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Abstract

The protein interaction network presents one perspective for understanding cellular processes. Re-
cent experiments employing high-throughput mass-spectrometric characterizations have resulted in large
datasets of physiologically relevant multi-protein complexes. We present a dual representation of such
datasets based on an underlying bipartite graph model that is an advance on existing models of the
network where the connections between proteins are uniformly weighted. Our dual representation al-
lows for additional weighting of connections between proteins shared in more than one complex as well
as addressing the higher level of organization that occurs when the network is viewed as consisting of
protein complexes that share components. The dual representation also allows for the application of
the rigorous MinMaxCut graph clustering algorithm for the determination of relevant protein modules
in the networks. Statistically significant annotations of clusters in the network using terms from the
Gene Ontology suggest that this method might be useful for posing hypothesis about uncharacterized
components of protein complexes or uncharacterized relationships between protein complexes.

Introduction

Proteins carry out most essential cellular processes in complex multi-protein assemblies. These protein

complexes perform activities needed for metabolism, communication, growth and structure. A systematic

identification, characterization and understanding of these molecular machines of life will provide an essen-

tial knowledge base and link proteome dynamics and architecture to cellular function and phenotype. A

variety of experimental and computational approaches have been employed to deduce the constituents of

protein macromolecular complexes Experimental approaches such as the yeast two-hybrid genetic screen

yield binary interaction data while more recent high throughput methods combine tagged “bait” proteins

and protein-complex purification schemes with mass spectrometric measurements to yield physiologically

relevant data on intact multi-protein complexes (Schwikowski et al., 2000; Ho et al., 2002; Gavin et al.,

2002). Taken together, data from these experiments approximate the network of interactions between

proteins and protein complexes that govern most cellular processes.

An important issue is the effective representation of the functional relationships between various parts

of the interaction network (Alm and Arkin, 2003). So far most studies have represented protein interaction

data as a map of binary interactions with uniformly weighted connections between interacting proteins

(Bader and Hogue, 2002). For multi-protein complex data, this binary model assumes a pairwise interaction

between all constituents in a complex. This equal weighting, however, is an oversimplification since physical

interactions between constituents cannot be unambiguously described for all complexes without rigorous

structural analysis. Some efforts have been made to move beyond the binary interaction model. The

“spoke” model (Bader and Hogue, 2002) assumes pairwise interactions only between the purification “bait”
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Figure 1: A bipartite graph representation of a hypothetical protein-complex dataset. The p-nodes rep-
resent proteins and c-nodes represent experimentally-determined protein complexes. An edge between a
p-node and a c-node indicates that the protein is contained in the protein complex.

and proteins that co-purify in the complex. A hypergraph model (Pothen, 2003) allows protein to connect

to more than one protein.

The most important limitation of existing models of the protein interaction network is their inability

to represent a higher order organization of the proteome that results from the consideration of network

relationships between protein complexes. A recent review by Gavin and Superti-Furga discusses the major

issues concerning protein complexes and proteome organization and gives several examples of the modular-

ity of protein complexes and their ability to share components and interact in complex cellular processes

(Gavin and Superti-Furga, 2003). A model of the protein interaction network that adequately deals with

relationships between protein complexes would be an important step toward a framework for a systems-level

understanding of cellular processes.

A Bipartite Graph Model of Protein Complex Data

In this paper we propose a novel representation of multi-protein complex data that treats proteins and

protein complexes on equal footing.. This representation emphasizes the “duality” of the relationship: a

protein complex is characterized by its constituent proteins, while the interaction between two proteins

can be gauged by the protein complexes that contain these proteins. This duality is best captured by a

bipartite graph (Figure 1) specified by an adjacency matrix B, in which a protein-complex is represented

by a column and a protein is represented by a row.

This bipartite representation of multi-protein complex dataset leads to a coherent framework for in-

teraction networks: (1) The protein-protein (p-p) interaction network arises naturally. If we define the

interaction strength between two proteins as the number of complexes that contain the two proteins, this

interaction strength is given precisely by the adjacency matrix BBT . (2) More importantly, the protein

complex - protein complex (c-c) interaction network arises naturally. If we define the interaction strength

between two protein complexes as the number of common proteins shared between them, then this interac-

tion strength is precisely given by the adjacency matrix BTB. (see the Methods Section for more details.)

This framework overcomes the shortcomings in previous work: (a) The c-c interaction network yields a

higher level organization of cellular processes. (b) The interaction strength of connections in the network

is more realistic than simple uniform weighting.

The more realistic interaction strength of network connections from our dual representation allows

for the application of a rigorous graph clustering algorithm (MinMaxCut) which has been shown to be

successful with difficult datasets (Ding, 2002). The goal of clustering the protein interaction network is

to determine its component modules, their functional annotations and some notion of the relationships

between them. A module in a biological network is loosely defined as a functional unit separable from the

rest of the network. In this context the use of the terms modules and computationally discovered clusters

is interchangeable. Our hypothesis is that computationally discovered modules would encompass proteins
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Figure 2: Distribution of the degree (number of proteins a given protein interacts with) in the protein-
protein interaction network. This curve approximates a power-law distribution indicating that it is a
scale-free network topology.

related through physical, and possibly temporal, associations in functionally coincident macromolecular

complexes (p-p network), or define more diverse relationships of cellular process between functionally

related protein complexes (c-c network).

Results and Discussion

Multi-Protein Complex Dataset

Two datasets summarizing high-throughput analysis of multi-protein complexes are available for the yeast

Saccharomyces cerevisiae (Gavin et al., 2002; Ho et al., 2002). Coupling different purification (immuno-

precipitation and tandem affinity purification (TAP)) and labeling schemes with mass spectrometry (MS),

both studies used bait proteins to identify physiologically intact protein-complexes. A recent analysis

used a maximum likelihood model and gene expression correlation coefficients to evaluate the reliability

of various high-throughput protein-protein interaction datasets and concluded that the TAP dataset had

the highest accuracy for predicting protein function (Ding et al., 2001). Another analysis compared the

accuracy and coverage of protein interactions for several high-throughput datasets relative to a trusted

reference set of protein complexes annotated manually from the Munich Information Center for Protein

Sequences (MIPS) and the Yeast Proteome Database (YPD) (von Mering et al., 2002). This analysis also

revealed a superior accuracy to coverage tradeoff for the TAP-MS data relative to other methods. Hence

we have chosen this dataset to illustrate our model.

We represented this dataset as a bipartite graph with adjacency matrix B. The symmetric matrix BBT

defines the interaction strength of the protein-protein interaction network from the underlying bipartite
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Figure 3: Predicted clusters of the p-p network. The colors show the normalized interaction strength of
the p-p network. Clusters with less than 20 proteins are not shown. The most highly connected protein in
each cluster is shown by its protein name, and the number of TAP protein complexes this cluster matches
to (with ρ > 0.7) is shown as the number after the protein name. Axes are protein IDs in the p-c network.
They help to show the size of each clusters. For example, cluster P28 with protein Smd2 has 112 proteins.

graph model. This p-p network shows a scale free topology indicating that proteins in the network have

a wide range of connectivities (Figure 2). Previous work has speculated that connectivity in the network

might correlate with observable biological properties such as the rate of protein evolution (Fraser et al.,

2002).

Clusters in the P-P Interaction Network Define Modules of Protein Complexes

Given a network of protein interactions, one can computationally predict modules and annotate these

modules with a biological context. A computationally predicted protein module is defined as a highly

connected region or structure in the network. Previous work has employed “k-cores” and other density-

based methods to partition the protein interaction network (Bader and Hogue, 2002; Bader and Hogue,

2003). In this paper we identify protein clusters using MinMaxCut, a graph clustering algorithm which was

shown to be effective for class discovery in gene expression microarray data for lymphoma (Ding, 2002) (see

Methods Section). We apply MinMaxCut to the protein interaction network specified by the adjacency
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Figure 4: A summary of the overlap between the constituents of predicted p-p clusters and TAP-MS
protein complexes. Match coefficients are indicated by the symbols. The solid line indicates where protein
complexes and p-p clusters are the same size.

matrix BBT . The non-uniform interaction strength between proteins gives a more realistic characterization

of the network. We now analyze the p-p interaction network highlighting the main results. A comprehensive

analysis of these results is deferred to a later paper.

Figure 3 shows the interaction strength (the adjacency matrix BBT ) of the p-p network sorted after

clustering. Several clusters exhibit high overall interaction strength and most encompass biologically mean-

ingful complexes. To support our supposition that clusters in the p-p network encompass physiologically

relevant protein complexes we compared the discovered p-p clusters to the TAP-MS protein complexes that

are the basis of the bipartite graph model. To quantify this correspondence we define the match coefficient

ρ = n(Pk, cj)/min(|Pk|, |cj |)

where |Pk| =number of proteins in p-p cluster Pk, |cj |=number of proteins in TAP-MS protein complex

cj , and n(Pk, cj) = number of shared proteins between Pk and cj . A protein cluster Pk may be entirely

contained in a experimental protein complex ci; or conversely, ci could be entirely contained in Pk; both

cases result in a perfect match with ρ = 1. Using this match coefficient and a threshold of 0.8 we found

that 65 of 66 predicted p-p clusters match to at least one experimental protein complex (Figure 4). This is

strong evidence that clusters in the p-p network define modules of physiologically intact protein complexes

and furthermore that any clustered assemblies with uncharacterized constituents might correspond to novel

interactions or functional relationships. We note that those protein clusters which match two or more TAP

protein complexes are most interesting. For example, Figure 5 details how the largest cluster in the p-p

network denoted P28 matches to 6 TAP protein complexes. These matching complexes are also shown as

6 points in Figure 4 as indicated by the arrow.
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Figure 5: Protein cluster P28 matches 6 experimental protein complexes (labeled as published (Gavin et al.,
2002)). All proteins in the cluster and protein complexes are listed. Proteins shared by the protein cluster
and at least one experimental protein complexes are listed above the dividing line. Below the line are
proteins not shared. The matching coefficients are ρ(P28, c128) = 0.83, ρ(P28, c129) = 0.91, ρ(P28, c155) =
1, ρ(P28, c158) = 1, ρ(P28, c160) = 0.98, ρ(P28, c161) = 0.98.
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Lys 100 Asn 56 Val 30 Ile 24
Asp 89 Gln 50 Tyr 29 Ser 23
Arg 73 Cys 39 Met 29 Leu 22
Pro 70 His 33 Trp 28 Gly 21
Glu 66 Ala 31 Thr 28 Phe 21

pI 169 Basic 149 Acidic 97 MW 60
Aromatic 30 Helix 37 Beta-Sheet 33 Coil 27

Table 1: F -statistics of amino acid composition (top) and physical properties (bottom) across all clusters
in p-p interaction network.

Modules in the P-P Network Have Characteristic Physical and Chemical Properties

The assembly, thermodynamic stability, and functionality of protein complexes are controlled by various

environmental conditions in the cell. Surface accessible amino acid residues can be covalently modified

to regulate the functional state of protein-complexes. Non-covalent ligand binding can also modulate the

functional state of protein complexes. Hence we would expect that the proteins of discovered clusters in the

p-p network would be distinguishable by intrinsic physical and chemical characteristics. We calculated an

F -statistic for protein physical-chemical properties and amino acid composition to see if protein clusters

exhibit any significant trends that might suggest distinguishing features of their interactions. Given a

particular property f across n proteins and K clusters containing these proteins the F -statistic is defined

as

F =
1

K − 1

K
∑

k=1

nk(f̄k − f̄)2
/ 1

n−K

K
∑

k=1

(nk − 1) σ2
k

where f̄ is the average across all proteins, f̄k and σk are the average and variance within p-p cluster Pk,

and nk is the size of cluster Pk. The magnitude of the F -statistic is a measure of how well the given

property distinguishes between clusters. The various properties and their F -statistics are listed in Table

1. To assess the statistical significance, we compute the F -statistic for the same dataset when proteins are

randomly assigned to classes. The F -statistic for randomly shuffled data are approximately 16± 8 across

these quantities. Thus quantities above 30 are significant.

Protein complexes can be characterized as non-obligate (temporary) or permanent where the native

state is oligomeric. The surfaces that mediate the interactions in these two types of complexes necessarily

differ in structural and physical properties (Jones and Thornton, 1996). Since using different values for

the cluster cohesion parameter (See Methods section) of the MinMaxCut clustering algorithm is likely

to result in discovered protein clusters that encompass differing ratios of these two types of complexes

we would expect that the calculated physical properties would be somewhere intermediate between those

expected for the two types of complexes. Indeed, this seems to be the case if we consider the F -statistics

for amino acid composition. Interactions in temporary protein complexes which function dynamically in

cellular processes are often tuned by the effects of polar groups (Lys, Arg, Gln, Asn, Asp) which define

a complementary electrostatic surface, hydrogen bonding (Arg) and stabilizing hydrophobic interactions

(proline). Methylation of Arg and Lys, and acetylation of Lys are well known covalent modifications of

surface amino acids that could influence complex formation. Cys participates in the formation of disulfide

bridges that can stabilize more permanent complexes as well as more dynamic interactions (Veselovsky

et al., 2002; Jones et al., 2000). Finally studies have shown that secondary structural features are often

uniformly distributed at protein interaction interfaces consistent with their relative unimportance in the
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above calculations (Jones and Thornton, 1996).

Supercomplexes Encompass Modules from the P-P Network

In all previous analysis of protein-complex data only the resulting pairwise interaction network has been

examined (von Mering et al., 2002; Bader and Hogue, 2002; Schwikowski et al., 2000). The pairwise inter-

action network, however, yields an incomplete and noisy version of proteomic organization. As evidenced

by recent high-throughput experiments for determining protein complexes and a few other well studied

examples: protein complexes are apt to share components and hence define a network of interconnected

cellular processes (Gavin and Superti-Furga, 2003). No study to date has adequately represented the

higher-order organization of this network. In our dual representation of the data the adjacency matrix

BTB defines the connectivity between protein complexes where the connection is weighted by the number

of shared components. Figure 6 shows the result of a MinMaxCut clustering of this network. Clusters are

labeled with the most frequently occurring protein as well as the number of protein complexes correspond-

ing to a particular biological process. We introduce the terminology supercomplex to denote a cluster in

the complex-complex interaction network.

Since we expect supercomplexes to represent a diversity of interconnected cellular processes it would

be consistent if each supercomplex showed high match coefficients with various modules from the p-p

interaction network. Figure 7 summarizes the overlap between predicted supercomplexes and predicted

protein complexes. Most supercomplexes show overlap with several predicted protein complexes, and in

some instances the same predicted protein complex occurs in multiple supercomplexes. In one instance a

module in the p-p network and and a supercomplex are in one-one correspondence (the p-p cluster listed

in Figure 5).

Computationally Discovered Modules are Biologically Consistent

We provide anecdotal evidence that computationally discovered modules in the dual representation are

biologically consistent. To determine a biological context we used a set of controlled vocabularies defined

by the Gene Ontology for which most of the proteins in our dataset have been annotated with at least one

term (Dwight et al., 2002). The Gene Ontology consists of three orthogonal ontologies: biological process,

molecular function and cellular component (Ashburner et al., 2000). Given that p-p clusters are defined by

the proteins sharing maximal membership within the same experimentally determined protein complexes

and c-c clusters capture relationships between protein complexes, we would expect the biological process

and cellular component ontologies to give the most coherent annotations. We map each protein in a p-p

cluster to the most specific ontological term assigned to it. For c-c clusters we determine a non-redundant

union of all protein constituents and map these to their most specific annotated terms. The GO ontologies

are organized as directed-acyclic graphs. This data-structure allows us to ascend the graph from more

specific terms to determine the set of common “parent” terms that describe a predicted cluster’s functional

categories. We approximate the significance of that annotation by calculating the probability that n or

more proteins would be assigned to that term if we selected randomly from the cluster. This probability

is calculated as

P =
∑

n≤j≤N

(

N

j

)

pj(1− p)N−j

where p is ratio of proteins in the genome annotated to the given term, and N is the number of proteins

in the cluster. This p-value allows us to rank annotations according to significance and to reason about
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Figure 6: Predicted protein supercomplexes (clusters of the c-c network). Several large supercomplexes
are shown. Each supercomplex is labeled with frequently occurring proteins, the number of total non-
redundant constituent proteinss, and the relevant biological processes inferred from the participating TAP
experimental protein complexes. Axes correspond to arbitrary experimental complex ids.

the cellular roles for a given cluster. If a subgraph composed from the significant terms is biologically

consistent, then we may state the validity of the computationally determined module.

We briefly present two examples: the largest cluster in the p-p network denoted P28 and the largest

cluster in the c-c network denoted C47. P28 contains 112 proteins as depicted in Figure 5. Figure 8 shows

the most significant ontological terms from the GO - cellular component ontology corresponding to the

proteins in this cluster. Annotations to the general terms nucleus (76 proteins) and ribonucleoprotein
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Figure 7: Overlap between computed supercomplexes (clusters of c-c network) and predicted protein
complexes (clusters of p-p network). The match coefficient defined through shared protein constituents are
indicated.
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Figure 8: Subgraph of the gene ontology (Component) corresponding to a subset of the most prevalent an-
notations of proteins in p-p cluster P28.Significant nodes are labeled with the number of proteins annotated
directly or indirectly to that term and the p-value for the term.

(RNP) complex (81 proteins) as well as more specific terms such as spliceosome complex (48 proteins),

major (U2 dependent) spliceosome (22 proteins) and commitment complex (12 proteins) clearly indicate

these proteins are components of the pre-mRNA splicing machinery. It is well known that the transcrip-

tional machinery consists of several coupled multi-protein machines that carry out separate steps in gene

expression coordinated via interactions with the carboxy terminal domain of the RNA polymerase II large

subunit (Maniatis and Reed, 2002).

The predicted protein complex P28 is also the only p-p cluster that corresponds exactly with a super-

complex. Thus, while most of the proteins in the cluster have been accounted for in stable complexes,
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Figure 9: Subgraphs of the gene ontology (Process) corresponding to a subset of the most prevalent
annotations of proteins in supercomplex C47. Significant nodes are labeled with the number of proteins
annotated directly or indirectly to that term and the p-value for the term.

there are also some more hypothetical relationships suggested by the GO annotations. Ten proteins are

predicted to be associated with the mitochondrial ribosome. Constituents of the mitochondrial ribosome

are encoded in both the nuclear and mitochondrial genomes. A mechanism that coordinates the expression

of these constituents has been hypothesized, given that the stoichiometric synthesis of all mt ribosomal

components is likely to be regulated to avoid wasting metabolic energy (Graack and Wittmann-Liebold,

1998). Hence the clustering of these proteins suggests a possible coupling between gene expression in the

nucleus and mitochondria. Additionally, there is evidence that splicing can enhance export of mRNA from

the nucleus (Reed and Hurt, 2002) and that combinatorial binding of heterogeneous ribonucleoproteins

(hnRNPs) to mRNA may regulate post-transcriptional events such as nuclear export, mRNA stability, and

nonsense mediated decay (Keene, 2001). That many of our proteins are annotated to these terms (com-

mitment complex, mRNA-nucleus export, translation initiation, polysome, cytoplasmic transport, mRNA

splicing, see supplemental data) at least suggests these relationships and their interdependence.

The largest supercomplex C47 illustrates how diverse cellular process can be coupled via a nexus of

interconnected protein complexes. Figure 9 shows the most significant GO-process annotations for this

supercomplex (210 proteins). The GO-process annotations suggest that this supercomplex encompasses
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MIPS Listing # orfs # orfs in C47

RNA Pol II holoenzyme 35 23
Kornberg’s mediator 21 21
Other transcription 73 17
HAT A 15 14
TFIID 13 13
SAGA 14 13
Ada-Spt 14 13
TAFIIs 12 12
DNA repair 33 9
RSC 10 6
ADA 6 6
Replication fork 30 6
DNA mismatch repair 5 5
Cytoplasmic translation initiation 27 4
SAGA-like 5 4
Nucleotide excision repairosome 16 3
RNA Polymerase III 13 3
Replication factor A 3 3
Actin-associated motorproteins 7 3
MSH2/MSH3 3 3
Srb10p 4 3
NEF4 2 2
eIF4A 2 2
NuA4 2 2
Nuclear pore 24 2
Sir 2 2

Table 2: A sample of known protein complexes from the curated MIPS catalog which have many con-
stituents in supercomplex C47. Listed are the name of the complex, the number of known orfs in the
complex, and the number of orfs from the complex present in C47.

complexes involved in chromatin dynamics and transcriptional regulation and initiation as well as cell

cycle control, cell wall organization and biogenesis, DNA replication initiation and repair, signal trans-

duction, and general transcriptional regulation (for clarity only a subset of the significant annotations

are shown). See supplemental materials for the complete annotation). We determined a list of curated

protein-complexes from the MIPS Catalog that are highly represented in the supercomplex. A subset of

this list is shown in Table 2. Several of these complexes correspond to known participants in chromatin

modifications such as histone acetylation and deacetylation which are prerequisite for such processes as

transcriptional initiation, certain types of DNA repair, and cell cycle progression (Roth et al., 2001; Green

and Almouzni, 2002; Peterson, 2002).

Conclusion

In this paper we propose a dual representation that unifies three interaction networks, the protein - protein

complex (p-c) network, the protein - protein interaction (p-p) network and the protein complex - protein
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complex (c-c) network under a single framework. The resulting protein - protein and complex - complex

interaction networks have more realistic interaction strengths than the conventional binary interaction

networks with equal weighting. This results in a coherent framework for computational detection of

modules in the dual representations which occur as clusters or densely connected regions. We apply a

rigorous graph clustering algorithm to find these modules. Basic statistical analysis revealed that differences

between modules in the protein interaction network are reflected by characteristic physical and chemical

properties of the protein interactions. We emphasize the protein complex - protein complex (BTB) network

as reflecting a higher-order organization of the proteome. The largest supercomplex has 210 non-redundant

constituent proteins and was involved in a number cellular processes. Use of the Gene Ontology revealed

that the biological annotations of computationally discovered modules are statistically significant and that

this method can facilitate the functional annotation of uncharacterized constituents in future multi-protein

complex datasets as well as the discernment of novel functional relationships between protein complexes.

As more high quality protein complex data becomes available, we expect this unified representation of

interaction networks and associated clustering methodology will evolve into a useful framework for studying

systems biology.

Methods

Protein Complex Data Can Be Modeled as a Bipartite Graph

The representation of a multi-protein complex dataset as a bipartite graph allows us to immediately infer

a number of important quantities and to apply a large body of existing graph techniques.

A bipartite graph has two type of nodes: p-type nodes that denote proteins (or p-nodes) and c-type

nodes that denote protein complexes (c-nodes). This graph structure only allows connections between

p-nodes and c-nodes. Thus a protein complex (c-node) has edges connecting to each of its constituent

proteins (p-nodes) (Figure 1). A bipartite graph is uniquely determined by its adjacency matrix B = (bij).

Let c1, c2, · · · , cn denote protein complexes and p1, p2, · · · , pm denote constituent proteins. Define

bij =

{

1 if protein pi is in protein complex cj

0 otherwise
(1)

i.e., a protein complex is represented by a column in B where each entry is either 1 or 0 where a 1 indicates

that the complex contains the protein of the corresponding row. Similar, a protein can be viewed as

represented by a row in B. For consistency, we call the relations between proteins and complexes, as

represented by the bipartite graph, as the p-c network. Starting from the p-c network, we can naturally

obtain the following two networks.

Protein-Protein Interactions (P-P) Network)

The interaction strength of between two proteins pi, pj is

(BBT)ij =

(

# of protein complexes

containing both proteins pi, pj

)

(2)

Note (BBT)ii =
∑

j bij = the number of protein complexes that protein pi is involved. We call this the

weight of protein pi.
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Complex - Complex Associations (c-c network)

The interaction strength of between two protein complexes ci, cj is

(BTB)ij =

(

# of proteins shared by

protein complexes ci, cj

)

(3)

Note that (BTB)jj =
∑

i bij = the number of proteins contained in the protein complex cj . We call this

the weight of protein complex cj .

MinMaxCut Clustering

The MinMaxCut graph clustering algorithm (Ding et al., 2001) can be applied equally well to the p-p or c-c

networks. Let the weight matrix W = (wij) denote the pairwise connection strength between proteins, or

between protein complexes. We wish to partition the connection network G into two subnetworks G1, G2,

based on a min-max clustering principle. The total connection strength between G1, G2 is

s(Gp, Gq) =
∑

i∈Gp

∑

j∈Gq

wij , (4)

The total connection strength within a cluster G1 or G2 is similarly defined. The clustering principle re-

quires minimizing s(G1, G2) (weak connections been clusters) while simultaneously maximizing s(G1, G1)

and s(G2, G2) (strong connections within cluster). These requirements are satisfied by the objective func-

tion,

J(G1, G2) =
s(G1, G2)

s(G1, G1)
+
s(G1, G2)

s(G2, G2)
. (5)

The solution of the clustering problem is represented by an indicator vector q, where the ith entry of

q is

q(i) =

{

a if i ∈ G1

−b if i ∈ G2

(6)

where a and b (0 < a, b < 1) are constants. One can prove that

min
q

J(G1, G2)⇒ min
q

qT (D −W )q

qTDq
, (7)

where D = (di) is a diagonal matrix, di =
∑

j wij . Now, relaxing q(i) from discrete indicator in Eq.6 to a

continuous values in [−1, 1], the solution q of the minimization problem satisfies

(D −W )q = λDq. (8)

The desired solution is the eigenvector q2 corresponding to the second smallest eigenvalue. From Eq.6, we

can recover clusters by the sign of q2, i.e., G1 = {i | q2(i) ≤ 0}, G2 = {i | q2(i) > 0}. In general, the

optimal dividing point could shift away from 0; we search the dividing point q(icut)

G1 = {i | q(i) ≤ q(icut)}, G2 = {i | q(i) > q(icut)}.

(icut = 2, · · · , n− 1) such that J(G1, G2) is minimized. This gives the final clusters G1 and G2.
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Hierarchical Divisive Clustering

Divisive clustering starts from the top by treating the whole dataset as a single initial cluster. It recursively

splits the current cluster (a leaf node in a binary clustering tree) into two sub-clusters. Two important

issues are: (1) how to select the next candidate cluster to split and (2) when to terminate the recursive

process.

Given a current cluster Gk, we wish to decide whether to further split it into two sub-clusters. We apply

MinMaxCut to Gk. If Jopt is large, the overlap between two resulting sub-clusters is large in comparison

to the within-sub-cluster similarity and hence cluster Gk should not be further split. Thus the optimal

value Jopt is a measure of “cluster cohesion”.

At every cluster splitting in the divisive process, we compute the cluster cohesion for each of the

sub-clusters. To choose the next cluster to split, we choose among all current clusters the one with the

smallest cohesion. As the cluster splitting process continues, clusters with small cohesion are split and

the cohesion of the resulting clusters increases. To terminate the divisive process, we set a threshold for

cohesion h = 0.6, i.e., clusters with cohesion greater than h will not be further split. A greater cohesion

threshold will lead to “tighter” clusters. h is the only parameter in the MinMaxCut algorithm.

Bioinformatics

The February 2003 release of the Gene Ontology (GO) (http://www.geneontology.org) was used to obtain

the annotated terms for yeast proteins from the TAP-MS dataset (Gavin et al., 2002). A freely dis-

tributed perl library interface to the Gene Ontology database (Ashburner et al., 2001) was employed

for all calculations relating to GO annotations and a perl library interface to the GraphViz package

(http://www.research.att.com/sw/tools/graphviz/) was used to create the graph representations. The

primary sequences for all proteins analyzed were obtained from the Saccharomyces Genome Database

(Dwight et al., 2002). The EMBOSS toolkit (Rice et al., 2000) was used for calculations of sequence

properties and the PsiPred program (Jones, 1999) was used for secondary structure determination.
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