BIOINFORMATICS

PSoL: A Positive Sample Only Learning Algorithm for Finding Non-coding RNA Genes

Chunlin Wang^a, Chris Ding^b, Richard F. Meraz^a, and Stephen R. Holbrook^{a*}

^{*a*} Physical Biosciences Division and ^{*b*} Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

ABSTRACT

Motivation: Small non-coding RNA (ncRNA) genes play important regulatory roles in a variety of cellular processes. However, detection of ncRNA genes is a great challenge to both experimental and computational approaches. In this study, we describe a new approach called positive sample only learning (PSoL) to predict ncRNA genes in the *E. coli* genome. Although PSoL is a machine learning method for classification, it requires no negative training data, which, in general, is hard to define properly and affects the performance of machine learning dramatically. In addition, using the support vector machine (SVM) as the core learning algorithm, PSoL can integrate many different kinds of information to improve the accuracy of prediction. Besides the application of PSoL for predicting ncRNAs, PSoL is applicable to many other bioinformatics problems as well.

Results: The PSoL method is assessed by 5-fold cross-validation experiments which show that PSoL can achieve about 80% accuracy in recovery of known ncRNAs. We compared PSoL predictions with five previously published results. The PSoL method has the highest percentage of predictions overlapping with those from other methods. **Contact:** srholbrook@lbl.gov

1 INTRODUCTION

RNA molecules are endowed with extraordinary capacities due to their intrinsic conformational versatility and catalytic abilities. However, their potentials have mostly remained hidden from attention until recently through the discoveries of non-coding RNA (ncRNA) genes. In bacteria, ncRNAs have been found to be involved in the control of transcription (Wassarman and Storz, 2000), RNA processing (Wassarman *et al.*, 1999), RNA stability (Masse and Gottesman, 2002), mRNA translation (Altuvia and Wagner, 2000), and even protein degradation (Gillet and Felden, 2001) and translocation (Keenan *et al.*, 2001). Therefore, ncRNAs play important roles in a variety of cellular processes and correspondingly, efforts to identify the whole set of ncRNAs and then to elucidate their functions are becoming more and more prominent.

However, it is a big challenge to identify the whole set of ncRNA genes in a genome. Most ncRNAs are small and non-susceptible to frame-shift and non-sense mutations, which makes it very difficult to detect using routine biochemical and genetic methods (Hershberg *et al.*, 2003). In addition, ncRNAs have varied stability and are expressed under a variety of environmental and physiological conditions. Therefore, methods such as whole genome microarrays (Tjaden *et al.*, 2002) and the whole genome cloning method

© Oxford University Press 2005.

(Vogel et al., 2003) are unlikely to fully characterize all ncRNA genes in a genome. The development of computational methods for efficiently finding ncRNA genes in genomic sequences has proven difficult. Unlike protein genes, ncRNA genes lack clear endpoints, vary in size, and have few common statistical features. This poses a great challenge to computational approaches. Despite the difficulties, great efforts have been devoted to predict ncRNA genes by exploring different aspects of properties about known ncRNA genes. Evolutionary conservation of secondary structures provides compelling evidence for biologically relevant RNA function; thus comparative genomics approaches are particularly attractive for ncRNA gene prediction. In a study by Rivas et al. (2001), pair stochastic context free grammars were exploited to modeling patterns of co-variation in sequence alignment from related genomes. The program RNAz developed by Washietl et al. (2005) basically combines structural conservation and thermodynamical stability of RNA secondary structures in multiple sequence alignments to predict functional RNA structures including ncRNA. Functional sites (i. e. promoter and terminator) are required in ncRNA gene expression. Just as one can reach the melon by following the vine, it is possible to use the predicted signals to approach the boundaries of ncRNA genes. Chen et al. (2002) pinpointed ncRNA genes with genomic positions of promoters and terminators, which were predicted based on profile-based methods. The nucleotide composition of known ncRNA genes has been tested to search for discriminative variables between primary sequences of ncRNA genes and intergenic regions in bacterial genome sequence. However, no particular measure stands out to be very discriminative. The combination of some measures such as k-mer (i.e. the usage k nt words) usage might provide a certain level of predictive capability. In addition, different measures often examine different aspects of an actual gene, all of which may complement each other. Therefore, combining different predictive features is highly likely to yield a more accurate prediction. The integrated strategy was initially used to identify ncRNA genes in E. coli by Carter et al. (2001). Selected discriminative base composition measures and calculated minimum free energies of folding (MFE) were used to train a neural network to distinguish ncRNA from other intergenic sequences. However, less than ten percent of all predictions are shared among different methods above (Hershberg et al., 2003), suggesting that some computational ncRNA gene-finding methods are not highly successful.

We approach the problem of computational prediction of ncRNA genes using a single-class discriminative machine-learning algorithm. Machine-learning involves training a prediction algorithm with knowledge derived from already available data and applying this knowledge to prediction. For this ncRNA prediction problem,

^{*}to whom correspondence should be addressed

we try to train a support vector machine (SVM) algorithm (Vapnik, 1995) to distinguish ncRNA genes from intergenic sequences based on statistical differences between biologically relevant, computable representations of these sequences. In general, an SVM is used as a discriminative method to learn a decision boundary from a set of existing examples that can generalize to unseen examples. The performance of an SVM highly depends on the training data set which should consist of examples from all classes to be learned, and have as few misclassifications as possible. However, in many computational biology problems, there are only a limited number of positive (desired) training examples available and the negative examples are difficult to define appropriately.

To overcome the lack of appropriate negative training samples, we developed a new approach called the positive sample only learning (PSoL) algorithm. The PSoL algorithm defines the first set of negative examples by maximizing both the distances between negative sample points to the known positive sample points and the distances among negative samples points simultaneously, and then refines the negative data iteratively using an SVM algorithm based on current positive and negative samples until no additional negative samples can be found according to pre-determined rules. By doing so, a decision boundary is updated iteratively from far away to nearby positive samples, achieving high specificity. In this manuscript we detail the algorithm and apply this approach to the prediction of ncRNA genes in *E. coli*.

2 MATERIALS AND METHODS

2.1 Transformation of biological sequence to feature vectors

The M52 version of the E. coli K-12 genome sequence (Blattner et al., 1997) was used to compile a database of ncRNA and nonannotated sequences. The well-characterized ncRNA sequences of E. coli were collected based on a literature search (3 rRNA, 20 tRNA and 69 known ncRNA genes, see Supplemental Material Table 1). The sequences of these RNA molecules served as positive examples from which we derived parameters for machine learning. The 'noncoding', or intergenic sequences were obtained by removing all protein and known functional RNA coding regions from the genome along with a buffer of 50 nucleotides on both the 5' and 3' sides so as to remove possible promoter, terminator and other untranslated control elements. Sequences in both strands were removed when there was a protein or RNA coding region on either strand. Each RNA or non-annotated intergenic sequence was then divided into sequence windows of 80 nucleotides with a 40-nucleotide overlap between windows (i.e. each window slides 40 nucleotides along the sequence). Any window of < 40 nucleotides was excluded from the study. A total of 5909 windows from each strand (11818 total) were partitioned from the non-coding sequences, while 321 unique RNA sequence windows were generated from the known RNA sequences (after removing redundant RNAs).

Each window was transformed into a feature vector consisting of sequence statistics, the MFE and similarity measurement between related genomes. Sequence statistics were the counts of individual nucleotide (A, C, G, T), dimer (AA, AC \cdots TT) and trimer (AAA, AAC \cdots TTT) in each window. The conservation of the sequence of a window was simply represented by the highest bits score with WU-BLAST (W = 4) between a sequence and the genomic sequence of a reference species. The three reference species are

Salmonella typhimurium LT2 (access number NC_{003197}), Salmonella typhi CT18 (access number NC_{003198}), and Salmonella typhi Ty2 (access number NC_{004631}). The MFE for each window was calculated using the program RNAfold (Washietl *et al.*, 2005) with default parameters. All values were then normalized by dividing by the size of window.

2.2 Feature selection

A total of 88 possible features was generated from the feature extraction method described above. In general, too many features often degrade the performance of the discriminant method by overfitting the training data. Therefore, we picked a small number of features and discard the rest. The most common feature selection involves computing the *t*-statistic test (for two-class problems) or F-statistic (for multi-class problems) on the class-conditional distributions. Then the features were ranked according to their scores. Those most highly ranked features were then selected.

Both *t*-statistics and *F*-statistics assume that for each class, the data follow a normal distribution. In reality, this assumption is not always correct. For this reason, we used a L_1 distance metric between two distributions p, q:

$$d_{L_1}(p,q) = \sum_s |p_s - q_s|.$$

where s is summed over different states. This metric can be viewed as a simplified version of the symmetrized Kullback-Leibler divergence (Kullback and Leibler, 1951): $d_{KL}(p,q) = \sum_s (p_s - q_s) log(p_s/q_s) = \sum_s |p_s - q_s| * |log(p_s/q_s)|$. Since log(x) is a very slow changing function, we ignore it. The L_1 distance has an intuitive interpretation. If we plot the probability density distribution curves for two different classes, the L_1 distance is the total area sum of the difference between the two curves (see Figs. 1-3). The most discriminant features should have the largest differences on these class-conditional distributions.

The L_1 ranking does not require the underlying data to follow a particular distribution. When the class-conditional distributions are Gaussian, the ranked orders based on *t*-statistics and on L_1 distance are very similar.

2.3 Learning from partially labeled data

Discriminative machine learning algorithms require labeled data during the training phase. The windows derived from previously identified ncRNA genes were labeled as the positive (+) data. We were trying to distinguish putative ncRNA genes from intergenic sequences. Intergenic sequences contain positive examples (putative ncRNAs) as well as negative examples (sequences that do not encode putative ncRNAs). Therefore, we considered the intergenic sequences to be unlabeled data. Thus our problem became learning from a positively-labeled-only dataset.

2.4 Positive samples only learning

In this problem, we have two types of data: (1) positive data samples and (2) the unlabeled data set, which contains both positives and negatives, and generally much more data than the positive data samples. The goal of PSoL is to predict the positives in the unlabeled data.

PSoL is a challenging problem because there are no negative data. The usual discriminative methods, which require both positive and negative samples for training, cannot be applied to this problem directly. In our earlier approach (Carter *et al.*, 2001), we first took random samples from the unlabeled data and assumed they were negative data. This negative data set plus the true positive data set were used for training the discriminant decision function between the positive and the negative data. This approach is reasonably effective for RNA gene prediction (Carter *et al.*, 2001) since there are many more negatives than positives in the unlabeled sequences.

However, some of the "negative samples" in training the decision function could in fact be positives embedded in the unlabeled data. These wrongly assumed "negative samples" could tilt the decision boundary in an unpredictable way and thus affect the decision boundary significantly.

The key to the success of PSoL is to generate a negative training set without contamination from those "positives" embedded in the unlabeled data. In this paper, we describe a more sophisticated method to determine the negative training set. The basic spirit of this method has appeared previously (Yu *et al.*, 2002; Yu, 2003; Li and Liu, 2003; Liu *et al.*, 2002).

The method first identifies a small number of data points in the unlabeled data set that are very far away from the positive training data set. In this way, we minimized the possibility of those picked data points to be positive. In addition, we minimized the redundancy in those picked data points by maximizing their mutual distances to achieve a better representativeness for negative data.

Given the small initial negative set, we expanded them in multiple steps, each time picked more data from the currently unlabeled set, using a criteria that they are far-away from the positive training set and close to the current negative set. (The decision function of an SVM gives a convenient measure for the distances to the positives and to the negatives). The negative training set built up in this way will be less contaminated by the positives embedded in the unlabeled dataset.

Once this negative training set is built, we have N: current negative data set, U: remaining unlabeled data set and P: positive data set. The process of predicting positives from the remaining unlabeled dataset is the same as in the two-class prediction.

2.5 Initial negative set selection

2.5.1 Maximum distance minimum redundancy negative set. For the initial negative set, we selected from the unlabeled set m data points that are (1) most dissimilar from the positive set P and (2) least redundant among themselves. We call this maximum distance - minimum redundancy (MDMR) set (Ding and Peng, 2005).

We first defined the distance between a single data point and the positive set, $d(x_i, P)$, as the minimum Euclidean distance between x_i and P:

$$d(x_i, P) = \min_{x_i \in P} ||x_i - x_j||$$
(1)

The maximum distance negative set was constructed by selecting the initial negative set N from the unlabeled set U such that the distance between N and P was maximized:

$$\max_{N \subset U} d(N, P), d(N, P) = \sum_{x \in N} d(x, P)$$
(2)

This optimization is trivially solved by picking the N points with largest distance $d(x_i, P)$. However, often the chosen set has many members close to each other and the space represented by N is narrow. From the viewpoint of learning, we may say that there is a certain redundancy in N. To reduce the redundancy, we added a

second requirement that maximizes the distance among data points in N:

$$\max_{N \subset U} d(N,N), d(N,N) = \sum_{x_i, x_j \in N} d(x_i, x_j)$$
(3)

To satisfy these two criteria simultaneously, we maximize:

$$\max_{N \subset U} [d(N, N) \cdot d(N, P)] \tag{4}$$

The exact solution of Eq.(4), however, is NP hard. We propose the following simple approximate algorithm that is efficient and gives good results in practice.

2.5.2 Forward incremental selection algorithm. The algorithm first selects a point according to Eq.(2). The rest of N is chosen incrementally. Suppose we already have several points in the current negative set N; the new point x_i is selected based on maximum dissimilarity to the positive set:

$$\max_{x_i \in (U-N)} d(x_i, P) \tag{5}$$

And the maximum distance to the current set.

$$\max_{x_i \in (U-N)} \sum_{x_j \in N} d(x_i, x_j) \tag{6}$$

Now Eq.(5) is an exact solution to Eq.(2) and Eq.(6) in an approximate solution to Eq.(3). As in Eq.(4) these two criteria are combined into one:

$$\max_{x_i \in (U-N)} \left[d(x_i, P) \cdot \sum_{x_j \in N} d(x_i, x_j) \right] \tag{7}$$

This can be solved by a simple linear search. Once the specified size of N is reached, the algorithm is terminated and we set the initial negative training set $N_{train} = N$.

2.6 Negative set expansion

Given an initial negative set, the PSoL method gradually expands the negative set by classifying more and more unlabeled data points as negative. This is done iteratively using a two-class SVM. At each iteration, an SVM is trained; the decision function values for all remaining unlabeled points are computed, and some of them are classified as negative. Thus |N| is increased and |U| is decreased at each step.

At the stop point, N contains the negative training set and U contains the remaining unlabeled dataset. A final SVM is trained. Based on this, a portion of those in U - N are classified as positive; the remaining ones in U - N are classified as "undecided".

2.6.1 Controlled stepwise expansion Given the current negative training set N_{train} and the current unlabeled set U, we perform negative set expansion. We begin by training an SVM on the data $P + N_{train}$ to obtain a large margin decision boundary. The support vectors in N_{train} for this SVM are denoted N_{sv} . All objects in the currently unlabeled set U are tested against the SVM.

We classify unlabeled data points as negative in a conservative and controlled fashion. At an iteration, once the SVM is trained, each unlabeled point will have an decision value $f(x_i)$. Normally, a point x_i is classified as negative if $f(x_i) < 0$. To insure the quality of the negative set, we build a safety margin h > 0 by requiring

$$f(x_i) \le -h,\tag{8}$$

for x_i to belong to the negative set. We typically set h = 0.2.

Besides the safety margin, we also control the size of the newly predicted negative samples N_{pred} at each step by setting

$$N_{pred} = \{x_i \mid i \le r | P | \text{ and } f(x_i) \le -h\}$$
(9)

where r is set to be 3 in most of our experiments. This size control is necessary because the size of unlabeled data samples can be huge compared to that of the positive samples. Therefore the number of newly predicted negative samples is possibly very large in each expansion.

Once N_{pred} are selected, they are added to the current negative set: $N \leftarrow N + N_{pred}$ and they are subtracted from the current unlabeled set: $U \leftarrow U - N_{pred}$

2.6.2 SVM training In SVM training, it is well-known that if the sizes of the classes differ substantively, say 1 : 5, SVM training typically converges to a solution where all data points in the smaller class are classified as belonging to the larger class.

To overcome this problem, we maintain a current negative training set N_{train} whose size is comparable to |P|. At the first iteration, $N_{train} = N$. Later on, after each SVM, the support vectors on the negative side N_{sv} are used to represent the existing negative set N. This is combined with the newly predicted negatives to give the negative training dataset for next round of SVM training: $N_{train} = N_{pred} + N_{sv}$. Since $|N_{pred}| \leq r|P|$, the size of N_{train} is controllable and is maintained in the range where the SVM can be successfully trained with high accuracy.

2.6.3 Stopping criteria of negative expansion Negative set expansion is repeated until the size of the remaining unlabeled set goes below a predefined number, typically about 3 times of the number of expected positives in the unlabeled set. At this last step, the unlabeled data points with the largest positive decision function values are declared as the positives.

2.7 SVM parameter selection

We used the libsvm (Fan *et al.*, 2005) to perform SVM training and predicting. A radial basis function (RBF) kernel was used. There are two parameters for the RBF kernel: γ , which determines the effective range of distances between points, and *C*, which determines the trade-off between margin maximization and training error minimization. The parameter search is carried out with cross validation. We used a grid-search approach to search for a pair of C and γ with the best performance in cross validation.

It should be emphasized that we fixed parameters for the entire PSoL, i.e., parameters for training the SVM were fixed for each iterative step in the negative set expansion. If we let parameters change during the negative expansion, the data would be overfit and poorer performance in cross validation would result.

3 RESULTS

3.1 Feature selection

For each feature, distributions for positive and unlabeled classes were computed, from which *t*-score and L_1 score were derived. Detailed distributions for 3 features are shown in Figures 1 - 3. The figures show that distributions follow the normal distributions by varying degrees and the validity of *t*-score becomes questionable. Since the L_1 measure does not require the underlying data to follow a particular distribution, the L_1 measure can capture the difference. We decided to use 30 features (A, C, G, T, AA, AT, CC, CG, GG,

Fig. 1. Distributions (histogram) of normalized bits score for both positive and unlabeled classes on *Salmonella typhi* Ty2 genome sequence (extracted from the best HSP in WU-BLAST search). Both distributions deviate substantially from normal distribution; the sample means shift away from the peak regions. Thus the use of *t*-score is questionable. L_1 score can capture the difference in distributions.

Fig. 2. Distributions of normalized G content for both positive and unlabeled classes. Both *t*-score and L_1 score can capture the difference in distributions.

GT, TA, TT, AAA, AAT, ATA, ATT, CCG, CGG, GCC, GGC, GGG, GGT, TAT, TGG, TTA, TTT, MFE, Typhi_CT18, Typhi_Ty2, and Typhi_LT2) with highest L_1 scores.

3.2 The 5-fold cross validation

In order to calibrate the performance of PSoL on the ncRNA data, we carried out a 5-fold cross validation. Briefly, the positive data were randomly divided into 5 subsets of approximately equal sizes.

Fig. 3. Distributions of normalized GGT content for both positive and unlabeled classes. *t*-score can not capture the difference in distributions while L_1 score can.

We ran the validation process 5 times; each time, we merged 4 subsets into positive training data and merged the remaining subset into unlabeled data. We ran the PSoL procedure described above and counted the number of positive samples embedded in the unlabeled data which remain to be "unlabeled". Figure 4 shows the results for 5 independent 5-fold cross validation experiments. From those curves, it is apparent that the embedded 64 (321/5) known positives are mostly present in the remaining unlabeled samples as negative expansion proceeds, suggesting that the negative set are not contaminated by the positives. This validates our design of the negative set expansion. When the negative expansion stops at |U| = 1000 (1000 samples predicted to be positive), about 80% recovery rate is achieved (see Figure 4). The optimal parameters are C = 1000 and $\gamma = 0.04$

ROC curve analysis was carried out to further assess the performance of PSoL. A total of 321 negative control samples were generated by shuffling each positive sample window once using the program SHUFFLE in Sean Eddy's Squid toolbox (http://hmmer.wustl.edu/) to randomize the sequence while perserving mono- and di-nucleotide composition. The negative samples were marked and put into an unlabeled dataset to do a 5-fold cross validation experiement as described above. The true positive rate and false positive rate were then calculated based on those known positive windows and those negative windows generated by shuffling. The ROC curve of this analysis is shown in Figure 5. When the negative expansion stops at |U| = 1000 (1000 samples predicted to be positive), the false positive rate is 6 ± 1 %. Using true positives and true negatives only (igorning the unlabeled category), the average Q^{α} (average of the percentage of correctly predicted positive windows and the percentage of correctly predicted negative windows) (Baldi et al., 2000) of the 5-fold cross validation experiment is 87.3%. We note that this type of estimation of false positive rate can be automatically computed in PSoL and used to help judge when to terminate the process.

Fig. 4. 5-fold cross validation results. Each curve presents the percentage of correctly recovered positives. We run five 5-fold CV experiments with different random partitions of the positive data. The horizontal coordinate denotes the number of unlabeled samples left after each negative expansion.

Fig. 5. ROC curves of 5-fold cross validation experiment. Each curve represents the result of one single run of the experiment.

3.3 Prediction

Using the best parameters C and γ from the 5-fold cross-validation experiment, we ran PSoL with all positive data and predicted 1000 windows. This choice is based on the observation that when the number of remaining unlabeled windows is close to 1000, the curves in Fig.4 show a sharp downturn. Since many of these predicted windows were consecutive, we then merged windows that overlapped each other into one. The predicted 1000 windows were assembled into 420 independent RNA sequence segments (details listed in Supplemental Material Table 2).

One of the difficulties in computational prediction of ncRNA genes is the lack of benchmark data to validate the method. Experimental approaches are expensive and time-consuming, therefore only a limited number of predictions were subject to verification

Fig. 6. Percentage of PSoL predictions overlapping with other methods versus decision values. The solid line shows the sum of percentage overlapping with all other 5 methods. The dash line shows the percentage overlapping with Affy result.

using Northern blots or RT-PCR. There are also additional drawbacks to such approaches. Since ncRNA expression may vary according to environmental and physiological conditions, some authentic ncRNA genes might not be detected under experimental conditions. In this study, we compared our predictions to results from previous work. We argued that if our results have more agreements with other studies, that would be a validation of our method. The data used in our comparison were predicted by methods which are listed below.

Abbrev.	Methods	Reference
Affy	microarray experiments	(Tjaden <i>et al.</i> , 2002)
QRNA	stochastic context free grammars	(Rivas <i>et al.</i> , 2001)
IBIS	promoter and terminator prediction	(Chen <i>et al.</i> , 2002)
bGP	boosted genetic programming	(Saetrom <i>et al.</i> , 2005)
NNs	neural networks	(Carter <i>et al.</i> , 2001)

The results of pairwise comparison are listed in Table 1. Note that a predicted ncRNA gene from one method could overlap with 2 predicted ncRNA genes from another method (see Supplemental Materials figures). In general, PSoL has the largest overlap with other methods. This can be seen clearly from row or column sums. The greater overlap of PSoL with Affy is significant since Affy is the only experimentally based method which results are more reliable.

SVM function values can be used to measure the confidence of prediction. In Fig.6 we show the percentage agreements. It is clear, as the decision values increases, the percentage agreements increases. This suggests that predictions with higher decision values are more likely to be true positives. The rank of each prediction based on its decision value is provided in Supplemental Material Table 2. The secondary structures and their genome schema for the top 5 predictions are also provided in the supplemental data.

Fig. 7. The length distribution of predicted ncRNA genes and known ncRNA genes (tRNA and rRNA genes are not included).

3.4 Comparison of the statistics of predictions from different methods

Currently, there is no consensus as to the characteristics of an ncRNA gene. In this study, we examined the distribution of length, GC-content, and MFE (minimum free energy) for predictions from different methods mentioned above, as shown in Figures 7, 8, 9. Methods based sequence statistics such as NNs, bGP and PSoL predict more short ncRNA genes. There is less bias in length of prediction from Affy, QRNA and IBIS when compared to the distribution of length of known ncRNA genes. The overall GC content is 50.8% and 40.3% in the *E. coli* K12 genome and in the intergenic regions, respectively. It appears that NNs, bGP and PSoL pick up prediction with slightly higher GC content than the other three methods.

Currently MFE is commonly used as the major predictor for ncRNA gene repdictions. Three out of six methods (PSoL, NNs and bGP) utilize MFE as a prediction parameter. However, as shown in Figure 9, only a small fraction of both known ncRNA genes and predictions from all methods has a very low normalized MFE, suggesting that MFE can not be used as the only predictor of an ncRNA gene.

4 SUMMARY

In summary, the PSoL algorithm addresses two significant concerns in machine learning for biological systems: (1) the uncertainty of the negatives or the lack of negatives, and (2) the overwhelming majority of unlabeled data relative to known positives. This situation is quite common in many bioinformatics problems. We believe our method could provide an effective prediction tool in these difficult situations.

We tested this technique on the prediction of ncRNA genes in the *E.coli* genome sequence solely based on known functional RNA molecules. The 5-fold cross-validation experiments show that PSoL has a recovery rate of 80%. When we compare our predictions with results from previous studies, we find that our prediction has the most overlap with other results, especially with the experimental microarray data, Affy, suggesting the success of this technique.

Table 1. Pairwise overlap between ncRNA prediction methods. We list the number and percentage (in parenthesis) of predictions by the method in the top row overlapping with those by the method in the first column.

	Affy	QRNA	IBIS	NNs	bGP	PSoL	row sum
Affy	-	40 (16.1)	41 (20.1)	69 (19.9)	54 (18.8)	90 (21.4)	294 (96.3)
QRNA	40 (12.8)	-	33 (16.2)	35 (10.1)	23 (8.0)	59 (14.0)	190 (61.1)
IBIS	41 (13.1)	37 (14.9)	-	38 (11.0)	46 (16.0)	48 (11.4)	210 (66.4)
NNs	69 (22.0)	36 (14.5)	40 (19.6)	-	101 (35.2)	149 (35.5)	395 (126.8
bGP	42 (13.4)	18 (7.3)	37 (18.1)	77 (22.3)	-	90 (21.4)	264 (82.5)
PSoL	92 (29.4)	55 (22.2)	49 (24.0)	149 (43.1)	115 (40.1)	-	460 (158.8
Column Sum	284 (90.7)	186 (75)	200 (98)	368 (106.4)	339 (118.1)	436 (103.7)	

Fig. 8. The GC content distribution of predicted ncRNA genes and known ncRNA genes (tRNA and rRNA genes are not included).

ACKNOWLEDGMENTS

This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. We gratefully acknowledge Nancy Schimmelman and Libby Holbrook for editing this manuscript. This work is supported by the National Human Genome Research Institute of the National Institute of Health grant 5R01H6002665-02.

REFERENCES

- Altuvia,S. and Wagner,E.G. (2000) Switching on and off with RNA. Proc Natl Acad Sci U S A, 97 (18), 9824–9826.
- Baldi,P., Brunak,S., Chauvin,Y. andersen,C.A.F. and Nielsen,H. (2000) Assessing the accuracy of prediction algorithms for classification: an overview. *Bioinformatics*, 16 412–424.
- Blattner,F.R., Plunkett,G.,r., Bloch,C.A., Perna,N.T., Burland,V., Riley,M., Collado-Vides,J., Glasner,J.D., Rode,C.K., Mayhew,G.F., Gregor,J., Davis,N.W., Kirkpatrick,H.A., Goeden,M.A., Rose,D.J., Mau,B. and Shao,Y. (1997) The complete genome sequence of Escherichia coli K-12. *Science*, 277 (5331), 1453–74.
- Carter, R.J., Dubchak, I. and Holbrook, S.R. (2001) A computational approach to identify genes for functional RNAs in genomic sequences. *Nucleic Acids Res*, **29** (19), 3928–38.
- Chen,S., Lesnik,E.A., Hall,T.A., Sampath,R., Griffey,R.H., Ecker,D.J. and Blyn,L.B. (2002) A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. *Biosystems*, 65 (2-3), 157–77.

Fig. 9. The normalized (by length) MFE distribution of predicted ncRNA genes and known ncRNA genes (tRNA and rRNA genes are not included).

- Ding,C. and Peng,H. (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol, 3 (2), 185–205.
- Fan,R.E., Chen,P.H. and Lin,C.J. (2005) Working set selection using second order information for training support vector machines. *Journal of Machine Learning Research*, 6, 1889–1918.
- Gillet, R. and Felden, B. (2001) Emerging views on tmRNA-mediated protein tagging and ribosome rescue. *Mol Microbiol*, 42 (4), 879–85.
- Gottesman,S. (2005) Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet, 21 (7), 399–404.
- Hershberg, R., Altuvia, S. and Margalit, H. (2003) A survey of small RNA-encoding genes in Escherichia coli. *Nucleic Acids Res*, 31 (7), 1813–20.
- Hildebrandt, M. and Nellen, W. (1992) Differential antisense transcription from the Dictyostelium EB4 gene locus: implications on antisense-mediated regulation of mRNA stability. *Cell*, **69** (1), 197–204.
- Keenan, R.J., Freymann, D.M., Stroud, R.M. and Walter, P. (2001) The signal recognition particle. Annu Rev Biochem, 70, 755–75.
- Kullback, S. and Leibler, R. A. (1951) On information and sufficiency. Ann. Math. Stat. 22, 79–86.
- Lankenau,S., Corces,V.G. and Lankenau,D.H. (1994) The Drosophila micropia retrotransposon encodes a testis-specific antisense RNA complementary to reverse transcriptase. *Mol Cell Biol*, **14** (3), 1764–75.
- Li,X. and Liu,B. (2003) Learning to classify texts using positive and unlabeled data. In Proc. Joint Conference on Artificial Intelligence (IJCAI-03), (Gottlob,G. and Walsh,T., eds), pp. 587–594.
- Liu,B., Lee,W.S., Yu,P.S. and Li,X. (2002) Partially supervised classification of text documents. In Proc. 19th Intl. Conf. on Machine Learning pp. 387–394, Sydney, Australia.

- Masse,E. and Gottesman,S. (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. *Proc Natl Acad Sci U S A*, **99** (7), 4620–5.
- Morfeldt, E., Taylor, D., von Gabain, A. and Arvidson, S. (1995) Activation of alphatoxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. *Embo J*, **14** (18), 4569–77.
- Pfeffer,S., Sewer,A., Lagos-Quintana,M., Sheridan,R., Sander,C., Grasser,F.A., van Dyk,L.F., Ho,C.K., Shuman,S., Chien,M., Russo,J.J., Ju,J., Randall,G., Lindenbach,B.D., Rice,C.M., Simon,V., Ho,D.D., Zavolan,M. and Tuschl,T. (2005) Identification of microRNAs of the herpesvirus family. *Nat Methods*, 2 (4), 269–76.
- Rivas, E., Klein, R.J., Jones, T.A. and Eddy, S.R. (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. *Curr Biol*, **11** (17), 1369–73.
- Saetrom, P., Sneve, R., Kristiansen, K.I., Snove, O., J., Grunfeld, T., Rognes, T. and Seeberg, E. (2005) Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming. *Nucleic Acids Res*, 33 (10), 3263–70.
- Sharp, T.V., Schwemmle, M., Jeffrey, I., Laing, K., Mellor, H., Proud, C.G., Hilse, K. and Clemens, M.J. (1993) Comparative analysis of the regulation of the interferoninducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. *Nucleic Acids Res*, **21** (19), 4483–90.
- Tjaden,B., Saxena,R.M., Stolyar,S., Haynor,D.R., Kolker,E. and Rosenow,C. (2002) Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. *Nucleic Acids Res*, **30** (17), 3732–8.

- Vapnik, V.N. (1995) The nature of statistical learning theory. SpringerVerlag, New York.
- Vogel, J., Bartels, V., Tang, T.H., Churakov, G., Slagter-Jager, J.G., Huttenhofer, A. and Wagner, E.G. (2003) RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. *Nucleic Acids Res*, **31** (22), 6435–43.
- Wagner,E.G. and Simons,R.W. (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol, 48, 713–42.
- Washietl,S., Hofacker,I.L. and Stadler,P.F. (2005) Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A, 102 (7), 2454–9.
- Wassarman, K.M. and Storz, G. (2000) 6S RNA regulates E. coli RNA polymerase activity. *Cell*, **101** (6), 613–23.
- Wassarman,K.M., Zhang,A. and Storz,G. (1999) Small RNAs in Escherichia coli. Trends Microbiol, 7 (1), 37–45.
- Wightman, B., Ha, I. and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. *Cell*, **75** (5), 855–62.
- Yu,H. (2003) SVMC: single-class classification with support vector machines. In Proc. of Int. Joint Conf. on Artificial Intelligence, Acapulco Maxico.
- Yu,H., Han,J. and Chang,K.C.C. (2002) PEBL: positive example-based learning for web page classification using SVM. In *Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery in Databases (KDD02)* pp. 239–248 ACM press.

Supplemental Materials for

"PSoL: A Positive Sample Only Learning Algorithm for Finding Non-coding RNA Genes", by C. Wang, C. Ding, R. Meraz, S. Holbrook.

Contains:

- Table 1: Known ncRNA in E.coli used for training;
- Table 2: Predicted ncRNA in E.coli;
- Figure 1: Schema for the top ranked predicted RNA.
- Figure 2: Structure of the top ranked predicted RNA.
- Figure 3: Schema for the 2nd top ranked predicted RNA.
- Figure 4: Structure of the 2nd top ranked predicted RNA.
- $\bullet\,$ Figure 5: Schema for the 3rd top ranked predicted RNA.
- Figure 6: Structure of the 3rd top ranked predicted RNA.
- Figure 7: Schema for the 4th top ranked predicted RNA.
- Figure 8: Structure of the 4th top ranked predicted RNA.
- Figure 9: Schema for the 5th top ranked predicted RNA.
- Figure 10: Structure of the 5th top ranked predicted RNA.

Table 1. Known ncRNA genes in E.coli used for training dataset.

Gene	Start	End S	Stran	d Type	Reference	Gene	Start	End	Strand	Type	Reference
rrsH	223771	225312	+	rRNA	-	rydB	1762737	1762804	-	sRNA	(Wassarman et al., 2001)
rrlH	225759	228662	+	rRNA	-	rprA	1768396	1768500	+	sRNA	(Majdalani et al., 2001)
rrfH	228756	228875	+	rRNA	-	SroD	1886041	1886126	-	sRNA	(Vogel et al., 2003)
ileV	225381	225457	+	tRNA	-	ryeA	1921090	1921338	+	sRNA	(Wassarman et al., 2001)
alaV	225500	225575	+	tRNA	-	ryeB	1921188	1921308	-	sRNA	(Wassarman et al., 2001)
aspU	228928	229004	+	tRNA	-	IS092	1985862	1986021	-	sRNA	(Chen et al., 2002)
$\operatorname{thr} W$	262095	262170	+	tRNA	-	dsrA	2023249	2023335	-	sRNA	(Sledjeski et al., 1996)
argU	563946	564022	+	tRNA	-	IS102	2069337	2069540	+	sRNA	(Chen et al., 2002)
glnX	695653	695727	_	tRNA	-	rveC	2151297	2151445	+	sRNA	(Rudd, 1999)
metU	695887	695963	-	tRNA	-	ryeD	2151632	2151774	+	sRNA	(Rudd, 1999)
leuW	696186	696270	_	tRNA	-	ryeE	2165134	2165219	+	sRNA	(Wassarman et al., 2001)
lysT	779777	779852	+	tRNA	-	micF	2311104	2311196	+	sRNA	(Mizuno <i>et al.</i> , 1984)
valT	779988	780063	+	tRNA	-	SroE	2638615	2638706	-	sRNA	(Vogel <i>et al.</i> , 2003)
serW	925107	925194	_	tRNA	-	ryfA	2651875	2652178	+	sRNA	(Rudd, 1999)
tyrV	1286467	1286551	_	tRNA	-	tke1	2689212	2689360	-	sRNA	(Rivas $et al., 2001$)
cysT	1989937	1990010	_	tRNA	-	SroF	2689213	2689360	-	sRNA	(Vogel $et al., 2003$)
glyW	1990065	1990141	_	tRNA	-	ssrA	2753614	2753976	+	sRNA	(Keiler $et al.$, 1996)
asnT	2042571	2042646	+	tRNA	-	sraD	2812822	2812897	+	sRNA	(Argaman $et al., 2001$)
proL	2284231	2284307	+	tRNA	-	csrB	2922178	2922537	-	sRNA	(Liu <i>et al.</i> , 1997)
gltW	2727389	2727464	_	tRNA	-	gcvB	2940718	2940922	+	sRNA	(Urbanowski et al., 2000)
pheV	3108383	3108458	+	tRNA	_	rygA	2974124	2974211	-	sRNA	(Rudd, 1999)
selC	3833849	3833943	+	tRNA	-	rygB	2974332	2974407	_	sRNA	(Rudd, 1999)
trpT	3944581	3944656	+	tRNA	_	ssrS	3054003	3054185	+	sRNA	(Wassarman $et al., 2001$)
hisR	3980122	3980198	+	tRNA		rygC	3054835	3054985	+	sRNA	(Wassarman and Storz, 2001)
sokC	16952	17006	+	sRNA	(Pedersen and Gerdes, 1999)	SroG	3182586	3182734	-	sRNA	(Vogel $et al., 2003$)
SroA	75516	75608	_	sRNA	(Vogel $et al., 2003$)	rygD	3192767	3192916	-	sRNA	(Rivas $et al.$, 2001)
t44	189712	189847	+	sRNA	(Rivas $et al., 2001$)	sraF	3236015	3236203	+	sRNA	(Altuvia <i>et al.</i> , 1997)
I006	262270	262352	-	sRNA	(Saetrom et al., 2001)	rnpB	3267857	3268233	-	sRNA	(Brown, 1999)
I000	271879	202002 271979	+	sRNA	(Saetrom et al., 2005)	sraG	3308866	3309039	+	sRNA	(Argaman $et al., 2001$)
1001	303544	303594	_	sRNA	(Saetrom et al., 2005)	ryhA	3348218	3348325	+	sRNA	(Wassarman $et al., 2001)$
ffs	475672	475785	+	sRNA	(Brown, 1999)	ryhB	3578554	3578647	-	sRNA	(Wassarman $et al., 2001)$
SroB	506428	506511	+	sRNA	$(Vogel \ et \ al., 2003)$	IS183	3662494	3662598	+	sRNA	(Wassarman $ct at., 2001)$ (Chen <i>et al.</i> , 2002)
SroC	685904	686066	-	sRNA	(Vogel et al., 2000) (Vogel et al., 2003)	rdlD	3697765	3697828	+	sRNA	(Kawano <i>et al.</i> , 2002)
I003	719883	719958	+	sRNA	(Voger et al., 2000) (Saetrom <i>et al.</i> , 2005)	I004	3766615	3766665	+	sRNA	(Saetrom $et al., 2002)$
rybA	852175	852263	-	sRNA	(Wassarman et al., 2000)	ryiA	3984045	3984216	+	sRNA	$(Wassarman \ et \ al., 2000)$
rybB	887199	887277	_	sRNA	(Wassarman et al., 2001)	I209	4006562	4006612	+	sRNA	(Saetrom $et al., 2005$)
sraB	1145812	1145980	+	sRNA	(Argaman $et al., 2001)$	spf	4047479	4047587	+	sRNA	(Mller $et al., 2002$)
rdlA	1268546	1140500 1268612	+	sRNA	(Kawano $et al., 2002$)	csrC	4048616	4048860	+	sRNA	(Wassarman $et al., 2002)$
rdlB	1269081	1269146	+	sRNA	(Kawano $et al., 2002)$	oxyS	4155864	4155973	-	sRNA	(Altuvia $et al., 1997$)
rdlC	1269616	1269140 1269683	+	sRNA	(Kawano $et al., 2002)$ (Kawano $et al., 2002)$	SroH	4133804 4187905	4188065	-	sRNA	(Nogel $et al., 2003$)
rtT	1209010 1286289	1209083 1286459	- -	sRNA	(Mawallo $et al., 2002)$ (Michelsen $et al., 1989)$	I002	4137905	4231087	-	sRNA	(Voger $et \ al.$, 2003) (Saetrom $et \ al.$, 2005)
IS061	1280289 1403676	1280439 1403833	-	sRNA	(Chen $et al., 2002$)	ryjA	4250357 4275506	4275645	-	sRNA	$(Wassarman \ et \ al., 2003)$
tke8	1405070 1435145	1403853 1435252	+	sRNA	(Chen <i>et al.</i> , 2002) (Chen <i>et al.</i> , 2002)	I044	4275500 4366175	4366225	+	sRNA	(Vassainial et al., 2001) (Saetrom et al., 2005)
sokB	1430143 1490143			sRNA	(Pedersen and Gerdes, 1999)	I044 I014	4373943	4374003	- -	sRNA	(Saetrom et al., 2005)
dicF	1490143 1647406	$1490195 \\ 1647458$	+	srna srna	(Bouch and Bouch, 1989)	I014 I010	4373943 4527911	4374003 4527961		srna srna	(Saetrom <i>et al.</i> , 2005) (Saetrom <i>et al.</i> , 2005)
I008	1647400 1702671	1047458 1702746	++	srna srna	(Saetrom $et al., 2005$)	1010 1007	4626216	4626291	+ +	srna	(Saetrom $et al., 2005)$
1008	1/020/1	1102140	+	SIMA	(Saeti OIII <i>et al.</i> , 2003)	1007	4020210	4020291	Ŧ	SIUNA	(Sactioni et al., 2003)

References

- Altuvia,S., Weinstein-Fischer,D., Zhang,A., Postow,L. and Storz,G. (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. *Cell*, **90** (1), 43–53.
- Argaman,L., Hershberg,R., Vogel,J., Bejerano,G., Wagner,E.G., Margalit,H. and Altuvia,S. (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol, 11 (12), 941–950.
- Bouch, F. and Bouch, J.P. (1989) Genetic evidence that DicF, a second division inhibitor encoded by the Escherichia coli dicB operon, is probably RNA. Mol Microbiol, 3 (7), 991–994.

Brown, J.W. (1999) The Ribonuclease P Database. Nucleic Acids Res, 27 (1), 314.

- Chen, S., Lesnik, E.A., Hall, T.A., Sampath, R., Griffey, R.H., Ecker, D.J. and Blyn, L.B. (2002) A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. *Biosystems*, **65** (2-3), 157–77.
- Kawano, M., Oshima, T., Kasai, H. and Mori, H. (2002) Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol Microbiol, 45 (2), 333–349.
- Keiler,K.C., Waller,P.R. and Sauer,R.T. (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science, 271 (5251), 990–993.
- Liu, M.Y., Gui, G., Wei, B., Preston, J.F., Oakford, L., Yksel, U., Giedroc, D.P. and Romeo, T. (1997) The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem, 272 (28), 17502–17510.

- Majdalani, N., Chen, S., Murrow, J., John, K.S. and Gottesman, S. (2001) Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol, 39 (5), 1382–1394.
- Michelsen, U., Bsl, M., Dingermann, T. and Kersten, H. (1989) The tyrT locus of Escherichia coli exhibits a regulatory function for glycine metabolism. J Bacteriol, **171** (11), 5987–5994.
- Mizuno, T., Chou, M.Y. and Inouye, M. (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci U S A, 81 (7), 1966–1970.
- Mller, T., Franch, T., Udesen, C., Gerdes, K. and Valentin-Hansen, P. (2002) Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16 (13), 1696–1706.

Pedersen, K. and Gerdes, K. (1999) Multiple hok genes on the chromosome of Escherichia coli. Mol Microbiol, 32 (5), 1090-1102.

- Rivas, E., Klein, R.J., Jones, T.A. and Eddy, S.R. (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol, 11 (17), 1369–73.
- Rudd,K.E. (1999) Novel intergenic repeats of Escherichia coli K-12. Res Microbiol, 150 (9-10), 653-664.
- Saetrom, P., Sneve, R., Kristiansen, K.I., Snove, O., J., Grunfeld, T., Rognes, T. and Seeberg, E. (2005) Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming. *Nucleic Acids Res.*, **33** (10), 3263–70.
- Sledjeski, D.D., Gupta, A. and Gottesman, S. (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J, 15 (15), 3993–4000.
- Urbanowski, M.L., Stauffer, L.T. and Stauffer, G.V. (2000) The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol, **37** (4), 856–868.
- Vogel, J., Bartels, V., Tang, T.H., Churakov, G., Slagter-Jager, J.G., Huttenhofer, A. and Wagner, E.G. (2003) RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res, 31 (22), 6435–43.
- Wassarman, K.M., Repoila, F., Rosenow, C., Storz, G. and Gottesman, S. (2001) Identification of novel small RNAs using comparative genomics and microarrays. *Genes Dev*, **15** (13), 1637–51.

Wassarman, K.M. and Storz, G. (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell, 101 (6), 613-23.

Table 2. Predicted sRNA genes by PSoL, ranked according to decision values.

State Date Lots Lots <thlots< th=""> Lots Lots <th< th=""><th></th><th></th><th>Ŧ</th><th></th><th></th><th></th><th>Ŧ</th><th></th><th><i></i></th><th></th><th>÷</th><th></th><th><i></i></th><th></th><th>÷</th><th>-</th><th>a</th><th></th><th>÷</th><th><u> </u></th></th<></thlots<>			Ŧ				Ŧ		<i></i>		÷		<i></i>		÷	-	a		÷	<u> </u>
5710 5717 120 25 10000 100000 100000 100000 100000 100000 100000 100000 100000 100000 10000000 10000000 10000000 <	Start			Rank	Start	End		Rank	Start	End	Len	Rank	Start	End	Len	Rank	Start	End		Rank
Sole Sole <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																				
GS170 GS170 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																				
T758 160 T751 110 T11 T1257 T3 111 T3258 T35177 T3 T3518 T3518 T3518 T3518																				
88028 28054 16 10 100000 16 10 1000000 10000000 1000000 100	77389	77549	160	277			73	314	2135395	2135475	80	122			40	86	3938976	3939056	80	111
113194 45 37 114947 114947 114948 44 145 145417 145447 345417 355427 23 114942 145448 54 15 31 31 315417 355427 23 357411 357417 357417 35741	89282	89362	80	283	1156967	1157042	75	315	2137557	2137677	120	246	3154582	3154704	122	118	3939096	3939381	285	7
157700 115780 1168670 1184977 1161 210 1151410 1151410 1151410 11514110 11514					1160984	1161058	74				47	320	3175976	3176075		95				
13140 131400 06 119720 119800 08 231 219300 21 219300 230 219300 230 219300 230 219300 230 </td <td></td>																				
16462 16478 1647 16478 1647 200077 200577 200 200118 200128 201118 201118																				
19040 190807 158 139 1201662 120172 120 147 2227146 2227146 100 124111 314111 314111 314111 314111 314111 314111 314111 314111 314111 314111 314111 314111 314111 314111 3141111 314111 314111																				
1917.8 1918.05 47 64 1211.05 1211.716 80 30 2231.718 2331.718 2341.18 234.198 80 30.00 <																				
19570 1957 192400 123201 1 10 224465 8 301 30751 327507 280 300 30056 30 30057 300 300576 300 300576 300 300576 300 300576 3005																				
1917 1918 80 1922 1216002 2216002																				
222405 2237 80 171 [122773 00 38 22615 2237 310800 310800 </td <td></td>																				
222013 22214 2224 2224 122004 2224 319602 319602 319602 319612 3397145 318612 319612 319612 319612 319612 319612 319612 319612 319612 319612 319612 319612 319612			88	171	1225713	1225773	60	387			80	164	3310869	3310933	64	238			97	65
23131 232914 830 360 122 132016 3320166 332016 332016	223458	223721	263	9	1236674	1236744	70	394	2278553	2278602	49	74	3315703	3315804	101	75	4014829	4014870	41	82
24486 24416 24416 24416 244866 24486 24486 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>79</td><td></td><td></td><td></td><td></td><td>3319562</td><td></td><td></td><td>247</td><td></td><td></td><td></td><td></td></t<>								79					3319562			247				
24855 24501 25582 235833 23583 23583 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
25251 25333 860 331 28660 128711 110 66 2371 25317 25318 253187 239202 200 9 20171 2104531 3389733 338917 338917 338917 338917 338917 338917 338917 33911 339117 339117 339118 339117 339118 339117 34117 341181 34917 341181 34111 341111 341111 341111 341111 341111 341111 341111 341111 341111 341111 341111 3411111 3411111 3411111 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																				
25337 25341 2546 237648 237602 44 11.5 3373.55 3377.65 11.5 337.165 3377.65 11.5 337.165 3377.65 11.5 340.124 40.0125 40.0124 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																				
26332 203430 109 300 129754 21104 21104 2010 800 129754 21104 21104 800 600 800 712 2111 2301754 21104 2300 400 200 240332 240 233213 333234 333334 333334 333334 333343 333343 333343 333343 333343 333343 333343 333343 333344 333443 334443 80 236 4402074 3422443 3328457 40 332 403374 403344 43 43334 431444 80 236 403574 403344 43344 413304																				
27164 27164 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																				
271410 2714 <																				
274349 27448 2745 42 25348 27844 28845 24814 28434 288457 28845 288457																				
278448 2784 <																				
280609 80 163 131313 134381 6 372 242883 24287 342885 55 54 243314 342440 344015 344000 34000 3333 444057 44075 44075 44075 44075 340750 80 17 44338465 348055 34234 341441 345337 343337 343337 343341 4444141 344441 344441 344441 344441 344441 344441 344441 344441 344441 344441 344441 344441 344441 344441 344441 344441 344441 344441 344441 3																				
312611 312691 80 213 324240 3242445 75 412 410501 410581 80 93 313363 331414 814064 88 324386 3342449 3262403 3262405 3262405 3262405 3262405 3262405 3263407 3213657 341105 10				223												326			80	
33436 334416 80 420 1306452 1306462 12 245882 245097 82 32 3440507 34025 340057 340158 3440507 340158 3440507 340158 340158 3440507 340158 340158 341111 34111111111111111111111111111111111111																				
44067 44073 66 89 1344664 43464 43 246977 82 24 3440157 51 129937 1120057 <td></td>																				
454063 45143 80 20 140717 1407247 160 30 246377 2463157 80 113 345097 3451045 13 3470224 3477344 80 74 143097 131087 1410814 14188 141881 141881 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141887 130 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141885 141888 1418811 14188111																				
45423 45407 84 61 1416475 1415274 15574 15774 157704 170 17 32 253322 253449 256148 351643 31616415 31616435 <td></td>																				
45574 455851 106 284 1430181 143918 100 84 2494055 2405027 272 257 3473345 3475355 120 31 110899 1110899 110899 110899 110899 110899 110899 110899 110899 110189 110899 110189 110899 110189 110899 110189 110189 110189 110189 110161 1016170 1107 33 253313 133 1103317 110899 11177 130 253174 120 3151053 101 1011745 1117747 117475																_				
460625 100 300 1439218 1439229 77 233 2519438 2519558 120 155 1445050 3453625 120 35 1460899 416314 1461188 224 43 460388 460424 46 32 1481577 42 3514050 3514050 3514050 3151053 3517053 100 1463144 1460545 100 23 647621 547785 8633 80 3717178 55753 55753 55753 55753 55753 55753 55753 55753 557185 557185 557185 557185 557185 557185 557185 557185 557185 557185 557185 557185 557185 557185 557185 517185 557185 517185 557185 517185 557185 140 366 413772 419780 413373 413856 413372 419780 413373 413856 413372 419780 413372 419780 413372 419																				
40007 461089 92 120 148520 57 261 2528014 252133 81 117 83 343663 3483707 42 39 4166170 54 166170 54 166170 54 166170 54 178 496384 496349 41 141 1577536 1577607 71 359 2531917 3523917 3523917 3523917 3523917 3523917 3523917 3523917 3523917 3523917 3523917 3523917 3523917 3523917 352741 80 341 4177251 4177487 120 91 573652 75719 80 227 1642037 71 2616301 120 357118 357105 120 94 4193727 4197809 87 565266 55331673 164331 164318 2616301 120 3558464 303 4205640 208370 420374 420580 420543 420543 420554 420334 4205544 </td <td></td>																				
4966349 410 111 1577361 1577361 1577361 1577361 1577361 1577361 1577361 1577362 5333373 1533397 80 844 1477751 1477847 1477371 1478273 1478273 1477251 14774740 240 13 557355 557373 80 227 1642977 1642925 48 166 2509644 258178 5371305 120 94 1493727 1413806 133 34 555266 55522 54 1643093 77 12 1201305 2614031 83 8372641 356 4197272 15 27 613526 566344 561 1647135 164735 14 261602 260373 3657643 357648 357648 357648 357648 357648 357648 357648 357648 357648 357648 357648 357649 367791 12 421754 43 214 631212 63330 62375																				
54762 547788 1607 140 [617062 6167142 80 158 2541678 255128 80 3537347 3532917 35323917 3532174 3553141 314 1477272 14178503 137343 34 556245 563641 51<1641516	480382	480428	46	329	1486149	1486206	57	274	2531450	2531530	80	44	3494644	3494842	198	46	4166116	4166170	54	178
563833 80 374 1620713 1620713 1620713 1620713 1620713 1620713 1634801 82 248 258772 2587865 555206 551 1637711 1642577 1642677 1642677 1642677 1642677 1642677 1642677 1642678 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576415 3576445 358544 358544 358544 358544 35854 3818 2505106 250757 257 55 55 56 5152 563352 663375 3636130 361517 30 128 127579 237579 242759 242759 242759 242759 242759 242759 242759 242759 242759 242759 242759 242759 242759 242759 242759 242759 242759 242759 242759	496308	496349	41	114	1577536	1577607	71	359	2539323	2539649	326	13	3516953	3517053	100	105	4169385	4169545	160	23
573632 573732 80 355 1634721 16342671 1642657 4 258878 120 121 350116 3502366 300 102 4178773 220 90 579630 579719 80 21 1647157 1642057 1642057 150 22 2613253 2614031 80 38 3572561 3572641 80 400 4205160 402048 80 10 608570 608632 62 333 1647315 1647135 81 82 261809 120 100 3035444 3064 205560 2070 207077 207577 257 55 127 613256 613625 50 54 1694385 1071071 20 252 269573 268352 2693063 3046913 3046011 80 427679 4237759 80 353 663206 68281 80 227 164227 42 424128 82 321693 3066103 306717 40 43 424128 80 281 4241128 80 287679 </td <td></td>																				
579719 80 227 1642577 1642657 164309 721 261352 2614203 80 388 37567531 44 306 419772 4193860 133 34 558266 55630 58 21 1647115 1647195 80 22 2612552 2612053 264203 50 226 3376447 3576511 44 306 4205717 2107572 55 152 613525 613307 3635170 3635170 3635127 30 228 4207517 227579 80 322 663261 633615 50 128 4210582 421759 80 323 663757 287676 237769 287769 237579 287879 80 323 6663276 304611 80 80 1366101 80 144448 424178 1242758 82 366137 307870 42 327 424704 424275 84 382 663276 3661727 4361 424408 424173 155 166 266321 66624166 66644443 153357 11062																				
585266 585320 64 31 1643016 1643093 77 251 2613051 2614031 80 352 3572641 80 356 4197722 4197800 87 53 506246 506304 58 21 1647115 1647355 1614115 80 202 2661800 100 3598464 3598544 80 184 206162 260212 561717 157572 55 152 631512 631562 50 54 1604385 1694365 1694485 1694385 1694446 1427519 80 322 2668153 80 12 3661311 80 4023759 80 322 2668153 80 342 366111 80 4023759 80 332 663266 663275 39 84735684 173875751 1753875 1753875 80 342 3661103 3661172 120 442404 4242128 80 381 3661127 361 4242064 4242128 80 381 3661127 361 361 3613 3613 3613																				
596246 596330 88 21 Id47115 Id4																				
608632 62 333 1647315 164735 64 14 18 266109 120 3598464 308 18 202300 4205375 315 27 631512 631520 505 54 1694385 1694436 51 235 2687576 2687641 65 117 3637640 336761 51 288 4216125 43 214 2147539 80 392 663236 663853 2663853 2668353 2668353 2668153 80 324 645491 3645127 363761 80 2423769 423759 80 353 668261 3661207 3661207 366127 36127 24 244444 444128 80 281 36640 694284 694244 40 1753457 175367 80 81 2766344 2763442 2763442 363127 3661207 3661207 366127 364 2494144 4294164 4294164 4244131 105 108 420 1753477 177377 277569 2773792 2775769 2775769 27737692 27737																				
6383816388961151817106321710712803252693903562683645491364557180277423751942375980392643240643208041173554117355811341072702213270229380342366120736613271202894242744242758543826682016682818068173927617333871112092702323270239080342366120736613271202894242744241288028169426469446680224175337517336729710627515272751765238836796003679718191426689442610742103170787107170738773757773757803103756443704894214321986429017125176342173772803103764643706494210342178680177280577731771774538036727730227731728031037645437064925169433934910320675410175435042917535217864957722773728713988017347442944241288040576410175435042917535017645217864957722773728051127149717403																				
643240 643320 80 24 1735444 1735524 80 302 2698153 80 182 3645931 3645931 3641011 80 49237679 4237759 4237759 4237759 4237759 4237759 4237759 4237759 4237759 4237759 4237759 4237759 4237759 4237759 424704 4242704 4242704 4242704 4242704 4242704 4242704 4242704 4242704 4242704 4242704 4244704 4244188 80 81 69426 666486 80 241 1753575 1753672 97 106 2751527 7517615 288 8 3679660 3669448 80 379 327966 327966 177 710738 710778 10 19 176619 1776619 2773927 773172 80 310 3705464 3706142 101 44291968 4291968 4291968 327966 327966 327976 377777 72 370544 370619 30 34345372996 303343 33343433393 130 2065	631512	631562	50	54	1694385	1694436	51	235	2687576	2687641	65	117	3637640	3637691	51	288	4216082	4216125	43	214
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															~					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	753741	753861	120	135	1786352	1786409		72	2775973	2776117	144	272	3705944	3706195	251					206
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
780495 780542 47 59 1859566 1859666 80 335 2815932 2816031 99 38 3723077 3723197 120 128 4372022 4372102 80 415 780965 781085 120 186 1860583 180745 162 60 2816346 2816445 99 52 373456 373506 60 334 442257 442246 67 159 81230 812380 80 168 1876934 1876984 47 380 2870973 80 400 7446185 4432579 442646 80 335 816120 816217 97 45 1891905 1891985 80 173 287501 287601 80 371 376978 3769781 376988 374 448190 440444 80 345 375 87783 87633 85 321 440404 406149 80 195 60 195 371 3769781 3769781 3769781 3769781 3769781 3769781 3769781 376																				
780965 781085 120 186 1860583 1860745 162 60 2816346 2816445 99 52 3734856 3734936 80 271 4403653 4403718 65 193 802593 802652 59 16 1864826 1864882 56 220 286826 286826 286866 40 3735016 3735076 60 334 442257 442635 40 323 816100 812370 45 1891905 1891985 80 173 2875731 287581 160 351 375258 377 383 446490 4460484 80 335 816120 816217 97 45 1891905 1891985 80 173 2875731 287581 160 351 375258 375 331 446490 4460484 80 345 819861 819941 80 189 190012 43 1020246 290246 160 187 3774704 3774874 80 378 443569 4430458 48165 120<																				
802593 802652 59 16 1864826 1864882 56 220 2866826 2866866 40 395 3735016 3735076 60 334 4422579 4422646 67 159 811200 816217 97 45 1891905 1891985 80 173 2875731 287581 160 351 375208 375253 45 321 4464904 4460484 80 345 819861 819941 80 296 1894862 1894906 44 236 2876701 2876011 3760781 3769781 3769781 37644699 4481898 4481958 60 195 836789 836838 49 36 1899699 189819 120 161 290246 290246 160 187 3774704 3774786 77 4374784 80 78 448359 4481958 60 195 837278 837363 85 38 1929143 192082 39 254 290292 292141 120 148 3782119 378161																				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
816120 816217 97 45 1891905 1891985 80 173 2875731 2875731 2875891 160 351 3752508 3752553 45 321 4460404 4460484 80 345 819861 819941 80 296 1894862 1894906 44 236 2876011 2876091 309 3769781 3769858 77 383 4464904 446149 60 199 836789 836383 49 306 1899699 1899819 120 16 290246 290216 80 307 3774704 3774704 87 84838569 448198 460494 40 44 80 321 921863 921943 80 160 1903453 1903573 120 124 290778 2907866 88 127 3774904 3774976 72 413 4508151 4508208 57 373 91603 931768 165 20 1927941 192808 67 510 2920452 2920507 55 580527 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
819861 819941 80 296 1894862 1894906 44 236 2876011 2876091 80 397 3769781 3769781 3769858 77 383 4464990 4465149 159 199 836789 836838 49 306 1899699 189919 120 161 2902246 2902406 160 187 3774704 3774784 80 378 4483569 4483649 80 241 921863 921943 80 160 1903453 1903573 120 124 2907778 2907866 88 127 3774704 3774976 72 413 4506275 4506395 120 294 925756 925836 80 389 1923043 1923082 39 254 2920292 2920412 120 148 378219 3782161 42 349 45068151 4508208 57 373 931603 931768 165 20 1927941 192808 67 150 2920507 55 255 3782692 3782772																				
836789 836838 49 396 1899699 1899819 120 161 2902046 2902126 80 330 3771911 3772001 90 340 4481898 4481958 60 195 837278 837363 85 328 1899979 1900022 43 301 2902242 2902460 160 187 3774704 3774748 80 378 448369 448369 448369 120 121 921863 921943 80 160 1903453 1903573 120 124 2907778 2907866 88 127 3774904 3774974 327497 413 4506275 4508305 120 291 925756 925836 80 389 192791 192088 67 150 2902052 2920507 55 3782692 3782772 80 308 4516500 4516580 80 213 96291 963001 60 14 1932758 1932813 55 137 2941260 2941309 49 172 380575 3805855																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	836789				1899699	1899819	120		2902046	2902126			3771911	3772001		340			60	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	837278		85	328	1899979	1900022		301	2902246			187				378	4483569	4483649		241
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
982167 982248 81 62 1948596 1948676 80 142 2962289 2962333 44 278 3809351 3809468 117 15 4532282 4532362 80 244 983650 983692 42 263 1957034 1957154 120 110 2961209 2967129 2967209 80 151 3834033 3834113 80 44 4549115 4549155 40 154 986295 986375 80 320 1990191 1990242 51 16 2967409 2967509 160 141 3850745 385085 120 80 4588914 4588914 80 222 989629 989709 80 347 2011126 2011201 75 256 3010544 3010585 41 208 3865099 3865179 80 258 4603362 4603442 80 343 1006913 1007017 104 97 2050206 2050248 42 134 3030925 303135 10 232 3881407																				
983650 983692 42 263 1957034 1957154 120 110 2964100 51 145 3834033 3834113 80 143 4549115 4549155 40 154 986295 986375 80 339 1980461 1980528 67 352 2967129 2967209 80 151 3850745 3850865 120 80 458068 4580769 101 37 988258 988327 69 362 1990191 1990242 51 116 2967409 2967569 160 141 3850985 3851345 360 4 4588914 458894 80 222 989629 989709 80 347 2011216 75 256 3010544 3010555 41 208 3865199 386179 80 460362 4603442 80 343 1006913 1007017 104 97 205026 2050248 42 134 303925 3031035 110 232 3881407 381607 200 119 4604100 4																				
986295 986375 80 339 1980461 1980528 67 352 2967129 2967209 80 151 3850745 3850865 120 80 4580668 4580769 101 37 988258 988327 69 362 1990191 1990242 51 116 2967409 2967569 160 141 3850985 3851345 360 4 4588914 458894 80 222 989629 989709 80 347 201126 2011201 75 256 3010544 3010555 41 208 3865099 3865179 80 258 460362 4603442 80 343 1006913 1007017 104 97 2050248 42 134 3030925 3031035 110 232 3881407 3881607 201 4604148 88 411 1019326 1019446 120 104 2065953 2066033 80 305352 3881427 3881807 201 4608862 4608915 53 71 1019526 1019583 <td></td>																				
988258 988327 69 362 1990191 1990242 51 116 296769 160 141 3850985 3851345 360 4 4588914 4588994 80 222 988629 989709 80 347 2011126 2011201 75 256 301044 301055 41 208 3865099 3865179 80 258 4603362 4603442 80 343 1006913 1007017 104 97 2050206 2050248 42 13 3030925 3031035 110 232 3881407 381607 200 119 4604100 4604188 88 411 1019326 1019446 120 406553 2066033 80 319 305352 353582 62 3 3881727 3881807 201 4608862 4608915 53 71 1019326 10194583 57 262 2066393 2066513 120 132 369314 3069394 80 25 3881727 3818855 124 11 4609700																				
989629 989709 80 347 2011126 2011201 75 256 3010544 3010585 41 208 3865099 3865179 80 258 4603362 4603442 80 343 1006913 1007017 104 97 2050206 2050248 42 134 3030925 3031035 110 232 3881407 3881607 200 119 4604100 4604188 88 411 1019326 1019446 120 1066333 80 319 3053520 3053582 62 3 3881407 3881887 160 211 4608100 4604188 88 411 1019326 1019446 120 1066393 2066313 80 313 3069324 3053582 62 3 3881727 3881887 160 211 4608700 4608405 53 71 1019526 1019583 57 262 2066393 2066513 120 3069314 3069324 306127 83 275 4628141 4628221 80 404 <																				
1006913100701710497205020620502484213430309253031035110232388140738816072001194604100460418888411101932610194461201042065932060338031930535230535826233881727388187716021146088624608915537110195261019583572622066393206513120132306931430693948025388253138826551241146097004609000200181103126510313124723120765262076606802663071761307192116012939060443906127832754628141462822180404																				
1019526 1019583 57 26 2066393 2066513 120 132 3069314 3069394 80 25 3882551 3882655 124 11 4609700 4609900 200 181 1031265 1031312 47 231 2076526 2076606 80 266 3071761 3071921 160 129 3906044 3906127 83 275 4628141 4628221 80 404																				
1031265 1031312 47 231 2076526 2076606 80 266 3071761 3071921 160 129 3906044 3906127 83 275 4628141 4628221 80 404																				
1030340 1031020 + 303 2003140 2003200 + 120 + 10 3043404 - 3043450 - 52 - 93 3911340 - 5911408 - 02 + 138 4030705 - 4030752 - 47 - 358 - 358 - 35																				
	1000940	1001020	14	505	2000140	2000200	140	170	5019104	2019190	52	95	0711040	0911400	02	190	+000100	4030732	41	500

Figure 1: The schema of the first ranked prediction. The methods are indicated on the left side.

Figure 2: The structure of the first ranked prediction (based on the sequence on the forward strand)

Figure 3: The schema of the second ranked prediction

Figure 4: The structure of the second ranked prediction (based on the sequence on the forward strand).

Figure 5: The schema of the third ranked prediction

Figure 6: The structure of the third ranked prediction (based on the sequence on the forward strand).

Figure 7: The schema of the fourth ranked prediction

Figure 8: The structure of the fourth ranked prediction (based on the sequence on the forward strand).

Figure 9: The schema of the fifth ranked prediction

Figure 10: The structure of the fifth ranked prediction (based on the sequence on the forward strand).