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ABSTRACT
Motivation: Protein fold recognition is an important
approach to structure discovery without relying on se-
quence similarity. We study this approach with new
multi-class classification methods and examined many
issues important for a practical recognition system.
Results: Most current discriminative methods for protein
fold prediction use the one-against-others method, which
has the well-known ‘False Positives’ problem. We inves-
tigated two new methods: the unique one-against-others
and the all-against-all methods. Both improve prediction
accuracy by 14–110% on a dataset containing 27 SCOP
folds. We used the Support Vector Machine (SVM) and the
Neural Network (NN) learning methods as base classifiers.
SVMs converges fast and leads to high accuracy. When
scores of multiple parameter datasets are combined, ma-
jority voting reduces noise and increases recognition accu-
racy. We examined many issues involved with large num-
ber of classes, including dependencies of prediction accu-
racy on the number of folds and on the number of repre-
sentatives in a fold. Overall, recognition systems achieve
56% fold prediction accuracy on a protein test dataset,
where most of the proteins have below 25% sequence
identity with the proteins used in training.
Supplementary information: The protein parame-
ter datasets used in this paper are available online
(http://www.nersc.gov/∼cding/protein).
Contact: chqding@lbl.gov; ildubchak@lbl.gov

INTRODUCTION
Computational analysis of biological data obtained in
genome sequencing and other projects is essential for
understanding cellular function and the discovery of new
drugs and therapies. Sequence–sequence and sequence–
structure comparison play a critical role in predicting a
possible function for new sequences. Pairwise sequence
alignment is accurate in detecting close evolutionary
relationship between proteins (Holm and Sander, 1999),
but it is not efficient when two proteins are structurally
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similar, but have no significant sequence similarity. The
threading approach has demonstrated promising results in
detecting the latter type of relationship (Jones, 1999).

In this paper, we focus on the taxonometric approach
in determining structure similarity without sequence
similarity, using machine learning methods (Baldi and
Brunak, 1998; Durbin et al., 1998), such as Neural
Networks (NNs) and Support Vector Machines (SVMs).
This approach has achieved some success mostly through
recognition of protein fold, which is a common 3-
dimensional pattern with the same major secondary
structure elements in the same arrangement and with
the same topological connections (Craven et al., 1995).
The taxonometric approach presumes that the number
of folds is restricted and thus the focus is on structural
predictions in the context of a particular classification of
3-D folds. Detailed, comprehensive protein classifications
such as SCOP (Lo Conte et al., 2000) and CATH (Pearl
et al., 2000) identified more than 600 3-D protein folding
patterns. Protein fold prediction in the context of this
large number of classes presents a rather challenging
classification problem. The more classes are involved,
the more difficult it is to accurately predict the fold for a
query sequence.

Most current studies use the one-versus-others (one-
against-others) method, which clearly does not scale well
to a large number of classes due to the complexity of
the ‘others’ classes (Chou and Zhang, 1995; Dubchak et
al., 1995). For these reasons, we studied two improved
methods: the unique one-versus-others, and the all-versus-
all methods. However, these new methods, essentially
based on all pairs of individual classes, require building
very large number of discriminative classifiers, (about
84 000 in our database of 27 folds). We overcome this
difficulty by using the newly developed SVM.

SVM is a new discriminative method (Vapnik, 1995),
which has demonstrated high classification accuracy
in protein family (evolutionary relationship) prediction
(Jaakkola et al., 1999), gene expression classification
(Brown et al., 2000), and many other areas beyond
molecular biology. An advantage of SVM is its fast
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convergence in training, about 10–100 faster than in NN
(as described later). Thanks to fast speed in SVM training,
we were able to carry out systematic investigation on the
three multi-class classification methods. We also carried
out fold prediction using NN with the new multi-class
recognition methods. Comparison of NN with SVM
provided new insights into these learning methods.

MULTI-CLASS PREDICTION METHODS
Many discriminative methods, including SVM and NN,
are often most accurate and efficient when dealing with
two classes only (they can deal with more classes,
but usually at reduced accuracy and efficiency). For
large number of classes, higher-level multi-class methods
are developed that utilize these two-class classification
methods as the basic building blocks.

One-versus-others method
This is a simple and effective method (Dubchak et al.,
1999; Brown et al., 2000) for multi-class problems.
Suppose there are K classes in the problem. We partition
the K classes into a two-class problem: one class contains
proteins in one ‘true’ class, and the ‘others’ class combines
all other classes. A two-class classifier is trained for this
two-class problem. We then partition the K classes into
another two-class problem: one class contains another
original class, and the ‘others’ class contains the rest.
Another two-way classifier is trained. This procedure is
repeated for each of the K classes, leading to K two-way
trained classifiers.

In the recognition process, the system tests the new
query protein against each of the K two-way classifiers,
to determine if it belongs to the given class or not. This
leads to K scores from the K classifiers. Ideally, only
one of the K classifiers will show a positive result and
all other classifiers show negative results, assigning the
query protein to a unique fold. In practice, however, many
proteins show positive on more than one class, leading
to ambiguous prediction results, the so-called ‘False
Positive’ problem. One of the main reasons for the false
positive problem is that the decision boundary between
one ‘true’ class and its complementary combined ‘others’
class cannot be drawn cleanly, due to the complexity of
the ‘others’ class and close parameter proximity of some
proteins.

Unique one-versus-others method
Here we propose a new method to improve upon the one-
versus-others method. The idea is to obtain an unambigu-
ous prediction for a given query protein sequence. This
is achieved by reducing or eliminating false positives. We
add a second step to the one-versus-others method by ap-
plying two-way discriminative classifications on the pairs
between all the classes with positive predictions. Suppose

for a query protein the one-versus-others system predicts
four positives, i.e. 4 folds. There are six possible pairs out
of these 4 folds. A 2-way classifier is trained for each of
the pairs, is applied to the query protein, and produces a
positive prediction (vote) for a particular fold. All votes
from the six classifiers are tallied and the class with the
most votes represents the final prediction. Therefore the
false positive problem is eliminated at this second step (see
example in Section Tests on independent datasets).

Note that in the false positives elimination step, the deci-
sion boundary is drawn between two ‘true’ classes of train-
ing proteins, instead of between one ‘true’ class and its
complementary ‘others’ class, which is highly complex.
Thus false positives are eliminated accurately. Therefore,
the unique one-versus-others method has higher prediction
accuracy.

The false positives elimination step is essentially a noise
reduction technique. We expect it to work particularly
well for classification methods such as NNs which have
large false positive rates or noise (see Section Accuracy
measure). Indeed, we found in our experiments that it
reduces the error rates of NNs by almost a factor of 2.

All-versus-all method
In the unique one-versus-others method, after obtaining
the results of the one-versus-others method, two-way
classifiers between two ‘true’ classes are trained and used
to break ‘ties’ between multiple positives including both
true and false positives. We can generalize this further
and eliminate the one-versus-others method entirely. This
method therefore depends entirely on two-way classifiers
between pairs of ‘true’ classes, and achieves higher
accuracy in the resulting classifications.

In this method, we train two-way classifiers between all
possible pairs of classes; there are K (K −1)/2 of them. A
new query protein is then tested against these K (K −1)/2
classifiers and obtains K (K −1)/2 positive scores (votes).
In a perfect case, the correct class will get the maximum
possible votes, which is K − 1 for all class–class pairs;
and votes for other K − 1 classes would be randomly
distributed, leading to [K (K − 1)/2 − K − 1]/(K − 1) =
(K −2)/2 per class on average. Thus we expect an average
signal-to-noise ratio of

r = 2(K − 1)/(K − 2) � 2,

a fairly large margin. Furthermore, the output class is
unique: for any query sequence, there can only be one
class that gets the maximum possible vote.

In practice, however, the number of votes for each
protein has large variations. The most popularly voted
class do not necessarily get the maximum possible number
of votes; the number of votes for each class tends to
decrease gradually from maximum to minimum, i.e. the
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margin between the correct class and incorrect classes
is not as large as K − 1 versus (K − 1)/2 in the
above analysis. For this reason, our voting method simply
outputs the class with the highest vote, regardless of
whether this vote is a maximum possible vote or not.

A problem with both all-versus-all and unique one-
versus-others methods is the large number of 2-class
classifiers required. However, for the 600 folds in SCOP
database, this task can be easily handled using current
computers. The SVMs can be trained in reasonable time
(1–2 days on a workstation), and the estimated memory
requirement is about 1 GB.

TWO-CLASS CLASSIFICATIONS
The three multi-class classification methods above utilize
2-class classifiers as their building blocks, which are
described below.

Support Vector Machine
SVM is a new and promising binary classification method
developed by Vapnik and colleagues at Bell Laboratories
(Vapnik, 1995; Burges, 1998), with algorithm improve-
ments by others (Osuna et al., 1997; Joachims, 1998).
SVM is a margin classifier. It draws an optimal hyper-
plane in a high-dimensional feature space (determined by
w, b); this defines a boundary that maximizes the margin
between data samples in two classes, therefore giving
good generalization properties. The decision boundary is
defined by the function

f (x) = w · φ(x) + b.

Depending upon the sign of the function, protein x is
classified into either of the two classes. For many problems
where samples of different classes cannot be separated
in the original feature space, one can effectively embed
the problem in higher dimensional space [indicated by
φ(x)], making it easier to find the optimal hyperplane,
i.e. better decision boundary. The actual embedding is
achieved through a kernel function, making it easy to
implement and fast to compute.

For our datasets, we found that linear kernel does not
work well, the polynomial kernel works better, and the
Gaussian kernel gives the best results. To account for
the imbalance of positive examples (proteins in a ‘true’
class) and the negative examples (those in the ‘others’
class), in the one-versus-others method, we duplicate the
positive examples to approximately match the number of
negative examples. This works out well. In all the 2-class
training sessions (about 84 000), not a single protein is
misclassified.

Neural network
We used three-layer feed-forward NNs with the weights
adjusted by conjugate gradient minimization. Since in

NN training there is always a problem of generalization,
the number of NN parameters was adaptively adjusted
to variable training set sizes by changing the number of
hidden units. Various NN architectures were tested; the
geometry (Nhidden = 1 and Nout = 2) achieves a good
performance while having a minimum overall number of
nodes (to improve generalization). We found it adequate
for the recognition of all folds in the database. The number
of inputs is the same as the dimensionality of the feature
vectors. High activity output to one node indicated the
assignment of the test sequence to a particular fold, and
high activity to the other node indicated the assignment to
the other folds.

DATASET
Training dataset
The dataset we used for training was selected from the
database built for the prediction of 128 folds in our
earlier study (Dubchak et al., 1999). This database was
based on the PDB select sets (Hobohm et al., 1992;
Hobohm and Sander, 1994) where two proteins have no
more than 35% of the sequence identity for the aligned
subsequences longer than 80 residues. Since the accuracy
of any machine learning method depends directly on the
number of representatives for training, we utilized 27
most populated folds in the database which have seven or
more proteins and represent all major structural classes:
α, β, α/β, and α + β. The folds in our database and the
corresponding number of proteins in training (Ntrain) are
shown in Table 1.

Independent test dataset
As an independent dataset for testing we used the PDB-
40D set developed by the authors of the SCOP database
(Lo Conte et al., 2000). This set contains the SCOP
sequences having less than 40% identity with each other.
From this set we selected 386 representatives of the
same 27 largest folds (Ntest) shown in Table 1. All PDB-
40D proteins that had higher than 35% identity with the
proteins of the training set were excluded from the testing
set.

Feature vector extraction
To use machine learning methods, feature vectors are ex-
tracted from protein sequences. Percentage composition of
the 20 amino acids forms a parameter set. For each struc-
tural or physico-chemical property listed in Table 2, fea-
ture vectors are extracted from the primary sequence based
on three descriptors: ‘composition’, percent composition
of three constituents (e.g. polar, neutral and hydrophobic
residues in hydrophobicity); ‘transition’, the transition fre-
quencies (polar to neutral, neutral to hydrophobic, etc.);
and ‘distribution’, the distribution pattern of constituents
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Table 1. Non-redundant subset of 27 SCOP folds used in current study

Fold Index Ntrain Ntest

α

Globin-like 1 13 6
Cytochrome c 3 7 9
DNA-binding 3-helical bundle 4 12 20
4-helical up-and-down bundle 7 7 8
4-helical cytokines 9 9 9
Alpha; EF-hand 11 7 9

β

Immunoglobulin-like β-sandwich 20 30 44
Cupredoxins 23 9 12
Viral coat and capsid proteins 26 16 13
ConA-like lectins/glucanases 30 7 6
SH3-like barrel 31 8 8
OB-fold 32 13 19
Trefoil 33 8 4
Trypsin-like serine proteases 35 9 4
Lipocalins 39 9 7

α/β

(TIM)-barrel 46 29 48
FAD (also NAD)-binding motif 47 11 12
Flavodoxin-like 48 11 13
NAD(P)-binding Rossmann-fold 51 13 27
P-loop containing nucleotide 54 10 12
Thioredoxin-like 57 9 8
Ribonuclease H-like motif 59 10 14
Hydrolases 62 11 7
Periplasmic binding protein-like 69 11 4

α + β

β-grasp 72 7 8
Ferredoxin-like 87 13 27
Small inhibitors, toxins, lectins 110 12 27

(where the first residue of a given constituent is located,
and where 25, 50, 75 and 100% of that constituent are
contained). For concrete details, see Dubchak et al. (1995,
1999). The entire feature datasets are available on line
(http://www.nersc.gov/∼cding/protein). With the feature
extraction method, feature vectors (we call them param-
eter vectors) can be easily calculated from new protein se-
quences, and fold prediction by different machine-learning
techniques can be performed rapidly and automatically.

Note that the six feature vector datasets (parameter
sets) are extracted independently. Thus, one may apply
machine-learning techniques based on a single parameter
set for protein fold prediction. We found that using
multiple parameter sets and applying majority voting on
the results lead to much better prediction accuracy. This is
the approach we take in this study. Alternatively, one may
combine different parameter sets into one dataset so that
each protein is represented by a 125-dimensional feature
vector. We experimented with this approach and found that
the prediction accuracy is not enhanced.

Table 2. Six parameter datasets extracted from protein sequence. The
dimension of the feature vector are also shown

Symbol Parameter Dim

C Amino acids composition 20
S Predicted secondary structure 21
H Hydrophobicity 21
V Normalized van der Waals volume 21
P Polarity 21
Z Polarizability 21

ACCURACY MEASURE
Assessing the accuracy of various discriminative meth-
ods so far mostly involves calculating True Positive
Rates (TPR) and False Positives Rates (FPR). These
characteristics are originally designed for two-class prob-
lems, closely related to sensitivity and selectivity used
in sequence comparison methods (Brenner et al., 1998);
they are now extended to problems involving more than
two classes, through the one-versus-others method (e.g.
Dubchak et al., 1999; Jaakkola et al., 1999). However,
multi-way classification methods are not restricted to
the one-versus-others method. The all-versus-all method
discussed above is another example. In these methods,
there are no such concepts as true positives and false
positives. Therefore we need an accuracy measure which
can deal with all situations.

In this paper, we use the standard Q percentage accuracy
(Rost and Sander, 1993; Baldi et al., 2000), generalized to
handle true positives and false positives. Suppose we have
N = n1 + n2 + · · · + nK test proteins (n1 are observed to
belong to class F1, etc.). Suppose that out of n1 proteins,
c1 are correctly and uniquely recognized as belonging to
F1, etc., so that total C = c1 + c2 + · · · + cK proteins are
correctly recognized (ci ’s correspond to diagonal entries
in the K × K contingency table). The accuracy for class i
is Qi = ci/ni . The overall or total accuracy is Q = C/N
(Q = Qtotal).

Individual Qi relates to the overall Q in a very
simple way. An individual class contributes to the overall
accuracy in proportion to the number of proteins in its
class, and thus has a weight wi = ni/N . Therefore
the overall accuracy equals the weighted average over
individual classes:

Q =
K∑

i=1

wi Qi = C/N .

Here ‘unique’ means that a single fold is predicted for an
unknown protein. False positives are taken into account
by considering them as ‘ties’. If a protein is tested positive
for 4 classes, and one of them is correct, then c = 1/4 for
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Table 3. Overall TPR, FPR and unique accuracy (Q) of three classification
methods using one-versus-others classification method, on the independent
test set using the composition dataset only. Results are weighted averages
over the 27 folds

Method TPR (%) FPR (%) Q (%)

SVM1 33.8 7.5 33.5
SVM2 48.8 48.6 43.5
NN 59.5 296 20.5

this protein. So in general, ci are not necessarily integers.
Allowing fractions in the contingency table, the one-
against-others method can be properly accommodated.
(Conventional contingency tables are defined to have
integer entries only.) We sometimes call this generalized
accuracy definition unique accuracy, when it’s applied to
the one-versus-others method.

We can similarly define TPRi = TPi/ni , and FPRi =
FPi/ni , for each class i , and overall TPR and FPR as
the weighted average. The differences between unique
accuracy and TPR and FPR are illustrated in Table 3.
Here we used three different 2-way classifiers: the SVM1
(less optimized), SVM2 (better optimized) and NN. In
general, for a given method, the higher TPR it achieves,
the higher the FPR it brings, as we move from SVM1
to SVM2 to NN. However, the unique accuracy clearly
indicates SVM2 is the best among the three methods:
SVM2 achieves most correct unique recognitions, even
though SVM2 has a higher FPR than SVM1, and SVM2
has a lower TPR than NN.

For NN, although its TPR of 59.5% is quite high, the
large FPR of 296% brings the unique accuracy down to
only 20.5%. For SVM1, although its FPR of 7.5% is
low, the low TPR of 33.8% cannot move up the unique
accuracy.

TESTS ON INDEPENDENT DATASETS
Once the recognition system is built and trained, we
can test it in two ways. In the first test, we test the
system against a dataset which is independent of the
training dataset. Note that test proteins have less than 35%
sequence identity with those used in training.

One-versus-others method
In this method, on the datasets with 27 fold classes, we
build 27 two-way one-versus-others classifiers, with either
SVM or NN. Each protein in the test set is tested against
all 27 two-way classifiers. If the result is positive, this
is a positive vote for the class. However, if the result is
negative, i.e. the protein belongs to one of the 26 other
classes, or equivalently, the protein belongs to each of
the other 26 classes with a probability of 1/26. But these

small fractional votes will not change the results discussed
below, and is negligible for large number of classes. An
example of protein 1hbg (using NN with composition
dataset only) is:

1hbg (F1) 1:1 46:1 47:1 51:1

Here (F1) indicates that 1hbg belongs to class F1; 1 : 1
indicates 1 positive vote for class F1; 46 : 1 indicates 1
positive for class F46, etc. Protein 1hbg has 4 positives.
We can combine votes obtained from different parameter
sets to improve prediction accuracy. For example, when
votes of all 6 parameter datasets are combined, we have,

1hbg (F1) 1:6 20:2 46:2 47:2 51:2 4:1
7:1 9:1 11:1 30:1 32:1

Protein 1hbg now has six votes for class F1, two votes
for classes F20, F46, F47, etc. Thus six parameter sets
improve the accuracy of 1hbg from four positives to
one, a unique correct positive. Although the majority of
proteins benefit from combining multiple votes, there are
some exceptions, reflecting the statistical nature of these
methods.

Table 4 shows results of this combination of votes using
NN for each individual fold. As the number of parameter
sets increases, the prediction accuracy for most classes
increases steadily, although not uniformly, reflecting the
statistical nature of the prediction system. The overall pre-
diction accuracy increases very substantially, from 20.5%
for the composition set alone (denoted as C) to 36.8%
for composition + secondary datasets (denoted as CS),
to 40.6% for composition + secondary + hydrophobicity
(denoted as CSH).

The reason for this is noise reduction. NN has rather
high TPRs of 59.5% (Table 3), but also has a high FPR
of 296.0%, so each protein has about 3 false positives.
The high FPR brings the unique accuracy down to 20.5%.
When scores of different parameter sets are combined, the
majority voting helps to reduce the false positives, and
thus improves the final unique accuracy.

The accuracy for SVM is generally higher than that for
NN, because SVM has far less false positives. Table 5
contains the prediction results. The accuracy for SVM is
43.5% on the composition parameter set alone, in contrast
to 20.5% for NN. It increases to 45.2% for CSH, in
contrast to 41.1% for NN. When more votes for different
parameter sets are combined (results shown in Table 6),
accuracy improves from 43.5 to 45.2%. This is not as
significant as for NN, because FPRs for SVM are already
quite low (see Table 3).

Unique one-versus-others method
Here we eliminate false positives by using two-way
discriminative classifications on the pairs between all the
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Table 4. Unique accuracy Qi for each fold class and overall Q (bottom line),
for the one-versus-others method using neural networks. Votes are combined
gradually, with the order ‘C’, ‘S’, ‘H’, ‘P’, ‘V’, ‘Z’ (see Table 2)

Fold C (%) CS (%) CSH (%) CSHP (%) CSHPV (%) ALL6 (%)

1 19.6 68.2 70.8 63.9 66.7 55.6
3 9.6 37.0 44.8 48.1 43.3 27.8
4 11.3 27.8 23.2 24.9 25.7 25.6
7 12.3 21.8 39.6 46.3 37.5 37.5
9 25.4 83.3 88.9 75.0 80.6 77.8

11 13.3 28.9 47.5 44.4 38.9 27.8
20 16.0 32.3 37.4 44.1 45.5 53.9
23 23.2 17.5 11.0 12.5 14.2 12.5
26 20.6 25.5 30.5 37.4 43.8 44.2
30 13.9 29.2 35.4 33.3 33.3 33.3
31 14.8 26.8 33.8 40.6 45.8 52.1
32 9.4 20.6 22.8 18.4 25.4 26.3
33 18.8 25.0 37.5 29.2 33.3 25.0
35 12.5 11.9 14.6 18.8 18.8 0.0
39 24.3 27.9 31.4 42.9 35.7 40.5
46 38.7 58.1 72.4 69.1 65.8 65.8
47 21.9 54.2 40.5 34.2 33.3 38.9
48 12.1 25.5 25.6 15.4 17.9 21.8
51 24.8 38.6 40.2 41.4 41.0 42.6
54 14.5 24.8 20.8 22.2 27.8 29.2
57 18.1 31.2 32.5 38.5 37.9 50.0
59 21.4 37.0 41.1 38.1 39.3 38.1
62 47.6 42.5 41.8 47.6 42.9 57.1
69 0.0 0.0 0.0 0.0 0.0 0.0
72 8.0 9.4 12.5 16.7 16.7 25.0
87 9.0 28.3 35.6 33.6 28.7 21.4

110 32.7 58.9 54.1 58.9 61.2 60.3

Avg 20.5 36.8 40.6 41.1 41.2 41.8

classes with positive (both true and false) predictions in
the one-versus-others step. For example, protein 1hbg is
voted positive for four classes as the result of one-versus-
others prediction. We further applied six 2-way classifiers
between the four positive classes to 1hbg, and obtained
the following result

1hbg (F1) 1:3 46:1 47:1 51:1

The most popularly voted class is now uniquely deter-
mined to be F1, and three false positives are eliminated.

Results of the uOvO method are shown in Tables 5
and 6. For SVM, the unique one-versus-others (uOvO)
method shows good improvements, about 13.6% for
composition data, and 14.9% for secondary structure data.
The best final results of the uOvO method are achieved on
the combined C + S + H dataset, 51.1%, improved upon
the original OvO results of 45.2%. On the NN results
(not shown), the average accuracy is improved from 20.5
to 43.1%, a 110% improvement, due to the elimination
of the large amount of false positives. These significant
improvements indicate the usefulness of the uOvO method
in reducing FPR or noise.

Table 5. Unique percentage accuracy Qi , Q for one-versus-others (OvO)
and unique one-versus-others (uOvO) methods using Support Vector
Machine

C S CSH
Fold OvO uOvO OvO uOvO OvO uOvO

1 75.0 83.3 41.7 50.0 87.5 83.3
3 44.4 55.6 16.7 33.3 50.9 66.7
4 34.2 35.0 36.7 40.0 43.7 46.7
7 43.8 50.0 35.4 29.2 53.5 62.5
9 94.4 100.0 44.4 55.6 69.8 100.0

11 33.3 44.4 27.8 22.2 50.0 55.6
20 41.3 52.3 36.0 36.4 48.6 60.2
23 16.7 33.3 8.3 11.1 15.3 16.7
26 46.2 38.5 10.3 30.8 46.8 53.8
30 33.3 33.3 16.7 16.7 25.0 33.3
31 54.2 62.5 37.5 37.5 41.7 50.0
32 21.1 21.1 22.4 22.8 27.4 31.6
33 50.0 50.0 37.5 50.0 50.0 50.0
35 50.0 50.0 25.0 25.0 25.0 25.0
39 42.9 42.9 28.6 28.6 39.3 50.0
46 58.0 66.7 42.2 46.4 60.5 64.6
47 50.0 50.0 66.7 75.0 56.9 54.2
48 33.3 30.8 23.1 30.8 29.5 34.6
51 46.3 55.6 22.2 24.1 31.2 46.9
54 50.0 41.7 33.3 37.5 47.2 36.1
57 18.8 37.5 25.0 25.0 25.0 25.0
59 35.7 35.7 35.7 50.0 39.3 28.6
62 71.4 71.4 50.0 57.1 78.6 71.4
69 25.0 25.0 25.0 25.0 25.0 25.0
72 25.0 25.0 0.0 0.0 25.0 25.0
87 14.8 14.8 16.7 22.2 24.5 29.6
110 67.9 88.9 46.3 55.6 69.3 83.3

Avg 43.5 49.4 31.5 36.2 45.2 51.1

Table 6. Unique accuracy Q for the independent test as more votes on
different parameter datasets are combined, for one-versus-others (OvO),
unique one-versus-others (uOvO), and all-versus-all (AvA) methods

C (%) CS (%) CSH (%) CSHP (%) CSHPV (%) ALL6 (%)

OvO 20.5 36.8 40.6 41.1 41.2 41.8
NN
OvO 43.5 43.2 45.2 43.2 44.8 44.9
SVM
uOvO 49.4 48.6 51.1 49.4 50.9 49.6
SVM
AvA 44.9 52.1 56.0 56.5 55.5 53.9
SVM

All-versus-all method
For the 27 fold classes, the prediction system consists of
27 × (27 − 1)/2 = 351 two-way SVM classifiers, each
between one pair of folds. A test protein is tested against
all trained SVMs, and results are tallied as before. For
example, for the protein 1hbg we get
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Table 7. Prediction accuracy Qi (in percentage) for each individual fold and
overall accuracy Q (bottom line). Majority voting is used on combination of
votes from different parameter datasets

Independent test Cross validation
Fold NN SVM SVM SVM NN SVM
index OvO OvO uOvO AvA OvO AvA

1 55.6 87.5 83.3 83.3 36.5 73.1
3 27.8 50.9 66.7 77.8 7.1 71.4
4 25.6 43.7 46.7 35.0 33.3 66.7
7 37.5 53.5 62.5 50.0 14.3 42.9
9 77.8 69.8 100.0 100.0 38.9 50.0

11 27.8 50.0 55.6 66.7 21.4 28.6
20 53.9 48.6 60.2 71.6 51.2 46.7
23 12.5 15.3 16.7 16.7 22.2 33.3
26 44.2 46.8 53.8 50.0 28.1 62.5
30 33.3 25.0 33.3 33.3 7.1 21.4
31 52.1 41.7 50.0 50.0 0.0 62.5
32 26.3 27.4 31.6 26.3 7.7 15.4
33 25.0 50.0 50.0 50.0 0.0 12.5
35 0.0 25.0 25.0 25.0 13.3 22.2
39 40.5 39.3 50.0 57.1 11.1 22.2
46 65.8 60.5 64.6 77.1 64.9 82.8
47 38.9 56.9 54.2 58.3 18.2 36.4
48 21.8 29.5 34.6 48.7 13.6 9.1
51 42.6 31.2 46.9 61.1 29.5 53.8
54 29.2 47.2 36.1 36.1 8.3 60.0
57 50.0 25.0 25.0 50.0 25.9 33.3
59 38.1 39.3 28.6 35.7 13.3 5.0
62 57.1 78.6 71.4 71.4 6.8 36.4
69 0.0 25.0 25.0 25.0 34.8 63.6
72 25.0 25.0 25.0 12.5 0.0 0.0
87 21.4 24.5 29.6 37.0 9.0 19.2

110 60.3 69.3 83.3 83.3 55.8 75.0

Avg 41.8 45.2 51.1 56.0 27.2 45.4

1hbg (F1) 1:26 46:24 47:24 51:23 3:22
69:21 48:20 35:18 59:18 23:16

Folds are sorted according to their votes (more folds with
less votes are not shown here). This was repeated for all
6 parameter sets, resulting in a total of 2106 two-way
classifiers. The fast convergence of SVM makes this study
possible. Due to slow convergence in NN training, training
such a large number of NNs would be prohibitive, thus no
NN test is done using the all-versus-all method.

Prediction results for the test dataset for each of the
folding classes using SVM are shown in Tables 6 and 7.
For the composition dataset alone, the unique accuracy
is 44.9%. As scores of more parameter datasets are com-
bined together, the accuracy increases to 52.1% for CS,
and to 56.0% for CSH due to noise reduction. In general,
the all-versus-all method improves the prediction accu-
racy by about 24% over the one-versus-others method,
and by about 10% over the unique one-versus-others
method.

CROSS-VALIDATION
Another standard test on the recognition system we
used was a Cross-Validation (CV) test. CV measures the
performance of the prediction system in a self-consistent
way by systematically leaving out a few proteins (about
10%) during the training process and testing the trained
prediction system against those left-out proteins. This
is repeated such that every protein in the dataset is
once among those left-out. Compared to the test on
independent set, CV has less bias and better predictive and
generalization power.

One such 10-fold CV is run on a random partitioning of
a parameter dataset. To gain high statistics, we did four
independent partitionings and corresponding CVs. (The
total number of 2-way SVM classifiers trained in this study
is 4× S × K × P = 6480 in the one-versus-others method,
and 4× S ×[K (K −1)/2]× P = 84 240 in the all-versus-
all method.)

The results of the 10-fold CV are listed in Table 7
for SVM/AvA and NN/OvO. For the composition dataset
alone, the CV average unique accuracy is 33%. As scores
of more parameter datasets are combined together, the
accuracy improves, to 45.4% for C + S + H. By using
NN for all six parameter sets combined, we achieved an
accuracy rate of 27.2%.

SUMMARY AND DISCUSSIONS
Comparison of multi-way classification methods
Our extensive results clearly demonstrate that the two
advanced methods, the unique one-versus-others method
and the all-versus-all method, outperform the popular one-
versus-others method: they improve prediction accuracy
by about 14–25 % for SVM, and by about 110% for
NN. Of course, the substantial advantages of the advanced
methods come at the cost of training much more 2-way
classifiers.

Between the unique one-versus-others and all-versus-
all methods, our tests indicate that the former appears
to be more effective if only a single parameter dataset
is available, and the latter is better for combining scores
from multiple datasets. Overall, both methods appear to
perform equally well.

Theoretically, the all-versus-all method has cleaner
decision boundaries between all pairs of classes, but
has larger noise due to the involvement of all possible
pairs. Combining multiple votes on different parameter
datasets reduces the noise, thus leading to more accurate
predictions.

The unique one-versus-others method involves substan-
tially fewer pairs of classes, thus less noise, at the false
positive elimination step. This explains the high accuracy
for a single parameter dataset; combining votes from more
parameter dataset, do reduce noise, but not as significantly
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as in the all-versus-all method. However, the decision
boundaries used in the first step, the one-versus-others
step, cannot be drawn as clean between one true class and
the complementary ‘others’ class. This is the fundamental
limitation of this method.

The all-versus-all method was briefly mentioned in
Weston and Watkins (1998) and no improvement was
found over the one-versus-others method.

Comparison between SVM and NN
Our results, as shown in Tables 6 and 7, demonstrate sub-
stantially higher accuracy achieved by SVM as compared
to NN. As mentioned earlier, one of the pronounced fea-
tures of NN is rather high FPRs, due to higher noise levels
in NN. This negatively impacts the prediction accuracy.
The interesting point emerging from our study is that when
scores of multiple parameter datasets are combined, accu-
racy for NN improves much more than for SVM, due to
significant reduction of noise in the case of NN. This indi-
cates that the voting approach for NN is crucial to achieve
high accuracy.

Another pronounced difference is computational effi-
ciency. NN training typically converges slowly, whereas
SVM training converges rapidly, typically about 1–2
orders of magnitude faster than using NN. For this reason,
some of the multi-way classification methods are only
tested using SVM. The 10-fold CV, dominated by the
training of the 351 × 6 × 10 = 21 060 two-way SVM
classifiers shown in Table 7 took about 12 CPU hours on
a Sun Ultra 5.

Effectiveness of parameter sets
The effectiveness of machine learning methods depends
crucially on the feature vectors extracted from the pro-
tein sequence. Extensive testing of different classification
methods on independent protein sets or by CV showed
that amino acid composition is the most effective parame-
ter set, followed by the predicted secondary structure, and
then hydrophobicity parameter sets. The numerical assess-
ment is listed in Table 8. However, the best accuracy is
obtained when scores of different parameter sets are com-
bined together. This further confirms our earlier intuition
in developing the feature extraction methods.

How many representatives does each fold need?
In Table 9, we show how the prediction accuracy of both
CV and independent test depends on the number of repre-
sentative proteins in a fold. To gain sufficient statistics, we
averaged those folds with representative proteins in ranges
7–9 (there are 12 folds in this range), 10–12, 13–16, and
29–30 (there are no folds with the number of proteins in
the range 17–28). It is clear that as Nrep in each class in-
creases, the accuracies increase steadily, to about 58–67%
level for 29–30 representatives per class. This is quite con-

Table 8. Prediction accuracy Q for different parameter datasets. Both
independent test (Ind-Test) and cross-validation (CV) are shown

Parameter SVM SVM NN Avg
CV (%) Ind-Test (%) Ind-Test (%) (%)

Composition 32.7 44.9 20.5 32.7
Secondary structure 34.6 35.6 18.3 29.5
Hydrophobicity 19.8 36.5 14.2 23.5
Polarity 18.7 32.9 11.1 20.9
Volume 17.2 35.0 13.4 21.8
Polarizability 14.6 32.9 13.2 20.2

Table 9. Effects on percentage accuracy Q due to number of representatives
(Nrep) in each fold

Cross validation Independent test
Nrep AvA OvO AvA uOvO OvO OvO

SVM NN SVM SVM SVM NN

7–9 31.1 13.4 51.4 46.6 37.6 34.1
10–12 38.9 18.3 42.1 42.4 41.5 30.1
13–16 50.3 27.8 57.2 54.8 46.5 41.7
29–30 67.0 58.1 74.5 62.4 53.9 59.9

sistent in CVs on training datasets; although there are a
few exceptions in independent tests on classes with rather
small number of proteins (7–9), where large fluctuations
are expected.

Effects of large number of folds
Prediction accuracy depends on the number of folds in the
prediction system. To investigate this further, we studied
2-class and 8-class problems in addition to the 27-class
problem and results are shown in Table 10. In 2-class
problem, each fold is classified with each of other 26
folds in 2-way classification, and the prediction accuracy
is averaged (2-way results). This is repeated for each fold.
The 8-way classification involves folds 1, 20, 26, 32, 46,
51, 87, 110, which are chosen because each of the folds
has 13 or more proteins.

For independent tests, the accuracy drops from 84.3%
for 2-way classifications to 52.8% for the 8-way classifi-
cation to 45.6% for the 27-way classification. The same
trend is also apparent for CVs on either 8-way classifica-
tion (63.7%) to 27-way classification (45.2%).

The reason for the steady drop in prediction accuracy is
two-fold. First, as a general trend, the more classes are
involved in a classification system, the more difficult it
is to accurately assign a new query protein. Second, in
our datasets, the number of representatives in each fold
reduces very substantially, as explained in the previous
section. From the significant drop in prediction accuracy
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Table 10. Dependency of SVM prediction accuracy Qi , Q on the number of
folds. Only composition parameter dataset is used

Fold 2-way 8-way 27-way 8-way 27-way
test (%) test (%) test (%) CV (%) CV (%)

1 91.7 83.3 83.3 62.5 71.1
3 92.7 – 66.7 – 65.2
4 64.6 – 30.0 – 64.6
7 74.5 – 43.8 – 26.8
9 98.3 – 77.8 – 45.8

11 75.6 – 55.6 – 41.1
20 87.8 54.5 45.5 64.8 52.5
23 80.1 – 33.3 – 30.6
26 90.8 34.6 34.6 76.5 70.3
30 83.3 – 33.3 – 20.8
31 70.2 – 41.7 – 46.9
32 75.9 26.3 18.4 20.8 7.7
33 86.5 – 50.0 – 7.8
35 69.2 – 50.0 – 25.0
39 87.9 – 52.4 – 27.8
46 93.4 61.5 51.0 80.2 81.5
47 89.7 – 41.7 – 43.2
48 81.7 – 38.5 – 9.1
51 90.0 55.6 51.9 60.1 53.5
54 88.5 – 36.1 – 58.8
57 78.8 – 25.0 – 36.1
59 82.4 – 35.7 – 3.8
62 89.0 – 71.4 – 28.4
69 69.2 – 25.0 – 64.7
72 68.3 – 18.8 – 0.0
87 70.4 12.3 13.0 26.5 20.8
110 97.4 92.6 90.7 91.1 78.6

Avg 84.3 52.8 45.6 63.7 45.2

shown in Table 9, we believe this factor is more important.
Fortunately, this lack of representatives will be improved
by the steady growth of the number of known proteins in
databases.

Overall, for the 27-class dataset with relatively small
numbers of representatives in each fold (many have seven
proteins), the prediction accuracy is around 50% (45% for
CV, 56% for test). Although this accuracy level is not high,
we note that for 27-class problem, a random prediction
will have an accuracy of 1/27 = 3.7%.

Feedback to SCOP
Our study also shows that some folds are consistently
recognized with high prediction accuracy: fold F9 (α:
4-helical cytokines), fold F26 (β: viral coat), fold F46
(α/β: TIM-barrel), fold F110 (α + β: small inhibitors);
while some other folds are consistently recognized with
low accuracy: fold F23 (β: cuperedoxins), fold F59 (α/β:
ribonuclear H-like motif), fold F72 (α + β: β-grasp).
These features are fairly persistent on different parameter
datasets and combined datasets. They are also consistent

with different discriminant methods (see Tables 4, 5,
and 7).

The biological characteristics of these folds are worth
further examination, which could probably lead to better
feature extraction methods for more accurate predictions,
and could also provide feedback to improve the original
SCOP classification database (e.g. split one difficult fold
into several folds). Much remains to be explored here.

CONCLUSION
In this paper, we studied several important issues in
protein fold recognition in the context of a large number
of folds using discriminative methods, aided by the fast
and highly accurate SVM. We studied the popular one-
against-others method, and two new advanced methods:
the unique one-versus-others method and the all-versus-
all method. These advanced methods improved prediction
accuracy substantially, at a higher but manageable
computational cost.

Overall, recognition methods achieve 56% prediction
accuracy on test proteins which have less than 35%
sequence identity with proteins used in training (90% of
those test proteins have less than 25% sequence identity
with the training proteins, see Brenner et al., 1998,
Figure 6). Thus the fold recognition approach is a useful
structure discovery method, complementary to BLAST
type sequence-similarity based methods.

In the present work, the recognition system simply
predicts a fold for an input protein without associating it
a numerical value to assess the reliability or confidence
of the prediction. Since each protein is predicted with
different reliability, such a reliability score is necessary for
practical prediction systems. For example, a low reliability
score for a new protein may signal that it does not belong
to any fold in the system.

In this study, we also systematically investigated many
important aspects of multi-class fold prediction, which
will help to build a practical fold prediction system
including about 600 folds in the SCOP database.
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