### **BIOINFORMATICS**

### PSoL: A Positive Sample Only Learning Algorithm for Finding Non-coding RNA Genes

Chunlin Wang<sup>a</sup>, Chris Ding<sup>b</sup>, Richard F. Meraz<sup>a</sup>, and Stephen R. Holbrook<sup>a\*</sup>

<sup>*a*</sup> Physical Biosciences Division and <sup>*b*</sup> Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

#### ABSTRACT

**Motivation:** Small non-coding RNA (ncRNA) genes play important regulatory roles in a variety of cellular processes. However, detection of ncRNA genes is a great challenge to both experimental and computational approaches. In this study, we describe a new approach called positive sample only learning (PSoL) to predict ncRNA genes in the *E. coli* genome. Although PSoL is a machine learning method for classification, it requires no negative training data, which, in general, is hard to define properly and affects the performance of machine learning dramatically. In addition, using the support vector machine (SVM) as the core learning algorithm, PSoL can integrate many different kinds of information to improve the accuracy of prediction. Besides the application of PSoL for predicting ncRNAs, PSoL is applicable to many other bioinformatics problems as well.

**Results:** The PSoL method is assessed by 5-fold cross-validation experiments which show that PSoL can achieve about 80% accuracy in recovery of known ncRNAs. We compared PSoL predictions with five previously published results. The PSoL method has the highest percentage of predictions overlapping with those from other methods. **Contact:** srholbrook@lbl.gov

#### **1 INTRODUCTION**

RNA molecules are endowed with extraordinary capacities due to their intrinsic conformational versatility and catalytic abilities. However, their potentials have mostly remained hidden from attention until recently through the discoveries of non-coding RNA (ncRNA) genes. In bacteria, ncRNAs have been found to be involved in the control of transcription (Wassarman and Storz, 2000), RNA processing (Wassarman *et al.*, 1999), RNA stability (Masse and Gottesman, 2002), mRNA translation (Altuvia and Wagner, 2000), and even protein degradation (Gillet and Felden, 2001) and translocation (Keenan *et al.*, 2001). Therefore, ncRNAs play important roles in a variety of cellular processes and correspondingly, efforts to identify the whole set of ncRNAs and then to elucidate their functions are becoming more and more prominent.

However, it is a big challenge to identify the whole set of ncRNA genes in a genome. Most ncRNAs are small and non-susceptible to frame-shift and non-sense mutations, which makes it very difficult to detect using routine biochemical and genetic methods (Hershberg *et al.*, 2003). In addition, ncRNAs have varied stability and are expressed under a variety of environmental and physiological conditions. Therefore, methods such as whole genome microarrays (Tjaden *et al.*, 2002) and the whole genome cloning method

© Oxford University Press 2005.

(Vogel et al., 2003) are unlikely to fully characterize all ncRNA genes in a genome. The development of computational methods for efficiently finding ncRNA genes in genomic sequences has proven difficult. Unlike protein genes, ncRNA genes lack clear endpoints, vary in size, and have few common statistical features. This poses a great challenge to computational approaches. Despite the difficulties, great efforts have been devoted to predict ncRNA genes by exploring different aspects of properties about known ncRNA genes. Evolutionary conservation of secondary structures provides compelling evidence for biologically relevant RNA function; thus comparative genomics approaches are particularly attractive for ncRNA gene prediction. In a study by Rivas et al. (2001), pair stochastic context free grammars were exploited to modeling patterns of co-variation in sequence alignment from related genomes. The program RNAz developed by Washietl et al. (2005) basically combines structural conservation and thermodynamical stability of RNA secondary structures in multiple sequence alignments to predict functional RNA structures including ncRNA. Functional sites (i. e. promoter and terminator) are required in ncRNA gene expression. Just as one can reach the melon by following the vine, it is possible to use the predicted signals to approach the boundaries of ncRNA genes. Chen et al. (2002) pinpointed ncRNA genes with genomic positions of promoters and terminators, which were predicted based on profile-based methods. The nucleotide composition of known ncRNA genes has been tested to search for discriminative variables between primary sequences of ncRNA genes and intergenic regions in bacterial genome sequence. However, no particular measure stands out to be very discriminative. The combination of some measures such as k-mer (i.e. the usage k nt words) usage might provide a certain level of predictive capability. In addition, different measures often examine different aspects of an actual gene, all of which may complement each other. Therefore, combining different predictive features is highly likely to yield a more accurate prediction. The integrated strategy was initially used to identify ncRNA genes in E. coli by Carter et al. (2001). Selected discriminative base composition measures and calculated minimum free energies of folding (MFE) were used to train a neural network to distinguish ncRNA from other intergenic sequences. However, less than ten percent of all predictions are shared among different methods above (Hershberg et al., 2003), suggesting that some computational ncRNA gene-finding methods are not highly successful.

We approach the problem of computational prediction of ncRNA genes using a single-class discriminative machine-learning algorithm. Machine-learning involves training a prediction algorithm with knowledge derived from already available data and applying this knowledge to prediction. For this ncRNA prediction problem,

<sup>\*</sup>to whom correspondence should be addressed

we try to train a support vector machine (SVM) algorithm (Vapnik, 1995) to distinguish ncRNA genes from intergenic sequences based on statistical differences between biologically relevant, computable representations of these sequences. In general, an SVM is used as a discriminative method to learn a decision boundary from a set of existing examples that can generalize to unseen examples. The performance of an SVM highly depends on the training data set which should consist of examples from all classes to be learned, and have as few misclassifications as possible. However, in many computational biology problems, there are only a limited number of positive (desired) training examples available and the negative examples are difficult to define appropriately.

To overcome the lack of appropriate negative training samples, we developed a new approach called the positive sample only learning (PSoL) algorithm. The PSoL algorithm defines the first set of negative examples by maximizing both the distances between negative sample points to the known positive sample points and the distances among negative samples points simultaneously, and then refines the negative data iteratively using an SVM algorithm based on current positive and negative samples until no additional negative samples can be found according to pre-determined rules. By doing so, a decision boundary is updated iteratively from far away to nearby positive samples, achieving high specificity. In this manuscript we detail the algorithm and apply this approach to the prediction of ncRNA genes in *E. coli*.

#### 2 MATERIALS AND METHODS

# 2.1 Transformation of biological sequence to feature vectors

The M52 version of the E. coli K-12 genome sequence (Blattner et al., 1997) was used to compile a database of ncRNA and nonannotated sequences. The well-characterized ncRNA sequences of E. coli were collected based on a literature search (3 rRNA, 20 tRNA and 69 known ncRNA genes, see Supplemental Material Table 1). The sequences of these RNA molecules served as positive examples from which we derived parameters for machine learning. The 'noncoding', or intergenic sequences were obtained by removing all protein and known functional RNA coding regions from the genome along with a buffer of 50 nucleotides on both the 5' and 3' sides so as to remove possible promoter, terminator and other untranslated control elements. Sequences in both strands were removed when there was a protein or RNA coding region on either strand. Each RNA or non-annotated intergenic sequence was then divided into sequence windows of 80 nucleotides with a 40-nucleotide overlap between windows (i.e. each window slides 40 nucleotides along the sequence). Any window of < 40 nucleotides was excluded from the study. A total of 5909 windows from each strand (11818 total) were partitioned from the non-coding sequences, while 321 unique RNA sequence windows were generated from the known RNA sequences (after removing redundant RNAs).

Each window was transformed into a feature vector consisting of sequence statistics, the MFE and similarity measurement between related genomes. Sequence statistics were the counts of individual nucleotide (A, C, G, T), dimer (AA, AC  $\cdots$  TT) and trimer (AAA, AAC  $\cdots$  TTT) in each window. The conservation of the sequence of a window was simply represented by the highest bits score with WU-BLAST (W = 4) between a sequence and the genomic sequence of a reference species. The three reference species are

Salmonella typhimurium LT2 (access number  $NC_{003197}$ ), Salmonella typhi CT18 (access number  $NC_{003198}$ ), and Salmonella typhi Ty2 (access number  $NC_{004631}$ ). The MFE for each window was calculated using the program RNAfold (Washietl *et al.*, 2005) with default parameters. All values were then normalized by dividing by the size of window.

#### 2.2 Feature selection

A total of 88 possible features was generated from the feature extraction method described above. In general, too many features often degrade the performance of the discriminant method by overfitting the training data. Therefore, we picked a small number of features and discard the rest. The most common feature selection involves computing the *t*-statistic test (for two-class problems) or F-statistic (for multi-class problems) on the class-conditional distributions. Then the features were ranked according to their scores. Those most highly ranked features were then selected.

Both *t*-statistics and *F*-statistics assume that for each class, the data follow a normal distribution. In reality, this assumption is not always correct. For this reason, we used a  $L_1$  distance metric between two distributions p, q:

$$d_{L_1}(p,q) = \sum_s |p_s - q_s|.$$

where s is summed over different states. This metric can be viewed as a simplified version of the symmetrized Kullback-Leibler divergence (Kullback and Leibler, 1951):  $d_{KL}(p,q) = \sum_s (p_s - q_s) log(p_s/q_s) = \sum_s |p_s - q_s| * |log(p_s/q_s)|$ . Since log(x) is a very slow changing function, we ignore it. The  $L_1$  distance has an intuitive interpretation. If we plot the probability density distribution curves for two different classes, the  $L_1$  distance is the total area sum of the difference between the two curves (see Figs. 1-3). The most discriminant features should have the largest differences on these class-conditional distributions.

The  $L_1$  ranking does not require the underlying data to follow a particular distribution. When the class-conditional distributions are Gaussian, the ranked orders based on *t*-statistics and on  $L_1$  distance are very similar.

#### 2.3 Learning from partially labeled data

Discriminative machine learning algorithms require labeled data during the training phase. The windows derived from previously identified ncRNA genes were labeled as the positive (+) data. We were trying to distinguish putative ncRNA genes from intergenic sequences. Intergenic sequences contain positive examples (putative ncRNAs) as well as negative examples (sequences that do not encode putative ncRNAs). Therefore, we considered the intergenic sequences to be unlabeled data. Thus our problem became learning from a positively-labeled-only dataset.

#### 2.4 Positive samples only learning

In this problem, we have two types of data: (1) positive data samples and (2) the unlabeled data set, which contains both positives and negatives, and generally much more data than the positive data samples. The goal of PSoL is to predict the positives in the unlabeled data.

PSoL is a challenging problem because there are no negative data. The usual discriminative methods, which require both positive and negative samples for training, cannot be applied to this problem directly. In our earlier approach (Carter *et al.*, 2001), we first took random samples from the unlabeled data and assumed they were negative data. This negative data set plus the true positive data set were used for training the discriminant decision function between the positive and the negative data. This approach is reasonably effective for RNA gene prediction (Carter *et al.*, 2001) since there are many more negatives than positives in the unlabeled sequences.

However, some of the "negative samples" in training the decision function could in fact be positives embedded in the unlabeled data. These wrongly assumed "negative samples" could tilt the decision boundary in an unpredictable way and thus affect the decision boundary significantly.

The key to the success of PSoL is to generate a negative training set without contamination from those "positives" embedded in the unlabeled data. In this paper, we describe a more sophisticated method to determine the negative training set. The basic spirit of this method has appeared previously (Yu *et al.*, 2002; Yu, 2003; Li and Liu, 2003; Liu *et al.*, 2002).

The method first identifies a small number of data points in the unlabeled data set that are very far away from the positive training data set. In this way, we minimized the possibility of those picked data points to be positive. In addition, we minimized the redundancy in those picked data points by maximizing their mutual distances to achieve a better representativeness for negative data.

Given the small initial negative set, we expanded them in multiple steps, each time picked more data from the currently unlabeled set, using a criteria that they are far-away from the positive training set and close to the current negative set. (The decision function of an SVM gives a convenient measure for the distances to the positives and to the negatives). The negative training set built up in this way will be less contaminated by the positives embedded in the unlabeled dataset.

Once this negative training set is built, we have N: current negative data set, U: remaining unlabeled data set and P: positive data set. The process of predicting positives from the remaining unlabeled dataset is the same as in the two-class prediction.

#### 2.5 Initial negative set selection

2.5.1 Maximum distance minimum redundancy negative set. For the initial negative set, we selected from the unlabeled set m data points that are (1) most dissimilar from the positive set P and (2) least redundant among themselves. We call this maximum distance - minimum redundancy (MDMR) set (Ding and Peng, 2005).

We first defined the distance between a single data point and the positive set,  $d(x_i, P)$ , as the minimum Euclidean distance between  $x_i$  and P:

$$d(x_i, P) = \min_{x_i \in P} ||x_i - x_j||$$
(1)

The maximum distance negative set was constructed by selecting the initial negative set N from the unlabeled set U such that the distance between N and P was maximized:

$$\max_{N \subset U} d(N, P), d(N, P) = \sum_{x \in N} d(x, P)$$
(2)

This optimization is trivially solved by picking the N points with largest distance  $d(x_i, P)$ . However, often the chosen set has many members close to each other and the space represented by N is narrow. From the viewpoint of learning, we may say that there is a certain redundancy in N. To reduce the redundancy, we added a

second requirement that maximizes the distance among data points in N:

$$\max_{N \subset U} d(N,N), d(N,N) = \sum_{x_i, x_j \in N} d(x_i, x_j)$$
(3)

To satisfy these two criteria simultaneously, we maximize:

$$\max_{N \subset U} [d(N,N) \cdot d(N,P)] \tag{4}$$

The exact solution of Eq.(4), however, is NP hard. We propose the following simple approximate algorithm that is efficient and gives good results in practice.

2.5.2 Forward incremental selection algorithm. The algorithm first selects a point according to Eq.(2). The rest of N is chosen incrementally. Suppose we already have several points in the current negative set N; the new point  $x_i$  is selected based on maximum dissimilarity to the positive set:

$$\max_{x_i \in (U-N)} d(x_i, P) \tag{5}$$

And the maximum distance to the current set.

$$\max_{x_i \in (U-N)} \sum_{x_j \in N} d(x_i, x_j) \tag{6}$$

Now Eq.(5) is an exact solution to Eq.(2) and Eq.(6) in an approximate solution to Eq.(3). As in Eq.(4) these two criteria are combined into one:

$$\max_{x_i \in (U-N)} \left[ d(x_i, P) \cdot \sum_{x_j \in N} d(x_i, x_j) \right] \tag{7}$$

This can be solved by a simple linear search. Once the specified size of N is reached, the algorithm is terminated and we set the initial negative training set  $N_{train} = N$ .

#### 2.6 Negative set expansion

Given an initial negative set, the PSoL method gradually expands the negative set by classifying more and more unlabeled data points as negative. This is done iteratively using a two-class SVM. At each iteration, an SVM is trained; the decision function values for all remaining unlabeled points are computed, and some of them are classified as negative. Thus |N| is increased and |U| is decreased at each step.

At the stop point, N contains the negative training set and U contains the remaining unlabeled dataset. A final SVM is trained. Based on this, a portion of those in U - N are classified as positive; the remaining ones in U - N are classified as "undecided".

2.6.1 Controlled stepwise expansion Given the current negative training set  $N_{train}$  and the current unlabeled set U, we perform negative set expansion. We begin by training an SVM on the data  $P + N_{train}$  to obtain a large margin decision boundary. The support vectors in  $N_{train}$  for this SVM are denoted  $N_{sv}$ . All objects in the currently unlabeled set U are tested against the SVM.

We classify unlabeled data points as negative in a conservative and controlled fashion. At an iteration, once the SVM is trained, each unlabeled point will have an decision value  $f(x_i)$ . Normally, a point  $x_i$  is classified as negative if  $f(x_i) < 0$ . To insure the quality of the negative set, we build a safety margin h > 0 by requiring

$$f(x_i) \le -h,\tag{8}$$

for  $x_i$  to belong to the negative set. We typically set h = 0.2.

Besides the safety margin, we also control the size of the newly predicted negative samples  $N_{pred}$  at each step by setting

$$N_{pred} = \{x_i \mid i \le r | P | \text{ and } f(x_i) \le -h\}$$
(9)

where r is set to be 3 in most of our experiments. This size control is necessary because the size of unlabeled data samples can be huge compared to that of the positive samples. Therefore the number of newly predicted negative samples is possibly very large in each expansion.

Once  $N_{pred}$  are selected, they are added to the current negative set:  $N \leftarrow N + N_{pred}$  and they are subtracted from the current unlabeled set:  $U \leftarrow U - N_{pred}$ 

2.6.2 SVM training In SVM training, it is well-known that if the sizes of the classes differ substantively, say 1 : 5, SVM training typically converges to a solution where all data points in the smaller class are classified as belonging to the larger class.

To overcome this problem, we maintain a current negative training set  $N_{train}$  whose size is comparable to |P|. At the first iteration,  $N_{train} = N$ . Later on, after each SVM, the support vectors on the negative side  $N_{sv}$  are used to represent the existing negative set N. This is combined with the newly predicted negatives to give the negative training dataset for next round of SVM training:  $N_{train} = N_{pred} + N_{sv}$ . Since  $|N_{pred}| \leq r|P|$ , the size of  $N_{train}$  is controllable and is maintained in the range where the SVM can be successfully trained with high accuracy.

2.6.3 Stopping criteria of negative expansion Negative set expansion is repeated until the size of the remaining unlabeled set goes below a predefined number, typically about 3 times of the number of expected positives in the unlabeled set. At this last step, the unlabeled data points with the largest positive decision function values are declared as the positives.

#### 2.7 SVM parameter selection

We used the libsvm (Fan *et al.*, 2005) to perform SVM training and predicting. A radial basis function (RBF) kernel was used. There are two parameters for the RBF kernel:  $\gamma$ , which determines the effective range of distances between points, and *C*, which determines the trade-off between margin maximization and training error minimization. The parameter search is carried out with cross validation. We used a grid-search approach to search for a pair of C and  $\gamma$  with the best performance in cross validation.

It should be emphasized that we fixed parameters for the entire PSoL, i.e., parameters for training the SVM were fixed for each iterative step in the negative set expansion. If we let parameters change during the negative expansion, the data would be overfit and poorer performance in cross validation would result.

#### 3 RESULTS

#### 3.1 Feature selection

For each feature, distributions for positive and unlabeled classes were computed, from which *t*-score and  $L_1$  score were derived. Detailed distributions for 3 features are shown in Figures 1 - 3. The figures show that distributions follow the normal distributions by varying degrees and the validity of *t*-score becomes questionable. Since the  $L_1$  measure does not require the underlying data to follow a particular distribution, the  $L_1$  measure can capture the difference. We decided to use 30 features (A, C, G, T, AA, AT, CC, CG, GG,



Fig. 1. Distributions (histogram) of normalized bits score for both positive and unlabeled classes on *Salmonella typhi* Ty2 genome sequence (extracted from the best HSP in WU-BLAST search). Both distributions deviate substantially from normal distribution; the sample means shift away from the peak regions. Thus the use of *t*-score is questionable.  $L_1$  score can capture the difference in distributions.



Fig. 2. Distributions of normalized G content for both positive and unlabeled classes. Both *t*-score and  $L_1$  score can capture the difference in distributions.

GT, TA, TT, AAA, AAT, ATA, ATT, CCG, CGG, GCC, GGC, GGG, GGT, TAT, TGG, TTA, TTT, MFE, Typhi\_CT18, Typhi\_Ty2, and Typhi\_LT2) with highest  $L_1$  scores.

#### 3.2 The 5-fold cross validation

In order to calibrate the performance of PSoL on the ncRNA data, we carried out a 5-fold cross validation. Briefly, the positive data were randomly divided into 5 subsets of approximately equal sizes.



Fig. 3. Distributions of normalized GGT content for both positive and unlabeled classes. *t*-score can not capture the difference in distributions while  $L_1$  score can.

We ran the validation process 5 times; each time, we merged 4 subsets into positive training data and merged the remaining subset into unlabeled data. We ran the PSoL procedure described above and counted the number of positive samples embedded in the unlabeled data which remain to be "unlabeled". Figure 4 shows the results for 5 independent 5-fold cross validation experiments. From those curves, it is apparent that the embedded 64 (321/5) known positives are mostly present in the remaining unlabeled samples as negative expansion proceeds, suggesting that the negative set are not contaminated by the positives. This validates our design of the negative set expansion. When the negative expansion stops at |U| = 1000 (1000 samples predicted to be positive), about 80% recovery rate is achieved (see Figure 4). The optimal parameters are C = 1000 and  $\gamma = 0.04$ 

ROC curve analysis was carried out to further assess the performance of PSoL. A total of 321 negative control samples were generated by shuffling each positive sample window once using the program SHUFFLE in Sean Eddy's Squid toolbox (http://hmmer.wustl.edu/) to randomize the sequence while perserving mono- and di-nucleotide composition. The negative samples were marked and put into an unlabeled dataset to do a 5-fold cross validation experiement as described above. The true positive rate and false positive rate were then calculated based on those known positive windows and those negative windows generated by shuffling. The ROC curve of this analysis is shown in Figure 5. When the negative expansion stops at |U| = 1000 (1000 samples predicted to be positive), the false positive rate is  $6\pm1$  %. Using true positives and true negatives only (igorning the unlabeled category), the average  $Q^{\alpha}$  (average of the percentage of correctly predicted positive windows and the percentage of correctly predicted negative windows) (Baldi et al., 2000) of the 5-fold cross validation experiment is 87.3%. We note that this type of estimation of false positive rate can be automatically computed in PSoL and used to help judge when to terminate the process.



Fig. 4. 5-fold cross validation results. Each curve presents the percentage of correctly recovered positives. We run five 5-fold CV experiments with different random partitions of the positive data. The horizontal coordinate denotes the number of unlabeled samples left after each negative expansion.



Fig. 5. ROC curves of 5-fold cross validation experiment. Each curve represents the result of one single run of the experiment.

#### 3.3 Prediction

Using the best parameters C and  $\gamma$  from the 5-fold cross-validation experiment, we ran PSoL with all positive data and predicted 1000 windows. This choice is based on the observation that when the number of remaining unlabeled windows is close to 1000, the curves in Fig.4 show a sharp downturn. Since many of these predicted windows were consecutive, we then merged windows that overlapped each other into one. The predicted 1000 windows were assembled into 420 independent RNA sequence segments (details listed in Supplemental Material Table 2).

One of the difficulties in computational prediction of ncRNA genes is the lack of benchmark data to validate the method. Experimental approaches are expensive and time-consuming, therefore only a limited number of predictions were subject to verification



Fig. 6. Percentage of PSoL predictions overlapping with other methods versus decision values. The solid line shows the sum of percentage overlapping with all other 5 methods. The dash line shows the percentage overlapping with Affy result.

using Northern blots or RT-PCR. There are also additional drawbacks to such approaches. Since ncRNA expression may vary according to environmental and physiological conditions, some authentic ncRNA genes might not be detected under experimental conditions. In this study, we compared our predictions to results from previous work. We argued that if our results have more agreements with other studies, that would be a validation of our method. The data used in our comparison were predicted by methods which are listed below.

| Abbrev. | Methods                            | Reference                      |
|---------|------------------------------------|--------------------------------|
| Affy    | microarray experiments             | (Tjaden <i>et al.</i> , 2002)  |
| QRNA    | stochastic context free grammars   | (Rivas <i>et al.</i> , 2001)   |
| IBIS    | promoter and terminator prediction | (Chen <i>et al.</i> , 2002)    |
| bGP     | boosted genetic programming        | (Saetrom <i>et al.</i> , 2005) |
| NNs     | neural networks                    | (Carter <i>et al.</i> , 2001)  |

The results of pairwise comparison are listed in Table 1. Note that a predicted ncRNA gene from one method could overlap with 2 predicted ncRNA genes from another method (see Supplemental Materials figures). In general, PSoL has the largest overlap with other methods. This can be seen clearly from row or column sums. The greater overlap of PSoL with Affy is significant since Affy is the only experimentally based method which results are more reliable.

SVM function values can be used to measure the confidence of prediction. In Fig.6 we show the percentage agreements. It is clear, as the decision values increases, the percentage agreements increases. This suggests that predictions with higher decision values are more likely to be true positives. The rank of each prediction based on its decision value is provided in Supplemental Material Table 2. The secondary structures and their genome schema for the top 5 predictions are also provided in the supplemental data.



Fig. 7. The length distribution of predicted ncRNA genes and known ncRNA genes (tRNA and rRNA genes are not included).

# **3.4** Comparison of the statistics of predictions from different methods

Currently, there is no consensus as to the characteristics of an ncRNA gene. In this study, we examined the distribution of length, GC-content, and MFE (minimum free energy) for predictions from different methods mentioned above, as shown in Figures 7, 8, 9. Methods based sequence statistics such as NNs, bGP and PSoL predict more short ncRNA genes. There is less bias in length of prediction from Affy, QRNA and IBIS when compared to the distribution of length of known ncRNA genes. The overall GC content is 50.8% and 40.3% in the *E. coli* K12 genome and in the intergenic regions, respectively. It appears that NNs, bGP and PSoL pick up prediction with slightly higher GC content than the other three methods.

Currently MFE is commonly used as the major predictor for ncRNA gene repdictions. Three out of six methods (PSoL, NNs and bGP) utilize MFE as a prediction parameter. However, as shown in Figure 9, only a small fraction of both known ncRNA genes and predictions from all methods has a very low normalized MFE, suggesting that MFE can not be used as the only predictor of an ncRNA gene.

#### 4 SUMMARY

In summary, the PSoL algorithm addresses two significant concerns in machine learning for biological systems: (1) the uncertainty of the negatives or the lack of negatives, and (2) the overwhelming majority of unlabeled data relative to known positives. This situation is quite common in many bioinformatics problems. We believe our method could provide an effective prediction tool in these difficult situations.

We tested this technique on the prediction of ncRNA genes in the *E.coli* genome sequence solely based on known functional RNA molecules. The 5-fold cross-validation experiments show that PSoL has a recovery rate of 80%. When we compare our predictions with results from previous studies, we find that our prediction has the most overlap with other results, especially with the experimental microarray data, Affy, suggesting the success of this technique.

Table 1. Pairwise overlap between ncRNA prediction methods. We list the number and percentage (in parenthesis) of predictions by the method in the top row overlapping with those by the method in the first column.

|            | Affy       | QRNA      | IBIS      | NNs         | bGP         | PSoL        | row sum     |
|------------|------------|-----------|-----------|-------------|-------------|-------------|-------------|
| Affy       | - 1        | 40 (16.1) | 41 (20.1) | 69 (19.9)   | 54 (18.8)   | 90 (21.4)   | 294 (96.3)  |
| QRNA       | 40 (12.8)  | -         | 33 (16.2) | 35 (10.1)   | 23 (8.0)    | 59 (14.0)   | 190 (61.1)  |
| IBIS       | 41 (13.1)  | 37 (14.9) | -         | 38 (11.0)   | 46 (16.0)   | 48 (11.4)   | 210 (66.4)  |
| NNs        | 69 (22.0)  | 36 (14.5) | 40 (19.6) | -           | 101 (35.2)  | 149 (35.5)  | 395 (126.8) |
| bGP        | 42 (13.4)  | 18 (7.3)  | 37 (18.1) | 77 (22.3)   | -           | 90 (21.4)   | 264 (82.5)  |
| PSoL       | 92 (29.4)  | 55 (22.2) | 49 (24.0) | 149 (43.1)  | 115 (40.1)  | -           | 460 (158.8) |
| Column Sum | 284 (90.7) | 186 (75)  | 200 (98)  | 368 (106.4) | 339 (118.1) | 436 (103.7) |             |



Fig. 8. The GC content distribution of predicted ncRNA genes and known ncRNA genes (tRNA and rRNA genes are not included).

#### ACKNOWLEDGMENTS

This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. We gratefully acknowledge Nancy Schimmelman and Libby Holbrook for editing this manuscript. This work is supported by the National Human Genome Research Institute of the National Institute of Health grant 5R01H6002665-02.

#### REFERENCES

- Altuvia,S. and Wagner,E.G. (2000) Switching on and off with RNA. Proc Natl Acad Sci U S A, 97 (18), 9824–9826.
- Baldi,P., Brunak,S., Chauvin,Y. andersen,C.A.F. and Nielsen,H. (2000) Assessing the accuracy of prediction algorithms for classification: an overview. *Bioinformatics*, 16 412–424.
- Blattner,F.R., Plunkett,G.,r., Bloch,C.A., Perna,N.T., Burland,V., Riley,M., Collado-Vides,J., Glasner,J.D., Rode,C.K., Mayhew,G.F., Gregor,J., Davis,N.W., Kirkpatrick,H.A., Goeden,M.A., Rose,D.J., Mau,B. and Shao,Y. (1997) The complete genome sequence of Escherichia coli K-12. *Science*, 277 (5331), 1453–74.
- Carter, R.J., Dubchak, I. and Holbrook, S.R. (2001) A computational approach to identify genes for functional RNAs in genomic sequences. *Nucleic Acids Res*, **29** (19), 3928–38.
- Chen,S., Lesnik,E.A., Hall,T.A., Sampath,R., Griffey,R.H., Ecker,D.J. and Blyn,L.B. (2002) A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. *Biosystems*, 65 (2-3), 157–77.



Fig. 9. The normalized (by length) MFE distribution of predicted ncRNA genes and known ncRNA genes (tRNA and rRNA genes are not included).

- Ding,C. and Peng,H. (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol, 3 (2), 185–205.
- Fan,R.E., Chen,P.H. and Lin,C.J. (2005) Working set selection using second order information for training support vector machines. *Journal of Machine Learning Research*, 6, 1889–1918.
- Gillet, R. and Felden, B. (2001) Emerging views on tmRNA-mediated protein tagging and ribosome rescue. *Mol Microbiol*, 42 (4), 879–85.
- Gottesman,S. (2005) Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet, 21 (7), 399–404.
- Hershberg, R., Altuvia, S. and Margalit, H. (2003) A survey of small RNA-encoding genes in Escherichia coli. *Nucleic Acids Res*, 31 (7), 1813–20.
- Hildebrandt, M. and Nellen, W. (1992) Differential antisense transcription from the Dictyostelium EB4 gene locus: implications on antisense-mediated regulation of mRNA stability. *Cell*, **69** (1), 197–204.
- Keenan, R.J., Freymann, D.M., Stroud, R.M. and Walter, P. (2001) The signal recognition particle. Annu Rev Biochem, 70, 755–75.
- Kullback, S. and Leibler, R. A. (1951) On information and sufficiency. Ann. Math. Stat. 22, 79–86.
- Lankenau,S., Corces,V.G. and Lankenau,D.H. (1994) The Drosophila micropia retrotransposon encodes a testis-specific antisense RNA complementary to reverse transcriptase. *Mol Cell Biol*, **14** (3), 1764–75.
- Li,X. and Liu,B. (2003) Learning to classify texts using positive and unlabeled data. In *Proc. Joint Conference on Artificial Intelligence (IJCAI-03)*, (Gottlob,G. and Walsh,T., eds), pp. 587–594.
- Liu,B., Lee,W.S., Yu,P.S. and Li,X. (2002) Partially supervised classification of text documents. In Proc. 19th Intl. Conf. on Machine Learning pp. 387–394, Sydney, Australia.

- Masse,E. and Gottesman,S. (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. *Proc Natl Acad Sci U S A*, **99** (7), 4620–5.
- Morfeldt, E., Taylor, D., von Gabain, A. and Arvidson, S. (1995) Activation of alphatoxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. *Embo J*, **14** (18), 4569–77.
- Pfeffer,S., Sewer,A., Lagos-Quintana,M., Sheridan,R., Sander,C., Grasser,F.A., van Dyk,L.F., Ho,C.K., Shuman,S., Chien,M., Russo,J.J., Ju,J., Randall,G., Lindenbach,B.D., Rice,C.M., Simon,V., Ho,D.D., Zavolan,M. and Tuschl,T. (2005) Identification of microRNAs of the herpesvirus family. *Nat Methods*, 2 (4), 269–76.
- Rivas, E., Klein, R.J., Jones, T.A. and Eddy, S.R. (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. *Curr Biol*, **11** (17), 1369–73.
- Saetrom, P., Sneve, R., Kristiansen, K.I., Snove, O., J., Grunfeld, T., Rognes, T. and Seeberg, E. (2005) Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming. *Nucleic Acids Res*, 33 (10), 3263–70.
- Sharp, T.V., Schwemmle, M., Jeffrey, I., Laing, K., Mellor, H., Proud, C.G., Hilse, K. and Clemens, M.J. (1993) Comparative analysis of the regulation of the interferoninducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. *Nucleic Acids Res*, **21** (19), 4483–90.
- Tjaden,B., Saxena,R.M., Stolyar,S., Haynor,D.R., Kolker,E. and Rosenow,C. (2002) Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. *Nucleic Acids Res*, **30** (17), 3732–8.

- Vapnik, V.N. (1995) The nature of statistical learning theory. SpringerVerlag, New York.
- Vogel, J., Bartels, V., Tang, T.H., Churakov, G., Slagter-Jager, J.G., Huttenhofer, A. and Wagner, E.G. (2003) RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. *Nucleic Acids Res*, **31** (22), 6435–43.
- Wagner,E.G. and Simons,R.W. (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol, 48, 713–42.
- Washietl,S., Hofacker,I.L. and Stadler,P.F. (2005) Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A, 102 (7), 2454–9.
- Wassarman,K.M. and Storz,G. (2000) 6S RNA regulates E. coli RNA polymerase activity. *Cell*, **101** (6), 613–23.
- Wassarman,K.M., Zhang,A. and Storz,G. (1999) Small RNAs in Escherichia coli. Trends Microbiol, 7 (1), 37–45.
- Wightman, B., Ha, I. and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. *Cell*, **75** (5), 855–62.
- Yu,H. (2003) SVMC: single-class classification with support vector machines. In Proc. of Int. Joint Conf. on Artificial Intelligence, Acapulco Maxico.
- Yu,H., Han,J. and Chang,K.C.C. (2002) PEBL: positive example-based learning for web page classification using SVM. In *Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery in Databases (KDD02)* pp. 239–248 ACM press.

Supplemental Materials for

"PSoL: A Positive Sample Only Learning Algorithm for Finding Non-coding RNA Genes", by C. Wang, C. Ding, R. Meraz, S. Holbrook.

Contains:

- Table 1: Known ncRNA in E.coli used for training;
- Table 2: Predicted ncRNA in E.coli;
- Figure 1: Schema for the top ranked predicted RNA.
- Figure 2: Structure of the top ranked predicted RNA.
- Figure 3: Schema for the 2nd top ranked predicted RNA.
- Figure 4: Structure of the 2nd top ranked predicted RNA.
- $\bullet\,$  Figure 5: Schema for the 3rd top ranked predicted RNA.
- Figure 6: Structure of the 3rd top ranked predicted RNA.
- Figure 7: Schema for the 4th top ranked predicted RNA.
- Figure 8: Structure of the 4th top ranked predicted RNA.
- Figure 9: Schema for the 5th top ranked predicted RNA.
- Figure 10: Structure of the 5th top ranked predicted RNA.

Table 1. Known ncRNA genes in E.coli used for training dataset.

| Gene                   | Start   | End S   | Stran | d Type          | Reference                   | Gene                 | Start   | End S    | Stran | d Type        | Reference                                  |
|------------------------|---------|---------|-------|-----------------|-----------------------------|----------------------|---------|----------|-------|---------------|--------------------------------------------|
| rrsH                   | 223771  | 225312  | +     | rRNA            | -                           | rvdB                 | 1762737 | 1762804  | -     | sRNA          | (Wassarman et al., 2001)                   |
| rrlH                   | 225759  | 228662  | +     | rRNA            | -                           | rprA                 | 1768396 | 1768500  | +     | sRNA          | (Maidalani <i>et al.</i> 2001)             |
| rrfH                   | 228756  | 228875  | +     | rRNA            | _                           | SroD                 | 1886041 | 1886126  | -     | sRNA          | (Vogel et al = 2003)                       |
| iloV                   | 220700  | 220010  |       | +DNA            |                             | muc A                | 1021000 | 100120   | -     | aDNA          | $(W_{accompan} at al 2001)$                |
| llev                   | 220001  | 220407  | +     | +DNA            | -                           | TyeA                 | 1921090 | 1921330  | Ŧ     | -DNA          | (Wassarman et al., 2001)                   |
|                        | 225500  | 220070  | +     | TRNA            | -                           | гуев                 | 1921188 | 1921308  | -     | SKNA          | (Wassarman <i>et al.</i> , $2001$ )        |
| aspU                   | 228928  | 229004  | +     | tRNA            | -                           | 18092                | 1985862 | 1986021  | -     | SRNA          | (Chen et al., $2002$ )                     |
| $\operatorname{thr} W$ | 262095  | 262170  | +     | tRNA            | -                           | dsrA                 | 2023249 | 2023335  | -     | sRNA          | (Sledjeski <i>et al.</i> , 1996)           |
| $\operatorname{argU}$  | 563946  | 564022  | +     | tRNA            | -                           | IS102                | 2069337 | 2069540  | +     | $_{\rm sRNA}$ | (Chen <i>et al.</i> , $2002$ )             |
| $_{glnX}$              | 695653  | 695727  | -     | tRNA            | -                           | ryeC                 | 2151297 | 2151445  | +     | sRNA          | (Rudd, 1999)                               |
| metU                   | 695887  | 695963  | -     | tRNA            | -                           | ryeD                 | 2151632 | 2151774  | +     | sRNA          | (Rudd, 1999)                               |
| leuW                   | 696186  | 696270  | -     | tRNA            | -                           | ryeE                 | 2165134 | 2165219  | +     | sRNA          | (Wassarman et al., 2001)                   |
| lvsT                   | 779777  | 779852  | +     | tRNA            | -                           | micF                 | 2311104 | 2311196  | +     | sRNA          | (Mizuno $et al., 1984$ )                   |
| valT                   | 779988  | 780063  | +     | tRNA            | -                           | SroE                 | 2638615 | 2638706  | _     | sRNA          | (Vogel $et al., 2003$ )                    |
| serW                   | 925107  | 925194  | -     | t R N A         | _                           | rvfA                 | 2651875 | 2652178  | $\pm$ | SRNA          | (Budd 1999)                                |
| tyrV                   | 1286467 | 1286551 |       | $+ R N \Delta$  |                             | tko1                 | 2680212 | 2689360  | _     | «RNΔ          | (Rives et al. $2001$ )                     |
| eve T                  | 1080027 | 1000010 | -     | +DNA            | -                           | SnoF                 | 2680212 | 20033000 | -     | aDNA          | (Voral et al. 2001)                        |
|                        | 1909937 | 1990010 | -     | +DNA            | -                           | SIOF                 | 2009213 | 2069300  | -     | -DNA          | (Voger et al., 2003)                       |
| giyw                   | 1990065 | 1990141 | -     | trina<br>(DNA   | -                           | SSTA                 | 2753614 | 2/039/0  | +     | SKNA          | (Keller et al., 1996) $(A = b = b = b = b$ |
| asnT                   | 2042571 | 2042646 | +     | tRNA            | -                           | sraD                 | 2812822 | 2812897  | +     | SRNA          | (Argaman <i>et al.</i> , 2001)             |
| proL                   | 2284231 | 2284307 | +     | tRNA            | -                           | csrB                 | 2922178 | 2922537  | -     | sRNA          | (Liu et al., 1997)                         |
| $_{\rm gltW}$          | 2727389 | 2727464 | -     | $\mathrm{tRNA}$ | -                           | gcvB                 | 2940718 | 2940922  | +     | sRNA          | (Urbanowski <i>et al.</i> , 2000)          |
| $_{\rm pheV}$          | 3108383 | 3108458 | +     | tRNA            | -                           | rygA                 | 2974124 | 2974211  | -     | sRNA          | (Rudd, 1999)                               |
| selC                   | 3833849 | 3833943 | +     | tRNA            | -                           | rygB                 | 2974332 | 2974407  | -     | sRNA          | (Rudd, 1999)                               |
| $\operatorname{trpT}$  | 3944581 | 3944656 | +     | tRNA            | -                           | ssrS                 | 3054003 | 3054185  | +     | sRNA          | (Wassarman et al., 2001)                   |
| hisR                   | 3980122 | 3980198 | +     | tRNA            | -                           | rvgC                 | 3054835 | 3054985  | +     | sRNA          | (Wassarman and Storz, 2000)                |
| sokC                   | 16952   | 17006   | +     | sRNA            | (Pedersen and Gerdes, 1999) | SroG                 | 3182586 | 3182734  | _     | sRNA          | (Vogel et al., 2003)                       |
| SroA                   | 75516   | 75608   | _     | sRNA            | (Vogel $et al., 2003$ )     | rvgD                 | 3192767 | 3192916  | -     | sRNA          | (Rivas $et al., 2001$ )                    |
| +44                    | 189712  | 189847  | +     | sRNA            | (Rives $et al = 2001$ )     | sraF                 | 3236015 | 3236203  | $\pm$ | SRNA          | (Altuvia et al 1997)                       |
| 1006                   | 262270  | 262352  | I     | CRNA            | (Sastrom et al. 2001)       | rnnB                 | 3267857 | 3268233  | 1     | CRNA          | (Brown 1000)                               |
| 1000                   | 202210  | 202002  | -     | aDMA            | (Sactrom et al., 2005)      | anoC                 | 2201001 | 2200200  | -     | aDNA          | (Argemen et al. 2001)                      |
| 1001                   | 211019  | 271979  | Ŧ     | aDNA            | (Saetrom et al., 2005)      | sraG                 | 2240010 | 2248225  | +     | aDNA          | (Measurement et al., 2001)                 |
| 1005                   | 303344  | 303394  | -     | SUNA            | (Sattrom et al., 2005)      | rynA                 | 3348218 | 3346323  | +     | SUNA          | $(Wassarman \ et \ at., 2001)$             |
| ffs                    | 475672  | 475785  | +     | SRNA            | (Brown, 1999)               | ryhB                 | 3578554 | 3578647  | -     | SRNA          | (Wassarman <i>et al.</i> , 2001)           |
| SroB                   | 506428  | 506511  | +     | sRNA            | (Vogel $et al., 2003$ )     | IS183                | 3662494 | 3662598  | +     | sRNA          | (Chen et al., $2002$ )                     |
| SroC                   | 685904  | 686066  | -     | sRNA            | (Vogel $et al., 2003$ )     | rdlD                 | 3697765 | 3697828  | +     | sRNA          | (Kawano $et al., 2002$ )                   |
| I003                   | 719883  | 719958  | +     | sRNA            | (Saetrom $et al., 2005$ )   | I004                 | 3766615 | 3766665  | +     | $_{\rm sRNA}$ | (Saetrom $et al., 2005$ )                  |
| rybA                   | 852175  | 852263  | -     | sRNA            | (Wassarman et al., 2001)    | ryiA                 | 3984045 | 3984216  | +     | sRNA          | (Wassarman $et al., 2001$ )                |
| rybB                   | 887199  | 887277  | -     | sRNA            | (Wassarman et al., 2001)    | I209                 | 4006562 | 4006612  | +     | sRNA          | (Saetrom <i>et al.</i> , 2005)             |
| $\operatorname{sraB}$  | 1145812 | 1145980 | +     | sRNA            | (Argaman et al., 2001)      | $\operatorname{spf}$ | 4047479 | 4047587  | +     | sRNA          | (Mller et al., 2002)                       |
| rdlA                   | 1268546 | 1268612 | +     | sRNA            | (Kawano et al., 2002)       | csrC                 | 4048616 | 4048860  | +     | sRNA          | (Wassarman et al., 2001)                   |
| rdlB                   | 1269081 | 1269146 | +     | sRNA            | (Kawano $et al., 2002$ )    | oxvS                 | 4155864 | 4155973  | _     | sRNA          | (Altuvia $et al., 1997$ )                  |
| rdlC                   | 1269616 | 1269683 | +     | sBNA            | (Kawano et al. 2002)        | SroH                 | 4187905 | 4188065  | _     | sRNA          | (Vogel et al 2003)                         |
| rtT                    | 1286289 | 1286459 | _     | «RNΔ            | (Michelsen et al. 1989)     | 1002                 | 4230037 | 4231087  | _     | «RNΔ          | (Sectrom et al 2005)                       |
| ISOGI                  | 1403676 | 1403833 |       | CRNA            | (Chop at al. $2002$ )       | 1002<br>rwi A        | 4275506 | 4251007  |       | CRNA          | $(W_{assarman} at al 2001)$                |
| 10001                  | 1403070 | 1405055 | -     | aDN 4           | (Chen et al., 2002)         | I YJA                | 4270000 | 4270040  | -     | aDNA          | (vvassarman et al. 2001)                   |
| ikeð                   | 1450140 | 1400105 | +     | SUNA            | (Onen et al., 2002)         | 1044                 | 43001/3 | 4300223  | +     | SUNA          | (a + b + b + 2005)                         |
| sokB                   | 1490143 | 1490195 | +     | SKNA            | (Pedersen and Gerdes, 1999) | 1014                 | 4373943 | 4374003  | -     | SKNA          | (Saetrom <i>et al.</i> , $2005$ )          |
| dicF                   | 1647406 | 1647458 | +     | sRNA            | (Bouch and Bouch, 1989)     | 1010                 | 4527911 | 4527961  | +     | sRNA          | (Saetrom $et al., 2005$ )                  |
| I008                   | 1702671 | 1702746 | +     | sRNA            | (Saetrom $et al., 2005$ )   | I007                 | 4626216 | 4626291  | +     | sRNA          | (Saetrom $et al., 2005$ )                  |
|                        |         |         |       |                 |                             |                      |         |          |       |               |                                            |

### References

- Altuvia,S., Weinstein-Fischer,D., Zhang,A., Postow,L. and Storz,G. (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. *Cell*, **90** (1), 43–53.
- Argaman,L., Hershberg,R., Vogel,J., Bejerano,G., Wagner,E.G., Margalit,H. and Altuvia,S. (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol, 11 (12), 941–950.
- Bouch, F. and Bouch, J.P. (1989) Genetic evidence that DicF, a second division inhibitor encoded by the Escherichia coli dicB operon, is probably RNA. Mol Microbiol, 3 (7), 991–994.

Brown, J.W. (1999) The Ribonuclease P Database. Nucleic Acids Res, 27 (1), 314.

- Chen, S., Lesnik, E.A., Hall, T.A., Sampath, R., Griffey, R.H., Ecker, D.J. and Blyn, L.B. (2002) A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. *Biosystems*, **65** (2-3), 157–77.
- Kawano, M., Oshima, T., Kasai, H. and Mori, H. (2002) Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol Microbiol, 45 (2), 333–349.
- Keiler,K.C., Waller,P.R. and Sauer,R.T. (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science, 271 (5251), 990–993.
- Liu, M.Y., Gui, G., Wei, B., Preston, J.F., Oakford, L., Yksel, U., Giedroc, D.P. and Romeo, T. (1997) The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem, 272 (28), 17502–17510.

- Majdalani, N., Chen, S., Murrow, J., John, K.S. and Gottesman, S. (2001) Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol, 39 (5), 1382–1394.
- Michelsen, U., Bsl, M., Dingermann, T. and Kersten, H. (1989) The tyrT locus of Escherichia coli exhibits a regulatory function for glycine metabolism. J Bacteriol, **171** (11), 5987–5994.
- Mizuno, T., Chou, M.Y. and Inouye, M. (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci U S A, 81 (7), 1966–1970.
- Mller, T., Franch, T., Udesen, C., Gerdes, K. and Valentin-Hansen, P. (2002) Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16 (13), 1696–1706.

Pedersen, K. and Gerdes, K. (1999) Multiple hok genes on the chromosome of Escherichia coli. Mol Microbiol, 32 (5), 1090-1102.

- Rivas, E., Klein, R.J., Jones, T.A. and Eddy, S.R. (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol, 11 (17), 1369–73.
- Rudd,K.E. (1999) Novel intergenic repeats of Escherichia coli K-12. Res Microbiol, 150 (9-10), 653-664.
- Saetrom, P., Sneve, R., Kristiansen, K.I., Snove, O., J., Grunfeld, T., Rognes, T. and Seeberg, E. (2005) Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming. *Nucleic Acids Res.*, **33** (10), 3263–70.
- Sledjeski, D.D., Gupta, A. and Gottesman, S. (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. *EMBO J*, **15** (15), 3993–4000.
- Urbanowski, M.L., Stauffer, L.T. and Stauffer, G.V. (2000) The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol, **37** (4), 856–868.
- Vogel, J., Bartels, V., Tang, T.H., Churakov, G., Slagter-Jager, J.G., Huttenhofer, A. and Wagner, E.G. (2003) RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res, 31 (22), 6435–43.
- Wassarman, K.M., Repoila, F., Rosenow, C., Storz, G. and Gottesman, S. (2001) Identification of novel small RNAs using comparative genomics and microarrays. *Genes Dev*, **15** (13), 1637–51.

Wassarman, K.M. and Storz, G. (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell, 101 (6), 613-23.

Table 2. Predicted sRNA genes by PSoL, ranked according to decision values.

| Start            | End              | Len      | Rank | Start   | End     | Len      | Rank       | Start   | End     | Len | Rank       | Start   | End      | Len | Rank | Start   | End                | Len | Rank       |
|------------------|------------------|----------|------|---------|---------|----------|------------|---------|---------|-----|------------|---------|----------|-----|------|---------|--------------------|-----|------------|
| 11996            | 12113            | 117      | 221  | 1061671 | 1061723 | 52       | 360        | 2087280 | 2087360 | 80  | 377        | 3096472 | 3096527  | 55  | 316  | 3920130 | 3920210            | 80  | 162        |
| 57159            | 57279            | 120      | 58   | 1067501 | 1067581 | 80       | 282        | 2088118 | 2088164 | 46  | 250        | 3100920 | 3100981  | 61  | 204  | 3923311 | 3923590            | 279 | 203        |
| 59369            | 59449            | 80       | 299  | 1078395 | 1078475 | 80       | 123        | 2099580 | 2099660 | 80  | 348        | 3136587 | 3136644  | 57  | 131  | 3930552 | 3930792            | 240 | 47         |
| 63314            | 63379            | 65       | 179  | 1108414 | 1108494 | 80       | 410        | 2116596 | 2116652 | 56  | 237        | 3147576 | 3147627  | 51  | 375  | 3938856 | 3938936            | 80  | 264        |
| 77389            | 77549            | 160      | 277  | 1112679 | 1112752 | 73       | 314        | 2135395 | 2135475 | 80  | 122        | 3151488 | 3151528  | 40  | 86   | 3938976 | 3939056            | 80  | 111        |
| 89282            | 89362            | 80       | 283  | 1156967 | 1157042 | 75       | 315        | 2137557 | 2137677 | 120 | 246        | 3154582 | 3154704  | 122 | 118  | 3939096 | 3939381            | 285 | 7          |
| 89522            | 89584            | 62       | 201  | 1160984 | 1161058 | 74       | 406        | 2163593 | 2163640 | 47  | 320        | 3175976 | 3176075  | 99  | 95   | 3941222 | 3941276            | 54  | 175        |
| 113349           | 113394           | 45       | 371  | 1169647 | 1169691 | 44       | 290        | 2183371 | 2183451 | 80  | 12         | 3181429 | 3181509  | 80  | 402  | 3958167 | 3958242            | 75  | 202        |
| 127757           | 127862           | 105      | 55   | 1184867 | 1184947 | 80       | 189        | 2209134 | 2209183 | 49  | 417        | 3184111 | 3184153  | 42  | 313  | 3975411 | 3975491            | 80  | 293        |
| 131470           | 131565           | 95       | 6    | 1195726 | 1195806 | 80       | 234        | 2212794 | 2212836 | 42  | 401        | 3198696 | 3198776  | 80  | 169  | 3988450 | 3988530            | 80  | 249        |
| 164624           | 164680           | 150      | 190  | 1195926 | 1196006 | 100      | 276        | 2213667 | 2213715 | 48  | 157        | 3208274 | 3208372  | 98  | 185  | 3992118 | 3992322            | 204 | 96         |
| 190649           | 190807           | 108      | 139  | 1210652 | 1210772 | 120      | 147        | 2227349 | 2227408 | 59  | 210        | 3215093 | 3213147  | 54  | 3/0  | 3998738 | 3998988<br>4005551 | 230 | 200        |
| 191756           | 191803           | 41       | 70   | 1211030 | 1211710 | 80<br>41 | 126        | 2230798 | 2230646 | 60  | 307        | 3243118 | 3243198  | 200 | 120  | 4005551 | 4005551            | 200 | 209        |
| 192070           | 192730           | 80       | 300  | 1212400 | 1212501 | 80       | 201        | 2234030 | 2234713 | 80  | 403        | 3270316 | 3201801  | 209 | 211  | 4000002 | 4000720            | 80  | 252        |
| 222695           | 222283           | 88       | 171  | 1222081 | 1222701 | 60       | 387        | 2240002 | 2240082 | 80  | 164        | 3310869 | 3310933  | 64  | 238  | 4008485 | 4008505            | 97  | 65         |
| 223458           | 223721           | 263      | 9    | 1236674 | 1236744 | 70       | 394        | 2278553 | 2278602 | 49  | 74         | 3315703 | 3315804  | 101 | 75   | 4014829 | 4014870            | 41  | 82         |
| 225625           | 225709           | 84       | 228  | 1260049 | 1260101 | 52       | 79         | 2302583 | 2302663 | 80  | 419        | 3319562 | 3319642  | 80  | 247  | 4025108 | 4025149            | 41  | 144        |
| 239134           | 239214           | 80       | 366  | 1261148 | 1261199 | 51       | 76         | 2302703 | 2302783 | 80  | 322        | 3320196 | 3320316  | 120 | 63   | 4032083 | 4032147            | 64  | 267        |
| 243429           | 243493           | 64       | 344  | 1278621 | 1278701 | 80       | 198        | 2302943 | 2303063 | 120 | 407        | 3325774 | 3325830  | 56  | 305  | 4032792 | 4033070            | 278 | 33         |
| 245855           | 245911           | 56       | 259  | 1285839 | 1285882 | 43       | 304        | 2317898 | 2318013 | 115 | 167        | 3326431 | 3326554  | 123 | 225  | 4034974 | 4035049            | 75  | 398        |
| 253251           | 253331           | 80       | 331  | 1286601 | 1286711 | 110      | 66         | 2378488 | 2378608 | 120 | 212        | 3352095 | 3352217  | 122 | 85   | 4038266 | 4038426            | 160 | 22         |
| 253371           | 253417           | 46       | 50   | 1294551 | 1294619 | 68       | 180        | 2378648 | 2378692 | 44  | 115        | 3375185 | 3375265  | 80  | 188  | 4049486 | 4049569            | 83  | 26         |
| 263321           | 263430           | 109      | 390  | 1297514 | 1297594 | 80       | 385        | 2389395 | 2389482 | 87  | 28         | 3376336 | 3376455  | 119 | 336  | 4051248 | 4051399            | 151 | 156        |
| 271529           | 271609           | 80       | 245  | 1306799 | 1306879 | 80       | 177        | 2391111 | 2391175 | 64  | 364        | 3377682 | 3377770  | 88  | 133  | 4054049 | 4054129            | 80  | 286        |
| 271649           | 271769           | 120      | 215  | 1308503 | 1308543 | 40       | 200        | 2403382 | 2403462 | 80  | 230        | 3382193 | 3382288  | 95  | 149  | 4055704 | 4055937            | 233 | 49         |
| 274431           | 274475           | 44       | 285  | 1328822 | 1329022 | 200      | 98         | 2404751 | 2404831 | 80  | 409        | 3389993 | 3390044  | 51  | 416  | 4076508 | 4076588            | 80  | 196        |
| 279349           | 279549           | 200      | 101  | 1333183 | 1333263 | 80       | 48         | 2405471 | 2405531 | 60  | 365        | 3398914 | 3398979  | 65  | 92   | 4083452 | 4083546            | 94  | 41         |
| 288436           | 288475           | 39       | 223  | 1333623 | 1333743 | 120      | 242        | 2411202 | 2411282 | 80  | 126        | 3402504 | 3402584  | 80  | 326  | 4095079 | 4095159            | 80  | 217        |
| 289619           | 289699           | 80       | 163  | 1349313 | 1349381 | 68       | 372        | 2428833 | 2428913 | 80  | 287        | 3420880 | 3421009  | 129 | 5    | 4103301 | 4103348            | 47  | 324        |
| 312611           | 312691           | 80       | 260  | 1355224 | 1355304 | 80       | 369        | 2438270 | 2438355 | 85  | 243        | 3424470 | 3424545  | 75  | 412  | 4105001 | 4105081            | 80  | 194        |
| 334336           | 334416           | 80       | 420  | 1360542 | 1360662 | 120      | 112        | 2454882 | 2454962 | 80  | 87         | 3426449 | 3426607  | 158 | 67   | 4115920 | 4116000            | 80  | 368        |
| 440657           | 440723           | 66       | 89   | 1384646 | 1384694 | 48       | 338        | 2459188 | 2459270 | 82  | 32         | 3440158 | 3440205  | 47  | 350  | 4126025 | 4126105            | 80  | 332        |
| 454063           | 454143           | 80       | 205  | 1407107 | 1407267 | 160      | 30         | 2463077 | 2463157 | 80  | 113        | 3450957 | 3451095  | 138 | 174  | 4129937 | 4130017            | 80  | 229        |
| 454223           | 454307           | 106      | 01   | 1410475 | 1410522 | 47       | 213        | 2494755 | 2494835 | 80  | 153        | 3476224 | 3476304  | 45  | 1/4  | 4130097 | 4130146            | 49  | 99         |
| 400740           | 400601           | 100      | 204  | 1439018 | 1439178 | 77       | 04         | 2494900 | 2490027 | 120 | 207        | 3470344 | 3483625  | 40  | 210  | 4150527 | 4155407            | 260 | 279        |
| 460007           | 400020           | 109      | 120  | 1439210 | 1439293 | 52       | 200<br>261 | 2526014 | 2526121 | 117 | 105        | 3483665 | 3483707  | 120 | 30   | 4100899 | 4101108            | 209 | 43         |
| 480382           | 401039           | 46       | 320  | 1486149 | 1486206 | 57       | 201        | 2521450 | 2520131 | 80  | 44         | 3494644 | 3/9/8/2  | 108 | 46   | 4166116 | 4166170            | 54  | 178        |
| 496308           | 496349           | 40       | 114  | 1577536 | 1577607 | 71       | 359        | 2539323 | 2539649 | 326 | 13         | 3516953 | 3517053  | 100 | 105  | 4169385 | 4169545            | 160 | 23         |
| 547621           | 547788           | 167      | 140  | 1617062 | 1617142 | 80       | 155        | 2541678 | 25/1798 | 120 | 207        | 3523917 | 3523007  | 80  | 38/  | 4174757 | 4174887            | 130 | 81         |
| 563753           | 563833           | 80       | 374  | 1620713 | 1620934 | 221      | 280        | 2559048 | 2559128 | 80  | 309        | 3537394 | 3537474  | 80  | 341  | 4177251 | 4177491            | 240 | 1          |
| 573652           | 573732           | 80       | 355  | 1634721 | 1634801 | 80       | 248        | 2588778 | 2588898 | 120 | 121        | 3550156 | 3550236  | 80  | 192  | 4178553 | 4178773            | 220 | 90         |
| 579639           | 579719           | 80       | 227  | 1642577 | 1642625 | 48       | 166        | 2590844 | 2591042 | 198 | 102        | 3571185 | 3571305  | 120 | 94   | 4193727 | 4193860            | 133 | 34         |
| 585266           | 585320           | 54       | 31   | 1643016 | 1643093 | 77       | 251        | 2613951 | 2614031 | 80  | 388        | 3572561 | 3572641  | 80  | 356  | 4197722 | 4197809            | 87  | 53         |
| 596246           | 596304           | 58       | 21   | 1647115 | 1647195 | 80       | 292        | 2642353 | 2642403 | 50  | 226        | 3576487 | 3576531  | 44  | 306  | 4205160 | 4205240            | 80  | 210        |
| 608570           | 608632           | 62       | 333  | 1647315 | 1647356 | 41       | 418        | 2651689 | 2651809 | 120 | 100        | 3598464 | 3598544  | 80  | 318  | 4205360 | 4205675            | 315 | 27         |
| 613252           | 613330           | 78       | 265  | 1671735 | 1671815 | 80       | 183        | 2660201 | 2660281 | 80  | 176        | 3635170 | 3635222  | 52  | 370  | 4207517 | 4207572            | 55  | 152        |
| 631512           | 631562           | 50       | 54   | 1694385 | 1694436 | 51       | 235        | 2687576 | 2687641 | 65  | 117        | 3637640 | 3637691  | 51  | 288  | 4216082 | 4216125            | 43  | 214        |
| 638781           | 638896           | 115      | 18   | 1710632 | 1710712 | 80       | 325        | 2693853 | 2693909 | 56  | 268        | 3645491 | 3645571  | 80  | 297  | 4237519 | 4237599            | 80  | 392        |
| 643240           | 643320           | 80       | 24   | 1735444 | 1735524 | 80       | 302        | 2698073 | 2698153 | 80  | 182        | 3645931 | 3646011  | 80  | 408  | 4237679 | 4237759            | 80  | 353        |
| 663236           | 663275           | 39       | 88   | 1735684 | 1735818 | 134      | 107        | 2702213 | 2702293 | 80  | 342        | 3661207 | 3661327  | 120 | 289  | 4242704 | 4242758            | 54  | 382        |
| 668201           | 668281           | 80       | 68   | 1739276 | 1739387 | 111      | 269        | 2708322 | 2708390 | 68  | 191        | 3667108 | 3667172  | 64  | 361  | 4244048 | 4244128            | 80  | 281        |
| 694228           | 694274           | 46       | 240  | 1753455 | 1753535 | 80       | 184        | 2729228 | 2729508 | 280 | 57         | 3673828 | 3673870  | 42  | 327  | 4244208 | 4244313            | 105 | 108        |
| 696406           | 696486           | 80       | 224  | 1753575 | 1753672 | 97       | 106        | 2751527 | 2751765 | 238 | 8          | 3679660 | 3679741  | 81  | 91   | 4266896 | 4266943            | 47  | 197        |
| 710738           | 710778           | 40       | 109  | 1750799 | 1750420 | 120      | 40         | 2703344 | 2703424 | 80  | 381        | 3081127 | 3081207  | 80  | 414  | 4291968 | 4292010            | 42  | 103        |
| 712075           | 712100           | 80       | 219  | 1777275 | 1777455 | 80       | 307        | 2773092 | 2773772 | 80  | 239        | 3093804 | 3093944  | 160 | 379  | 4327900 | 4327980            | 80  | 105        |
| 753741           | 753861           | 120      | 135  | 1786352 | 1786400 | 57       | 380        | 2775073 | 2776112 | 144 | 272        | 3705404 | 3705024  | 251 | 60   | 4329032 | 4329709            | 103 | 206        |
| 754101           | 754350           | 249      | 19   | 1797016 | 1797136 | 120      | 253        | 2781318 | 2781398 | 80  | 158        | 3713959 | 3714039  | 80  | 393  | 4346372 | 4346452            | 80  | 405        |
| 773875           | 773925           | 50       | 357  | 1819693 | 1819773 | 80       | 295        | 2781478 | 2781558 | 80  | 70         | 3717487 | 3717607  | 120 | 77   | 4349330 | 4349371            | 41  | 337        |
| 780191           | 780241           | 50       | 36   | 1846750 | 1846811 | 61       | 298        | 2815655 | 2815756 | 101 | 29         | 3719728 | 3719808  | 80  | 312  | 4368160 | 4368216            | 56  | 42         |
| 780495           | 780542           | 47       | 59   | 1859566 | 1859646 | 80       | 335        | 2815932 | 2816031 | 99  | 38         | 3723077 | 3723197  | 120 | 128  | 4372022 | 4372102            | 80  | 415        |
| 780965           | 781085           | 120      | 186  | 1860583 | 1860745 | 162      | 60         | 2816346 | 2816445 | 99  | 52         | 3734856 | 3734936  | 80  | 271  | 4403653 | 4403718            | 65  | 193        |
| 802593           | 802652           | 59       | 16   | 1864826 | 1864882 | 56       | 220        | 2866826 | 2866866 | 40  | 395        | 3735016 | 3735076  | 60  | 334  | 4422579 | 4422646            | 67  | 159        |
| 812300           | 812380           | 80       | 168  | 1876934 | 1876981 | 47       | 380        | 2870893 | 2870973 | 80  | 400        | 3748661 | 3748708  | 47  | 317  | 4436195 | 4436235            | 40  | 323        |
| 816120           | 816217           | 97       | 45   | 1891905 | 1891985 | 80       | 173        | 2875731 | 2875891 | 160 | 351        | 3752508 | 3752553  | 45  | 321  | 4460404 | 4460484            | 80  | 345        |
| 819861           | 819941           | 80       | 296  | 1894862 | 1894906 | 44       | 236        | 2876011 | 2876091 | 80  | 397        | 3769781 | 3769858  | 77  | 383  | 4464990 | 4465149            | 159 | 199        |
| 836789           | 836838           | 49       | 396  | 1899699 | 1899819 | 120      | 161        | 2902046 | 2902126 | 80  | 330        | 3771911 | 3772001  | 90  | 340  | 4481898 | 4481958            | 60  | 195        |
| 837278           | 837363           | 85       | 328  | 1899979 | 1900022 | 43       | 301        | 2902246 | 2902406 | 160 | 187        | 3774704 | 3774784  | 80  | 378  | 4483569 | 4483649            | 80  | 241        |
| 921863           | 921943           | 80       | 160  | 1903453 | 1903573 | 120      | 124        | 2907778 | 2907866 | 88  | 127        | 3774904 | 3774976  | 72  | 413  | 4506275 | 4506395            | 120 | 294        |
| 925756           | 925836           | 80       | 389  | 1923043 | 1923082 | 39       | 254        | 2920292 | 2920412 | 120 | 148        | 3782119 | 3782161  | 42  | 349  | 4508151 | 4508208            | 57  | 373        |
| 931603           | 931768           | 165      | 20   | 1927941 | 1928008 | 67       | 150        | 2920452 | 2920507 | 55  | 255        | 3782692 | 3782772  | 80  | 308  | 4516500 | 4516580            | 80  | 213        |
| 962941           | 963001           | 60       | 14   | 1932758 | 1932813 | 55       | 137        | 2941260 | 2941309 | 49  | 172        | 3805775 | 3805855  | 80  | 270  | 4531442 | 4531802            | 360 | 51         |
| 982167           | 982248           | 81       | 62   | 1948596 | 1948676 | 80       | 142        | 2962289 | 2962333 | 44  | 278        | 3809351 | 3809468  | 117 | 15   | 4532282 | 4532362            | 80  | 244        |
| 983650           | 983692           | 42       | 263  | 1957034 | 1957154 | 120      | 110        | 2964109 | 2964160 | 51  | 145        | 3834033 | 3834113  | 100 | 143  | 4549115 | 4549155            | 40  | 154        |
| 900290<br>088950 | 900373<br>988397 | 80<br>60 | 363  | 1000101 | 1000949 | 07<br>51 | 352<br>116 | 2907129 | 2907209 | 160 | 101<br>171 | 3850005 | 30000000 | 120 | 80   | 4000008 | 4000709            | 101 | 37<br>222  |
| 989620           | 980700           | 80       | 347  | 2011126 | 2011201 | 75       | 256        | 3010544 | 3010585 | 41  | 208        | 3865000 | 3865170  | 80  | 258  | 4603362 | 4603449            | 80  | 244<br>343 |
| 1006913          | 1007017          | 104      | 97   | 2050206 | 2050248 | 42       | 134        | 3030925 | 3031035 | 110 | 232        | 3881407 | 3881607  | 200 | 119  | 4604100 | 4604188            | 88  | 411        |
| 1019326          | 1019446          | 120      | 104  | 2065953 | 2066033 | 80       | 319        | 3053520 | 3053582 | 62  | 232        | 3881727 | 3881887  | 160 | 211  | 4608862 | 4608915            | 53  | 71         |
| 1019526          | 1019583          | 57       | 262  | 2066393 | 2066513 | 120      | 132        | 3069314 | 3069394 | 80  | 25         | 3882531 | 3882655  | 124 | 11   | 4609700 | 4609900            | 200 | 181        |
| 1031265          | 1031312          | 47       | 231  | 2076526 | 2076606 | 80       | 266        | 3071761 | 3071921 | 160 | 129        | 3906044 | 3906127  | 83  | 275  | 4628141 | 4628221            | 80  | 404        |
| 1050946          | 1051020          | 74       | 303  | 2085140 | 2085260 | 120      | 170        | 3079704 | 3079756 | 52  | 93         | 3911346 | 3911408  | 62  | 138  | 4630705 | 4630752            | 47  | 358        |



Figure 1: The schema of the first ranked prediction. The methods are indicated on the left side.



Figure 2: The structure of the first ranked prediction (based on the sequence on the forward strand)



Figure 3: The schema of the second ranked prediction



Figure 4: The structure of the second ranked prediction (based on the sequence on the forward strand).



Figure 5: The schema of the third ranked prediction



Figure 6: The structure of the third ranked prediction (based on the sequence on the forward strand).



Figure 7: The schema of the fourth ranked prediction



Figure 8: The structure of the fourth ranked prediction (based on the sequence on the forward strand).



Figure 9: The schema of the fifth ranked prediction



Figure 10: The structure of the fifth ranked prediction (based on the sequence on the forward strand).