of local
minima of PLSI and vise versa, we propose a hybrid
algorithm that alternatively runs NMF and PLSI, with
the goal of successive jumping out local minima and
therefore converging to a better minimum. The hybrid
algorithm consists of 2 steps (1) K-means and smooth.
(2) Iterate till converge: (2a) Run NMF to converge.
and (2b) Run PLSI to converge. We run the hybrid
algorithm on all 5 datasets. The results are listed in
Table 3. We observe that: (1) NMF and PLSI always
improve upon K-means. (2) Hybrid always improve
upon NMF and PLSI; the improvements are significant
on 3 out of 5 datasets.

Reuters WebKB CSTR WebAce Log
A 0.316 0.410 0.617 0.416 0.775
B 0.454 0.619 0.666 0.520 0.778
C 0.487 0.510 0.668 0.519 0.779
D 0.521 0.644 0.878 0.523 0.781

Table 3: Clustering Accuracy. (A) K-means. (B)
NMF-only. (C) PLSI-only. (D) Hybrid.

Summary
In this paper we show that NMF and PLSI optimize
the same objective function. Based on this analysis,
we propose a hybrid algorithm which alternatively runs
NMF and PLSI. Extensive experiments on 5 datasets
show the significant improvement of the hybrid method
over PLSI or NMF.
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