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ABSTRACT
Motivation: Small non-coding RNA (ncRNA) genes play important
regulatory roles in a variety of cellular processes. However, detection
of ncRNA genes is a great challenge to both experimental and compu-
tational approaches. In this study, we describe a new approach called
positive sample only learning (PSoL) to predict ncRNA genes in the E.

coli genome. Although PSoL is a machine learning method for classifi-
cation, it requires no negative training data, which, in general, is hard
to define properly and affects the performance of machine learning
dramatically. In addition, using the support vector machine (SVM) as
the core learning algorithm, PSoL can integrate many different kinds
of information to improve the accuracy of prediction. Besides the app-
lication of PSoL for predicting ncRNAs, PSoL is applicable to many
other bioinformatics problems as well.
Results: The PSoL method is assessed by 5-fold cross-validation
experiments which show that PSoL can achieve about 80% accuracy
in recovery of known ncRNAs. We compared PSoL predictions with
five previously published results. The PSoL method has the highest
percentage of predictions overlapping with those from other methods.
Contact: srholbrook@lbl.gov

1 INTRODUCTION
RNA molecules are endowed with extraordinary capacities due
to their intrinsic conformational versatility and catalytic abilities.
However, their potentials have mostly remained hidden fromatten-
tion until recently through the discoveries of non-coding RNA
(ncRNA) genes. In bacteria, ncRNAs have been found to be invol-
ved in the control of transcription (Wassarman and Storz, 2000),
RNA processing (Wassarmanet al., 1999), RNA stability (Masse
and Gottesman, 2002), mRNA translation (Altuvia and Wagner,
2000), and even protein degradation (Gillet and Felden, 2001) and
translocation (Keenanet al., 2001). Therefore, ncRNAs play import-
ant roles in a variety of cellular processes and correspondingly,
efforts to identify the whole set of ncRNAs and then to elucidate
their functions are becoming more and more prominent.

However, it is a big challenge to identify the whole set of ncRNA
genes in a genome. Most ncRNAs are small and non-susceptibleto
frame-shift and non-sense mutations, which makes it very difficult
to detect using routine biochemical and genetic methods (Hersh-
berg et al., 2003). In addition, ncRNAs have varied stability and
are expressed under a variety of environmental and physiological
conditions. Therefore, methods such as whole genome microar-
rays (Tjadenet al., 2002) and the whole genome cloning method
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(Vogel et al., 2003) are unlikely to fully characterize all ncRNA
genes in a genome. The development of computational methodsfor
efficiently finding ncRNA genes in genomic sequences has proven
difficult. Unlike protein genes, ncRNA genes lack clear endpoints,
vary in size, and have few common statistical features. Thisposes
a great challenge to computational approaches. Despite thediffi-
culties, great efforts have been devoted to predict ncRNA genes
by exploring different aspects of properties about known ncRNA
genes. Evolutionary conservation of secondary structuresprovi-
des compelling evidence for biologically relevant RNA function;
thus comparative genomics approaches are particularly attractive
for ncRNA gene prediction. In a study by Rivaset al. (2001), pair
stochastic context free grammars were exploited to modeling pat-
terns of co-variation in sequence alignment from related genomes.
The program RNAz developed by Washietlet al. (2005) basically
combines structural conservation and thermodynamical stability of
RNA secondary structures in multiple sequence alignments to pre-
dict functional RNA structures including ncRNA. Functional sites
(i. e. promoter and terminator) are required in ncRNA gene expres-
sion. Just as one can reach the melon by following the vine, itis
possible to use the predicted signals to approach the boundaries of
ncRNA genes. Chenet al. (2002) pinpointed ncRNA genes with
genomic positions of promoters and terminators, which werepre-
dicted based on profile-based methods. The nucleotide composition
of known ncRNA genes has been tested to search for discriminative
variables between primary sequences of ncRNA genes and interge-
nic regions in bacterial genome sequence. However, no particular
measure stands out to be very discriminative. The combination of
some measures such as k-mer (i.e. the usage k nt words) usage might
provide a certain level of predictive capability. In addition, different
measures often examine different aspects of an actual gene,all of
which may complement each other. Therefore, combining different
predictive features is highly likely to yield a more accurate predic-
tion. The integrated strategy was initially used to identify ncRNA
genes inE. coli by Carteret al. (2001). Selected discriminative
base composition measures and calculated minimum free energies
of folding (MFE) were used to train a neural network to distin-
guish ncRNA from other intergenic sequences. However, lessthan
ten percent of all predictions are shared among different methods
above (Hershberget al., 2003), suggesting that some computational
ncRNA gene-finding methods are not highly successful.

We approach the problem of computational prediction of ncRNA
genes using a single-class discriminative machine-learning algo-
rithm. Machine-learning involves training a prediction algorithm
with knowledge derived from already available data and applying
this knowledge to prediction. For this ncRNA prediction problem,
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we try to train a support vector machine (SVM) algorithm (Vapnik,
1995) to distinguish ncRNA genes from intergenic sequencesbased
on statistical differences between biologically relevant, computable
representations of these sequences. In general, an SVM is used as
a discriminative method to learn a decision boundary from a set of
existing examples that can generalize to unseen examples. The per-
formance of an SVM highly depends on the training data set which
should consist of examples from all classes to be learned, and have
as few misclassifications as possible. However, in many computa-
tional biology problems, there are only a limited number of positive
(desired) training examples available and the negative examples are
difficult to define appropriately.

To overcome the lack of appropriate negative training samples, we
developed a new approach called the positive sample only learning
(PSoL) algorithm. The PSoL algorithm defines the first set of nega-
tive examples by maximizing both the distances between negative
sample points to the known positive sample points and the distances
among negative samples points simultaneously, and then refines the
negative data iteratively using an SVM algorithm based on current
positive and negative samples until no additional negativesamples
can be found according to pre-determined rules. By doing so,a deci-
sion boundary is updated iteratively from far away to nearbypositive
samples, achieving high specificity. In this manuscript we detail the
algorithm and apply this approach to the prediction of ncRNAgenes
in E. coli.

2 MATERIALS AND METHODS

2.1 Transformation of biological sequence to feature
vectors

The M52 version of theE. coli K-12 genome sequence (Blattner
et al., 1997) was used to compile a database of ncRNA and non-
annotated sequences. The well-characterized ncRNA sequences of
E. coliwere collected based on a literature search (3 rRNA, 20 tRNA
and 69 known ncRNA genes, see Supplemental Material Table 1).
The sequences of these RNA molecules served as positive examples
from which we derived parameters for machine learning. The ’non-
coding’, or intergenic sequences were obtained by removingall
protein and known functional RNA coding regions from the genome
along with a buffer of 50 nucleotides on both the5′ and3′ sides so
as to remove possible promoter, terminator and other untranslated
control elements. Sequences in both strands were removed when
there was a protein or RNA coding region on either strand. Each
RNA or non-annotated intergenic sequence was then divided into
sequence windows of 80 nucleotides with a 40-nucleotide overlap
between windows (i.e. each window slides 40 nucleotides along the
sequence). Any window of< 40 nucleotides was excluded from the
study. A total of 5909 windows from each strand (11818 total)were
partitioned from the non-coding sequences, while 321 unique RNA
sequence windows were generated from the known RNA sequences
(after removing redundant RNAs).

Each window was transformed into a feature vector consisting of
sequence statistics, the MFE and similarity measurement between
related genomes. Sequence statistics were the counts of indivi-
dual nucleotide (A, C, G, T), dimer (AA, AC· · · TT) and trimer
(AAA, AAC · · · TTT) in each window. The conservation of the
sequence of a window was simply represented by the highest bits
score with WU-BLAST(W = 4) between a sequence and the geno-
mic sequence of a reference species. The three reference species are

Salmonella typhimurium LT2 (access numberNC 003197), Sal-
monella typhi CT18 (access numberNC 003198), andSalmonella
typhi Ty2 (access numberNC 004631). The MFE for each win-
dow was calculated using the program RNAfold (Washietlet al.,
2005) with default parameters. All values were then normalized by
dividing by the size of window.

2.2 Feature selection
A total of 88 possible features was generated from the feature
extraction method described above. In general, too many features
often degrade the performance of the discriminant method byover-
fitting the training data. Therefore, we picked a small number of
features and discard the rest. The most common feature selection
involves computing thet-statistic test (for two-class problems) or
F -statistic (for multi-class problems) on the class-conditional dis-
tributions. Then the features were ranked according to their scores.
Those most highly ranked features were then selected.

Both t-statistics andF -statistics assume that for each class, the
data follow a normal distribution. In reality, this assumption is
not always correct. For this reason, we used aL1 distance metric
between two distributionsp, q:

dL1
(p, q) =

X

s

|ps − qs|.

wheres is summed over different states. This metric can be viewed
as a simplified version of the symmetrized Kullback-Leiblerdiver-
gence (Kullback and Leibler, 1951):dKL(p, q) =

P

s
(ps −

qs)log(ps/qs) =
P

s
|ps − qs| ∗ |log(ps/qs)|. Sincelog(x) is a

very slow changing function, we ignore it. TheL1 distance has an
intuitive interpretation. If we plot the probability density distribu-
tion curves for two different classes, theL1 distance is the total area
sum of the difference between the two curves (see Figs. 1-3).The
most discriminant features should have the largest differences on
these class-conditional distributions.

TheL1 ranking does not require the underlying data to follow a
particular distribution. When the class-conditional distributions are
Gaussian, the ranked orders based ont-statistics and onL1 distance
are very similar.

2.3 Learning from partially labeled data
Discriminative machine learning algorithms require labeled data
during the training phase. The windows derived from previously
identified ncRNA genes were labeled as the positive (+) data.We
were trying to distinguish putative ncRNA genes from intergenic
sequences. Intergenic sequences contain positive examples (puta-
tive ncRNAs) as well as negative examples (sequences that donot
encode putative ncRNAs). Therefore, we considered the intergenic
sequences to be unlabeled data. Thus our problem became learning
from a positively-labeled-only dataset.

2.4 Positive samples only learning
In this problem, we have two types of data: (1) positive data samp-
les and (2) the unlabeled data set, which contains both positives
and negatives, and generally much more data than the positive data
samples. The goal of PSoL is to predict the positives in the unlabeled
data.

PSoL is a challenging problem because there are no negative data.
The usual discriminative methods, which require both positive and
negative samples for training, cannot be applied to this problem
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directly. In our earlier approach (Carteret al., 2001), we first took
random samples from the unlabeled data and assumed they were
negative data. This negative data set plus the true positivedata set
were used for training the discriminant decision function between
the positive and the negative data. This approach is reasonably effec-
tive for RNA gene prediction (Carteret al., 2001) since there are
many more negatives than positives in the unlabeled sequences.

However, some of the “negative samples” in training the deci-
sion function could in fact be positives embedded in the unlabeled
data. These wrongly assumed “negative samples” could tilt the deci-
sion boundary in an unpredictable way and thus affect the decision
boundary significantly.

The key to the success of PSoL is to generate a negative trai-
ning set without contamination from those ”positives” embedded in
the unlabeled data. In this paper, we describe a more sophisticated
method to determine the negative training set. The basic spirit of
this method has appeared previously (Yuet al., 2002; Yu, 2003; Li
and Liu, 2003; Liuet al., 2002).

The method first identifies a small number of data points in the
unlabeled data set that are very far away from the positive training
data set. In this way, we minimized the possibility of those picked
data points to be positive. In addition, we minimized the redundancy
in those picked data points by maximizing their mutual distances to
achieve a better representativeness for negative data.

Given the small initial negative set, we expanded them in multi-
ple steps, each time picked more data from the currently unlabeled
set, using a criteria that they are far-away from the positive training
set and close to the current negative set. (The decision function of
an SVM gives a convenient measure for the distances to the posi-
tives and to the negatives). The negative training set builtup in
this way will be less contaminated by the positives embeddedin
the unlabeled dataset.

Once this negative training set is built, we haveN : current nega-
tive data set,U : remaining unlabeled data set andP : positive
data set. The process of predicting positives from the remaining
unlabeled dataset is the same as in the two-class prediction.

2.5 Initial negative set selection
2.5.1 Maximum distance minimum redundancy negative set.For
the initial negative set, we selected from the unlabeled setm data
points that are (1) most dissimilar from the positive setP and (2)
least redundant among themselves. We call this maximum distance
- minimum redundancy (MDMR) set (Ding and Peng, 2005).

We first defined the distance between a single data point and the
positive set,d(xi, P ), as the minimum Euclidean distance between
xi andP :

d(xi, P ) = min
xj∈P

‖xi − xj‖ (1)

The maximum distance negative set was constructed by selecting the
initial negative setN from the unlabeled set U such that the distance
betweenN andP was maximized:

max
N⊂U

d(N,P ), d(N, P ) =
X

x∈N

d(x,P ) (2)

This optimization is trivially solved by picking theN points with
largest distanced(xi, P ). However, often the chosen set has many
members close to each other and the space represented byN is nar-
row. From the viewpoint of learning, we may say that there is a
certain redundancy inN . To reduce the redundancy, we added a

second requirement that maximizes the distance among data points
in N :

max
N⊂U

d(N, N), d(N, N) =
X

xi,xj∈N

d(xi, xj) (3)

To satisfy these two criteria simultaneously, we maximize:

max
N⊂U

[d(N, N) · d(N, P )] (4)

The exact solution of Eq.(4), however, is NP hard. We proposethe
following simple approximate algorithm that is efficient and gives
good results in practice.

2.5.2 Forward incremental selection algorithm.The algorithm
first selects a point according to Eq.(2). The rest ofN is chosen
incrementally. Suppose we already have several points in the cur-
rent negative setN ; the new pointxi is selected based on maximum
dissimilarity to the positive set:

max
xi∈(U−N)

d(xi, P ) (5)

And the maximum distance to the current set.

max
xi∈(U−N)

X

xj∈N

d(xi, xj) (6)

Now Eq.(5) is an exact solution to Eq.(2) and Eq.(6) in an approxi-
mate solution to Eq.(3). As in Eq.(4) these two criteria are combined
into one:

max
xi∈(U−N)

[d(xi, P ) ·
X

xj∈N

d(xi, xj)] (7)

This can be solved by a simple linear search. Once the specified size
of N is reached, the algorithm is terminated and we set the initial
negative training setNtrain = N .

2.6 Negative set expansion
Given an initial negative set, the PSoL method gradually expands
the negative set by classifying more and more unlabeled datapoints
as negative. This is done iteratively using a two-class SVM.At each
iteration, an SVM is trained; the decision function values for all
remaining unlabeled points are computed, and some of them are
classified as negative. Thus|N | is increased and|U | is decreased at
each step.

At the stop point,N contains the negative training set andU con-
tains the remaining unlabeled dataset. A final SVM is trained. Based
on this, a portion of those inU − N are classified as positive; the
remaining ones inU −N are classified as ”undecided”.

2.6.1 Controlled stepwise expansionGiven the current negative
training setNtrain and the current unlabeled setU , we perform
negative set expansion. We begin by training an SVM on the data
P +Ntrain to obtain a large margin decision boundary. The support
vectors inNtrain for this SVM are denotedNsv. All objects in the
currently unlabeled setU are tested against the SVM.

We classify unlabeled data points as negative in a conservative
and controlled fashion. At an iteration, once the SVM is trained,
each unlabeled point will have an decision valuef(xi). Normally, a
point xi is classified as negative iff(xi) < 0. To insure the quality
of the negative set, we build a safety marginh > 0 by requiring

f(xi) ≤ −h, (8)

for xi to belong to the negative set. We typically seth = 0.2.
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Besides the safety margin, we also control the size of the newly
predicted negative samplesNpred at each step by setting

Npred = {xi | i ≤ r|P | andf(xi) ≤ −h} (9)

wherer is set to be 3 in most of our experiments.This size con-
trol is necessary because the size of unlabeled data samplescan be
huge compared to that of the positive samples. Therefore thenum-
ber of newly predicted negative samples is possibly very large in
each expansion.

OnceNpred are selected, they are added to the current negative
set: N ← N + Npred and they are subtracted from the current
unlabeled set:U ← U −Npred

2.6.2 SVM training In SVM training, it is well-known that if the
sizes of the classes differ substantively, say1 : 5, SVM training
typically converges to a solution where all data points in the smaller
class are classified as belonging to the larger class.

To overcome this problem, we maintain a current negative trai-
ning set Ntrain whose size is comparable to|P |. At the first
iteration, Ntrain = N . Later on, after each SVM, the support
vectors on the negative sideNsv are used to represent the existing
negative setN . This is combined with the newly predicted negatives
to give the negative training dataset for next round of SVM training:
Ntrain = Npred + Nsv. Since|Npred| ≤ r|P | , the size ofNtrain

is controllable and is maintained in the range where the SVM can
be successfully trained with high accuracy.

2.6.3 Stopping criteria of negative expansionNegative set
expansion is repeated until the size of the remaining unlabeled set
goes below a predefined number, typically about 3 times of the
number of expected positives in the unlabeled set. At this last step,
the unlabeled data points with the largest positive decision function
values are declared as the positives.

2.7 SVM parameter selection
We used the libsvm (Fanet al., 2005) to perform SVM training and
predicting. A radial basis function (RBF) kernel was used. There are
two parameters for the RBF kernel:γ, which determines the effec-
tive range of distances between points, andC, which determines the
trade-off between margin maximization and training error minimi-
zation. The parameter search is carried out with cross validation. We
used a grid-search approach to search for a pair of C andγ with the
best performance in cross validation.

It should be emphasized that we fixed parameters for the entire
PSoL, i.e., parameters for training the SVM were fixed for each ite-
rative step in the negative set expansion. If we let parameters change
during the negative expansion, the data would be overfit and poorer
performance in cross validation would result.

3 RESULTS

3.1 Feature selection
For each feature, distributions for positive and unlabeledclasses
were computed, from whicht-score andL1 score were derived.
Detailed distributions for 3 features are shown in Figures 1- 3. The
figures show that distributions follow the normal distributions by
varying degrees and the validity oft-score becomes questionable.
Since theL1 measure does not require the underlying data to follow
a particular distribution, theL1 measure can capture the difference.
We decided to use 30 features (A, C, G, T, AA, AT, CC, CG, GG,

Fig. 1. Distributions (histogram) of normalized bits score for both positive
and unlabeled classes onSalmonella typhiTy2 genome sequence (extracted
from the best HSP in WU-BLAST search). Both distributions deviate sub-
stantially from normal distribution; the sample means shift away from the
peak regions. Thus the use oft-score is questionable.L1 score can capture
the difference in distributions.

Fig. 2. Distributions of normalized G content for both positive andunla-
beled classes. Botht-score andL1 score can capture the difference in
distributions.

GT, TA, TT, AAA, AAT, ATA, ATT, CCG, CGG, GCC, GGC, GGG,
GGT, TAT, TGG, TTA, TTT, MFE, TyphiCT18, TyphiTy2, and
Typhi LT2) with highestL1 scores.

3.2 The 5-fold cross validation
In order to calibrate the performance of PSoL on the ncRNA data,
we carried out a 5-fold cross validation. Briefly, the positive data
were randomly divided into 5 subsets of approximately equalsizes.
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Fig. 3. Distributions of normalized GGT content for both positive and unla-
beled classes.t-score can not capture the difference in distributions while
L1 score can.

We ran the validation process 5 times; each time, we merged 4 sub-
sets into positive training data and merged the remaining subset into
unlabeled data. We ran the PSoL procedure described above and
counted the number of positive samples embedded in the unlabe-
led data which remain to be ”unlabeled”. Figure 4 shows the results
for 5 independent 5-fold cross validation experiments. From those
curves, it is apparent that the embedded 64 (321/5) known positives
are mostly present in the remaining unlabeled samples as negative
expansion proceeds, suggesting that the negative set are not conta-
minated by the positives. This validates our design of the negative
set expansion. When the negative expansion stops at|U | = 1000
(1000 samples predicted to be positive), about 80% recoveryrate is
achieved (see Figure 4). The optimal parameters areC = 1000 and
γ = 0.04

ROC curve analysis was carried out to further assess the per-
formance of PSoL. A total of 321 negative control samples
were generated by shuffling each positive sample window once
using the program SHUFFLE in Sean Eddy’s Squid toolbox
(http://hmmer.wustl.edu/) to randomize the sequence while perser-
ving mono- and di-nucleotide composition. The negative samples
were marked and put into an unlabeled dataset to do a 5-fold cross
validation experiement as described above. The true positive rate
and false positive rate were then calculated based on those known
positive windows and those negative windows generated by shuff-
ling. The ROC curve of this analysis is shown in Figure 5. When
the negative expansion stops at|U | = 1000 (1000 samples pre-
dicted to be positive), the false positive rate is 6±1 %. Using true
positives and true negatives only (igorning the unlabeled category),
the averageQα (average of the percentage of correctly predicted
positive windows and the percentage of correctly predictednegative
windows) (Baldiet al., 2000) of the 5-fold cross validation experi-
ment is 87.3%. We note that this type of estimation of false positive
rate can be automatically computed in PSoL and used to help judge
when to terminate the process.
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Fig. 4. 5-fold cross validation results. Each curve presents the percentage
of correctly recovered positives. We run five 5-fold CV experiments with
different random partitions of the positive data. The horizontal coordinate
denotes the number of unlabeled samples left after each negative expansion.
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Fig. 5. ROC curves of 5-fold cross validation experiment. Each curve
represents the result of one single run of the experiment.

3.3 Prediction
Using the best parameters C andγ from the 5-fold cross-validation
experiment, we ran PSoL with all positive data and predicted1000
windows. This choice is based on the observation that when the
number of remaining unlabeled windows is close to 1000, the curves
in Fig.4 show a sharp downturn. Since many of these predictedwin-
dows were consecutive, we then merged windows that overlapped
each other into one. The predicted 1000 windows were assemb-
led into 420 independent RNA sequence segments (details listed in
Supplemental Material Table 2).

One of the difficulties in computational prediction of ncRNA
genes is the lack of benchmark data to validate the method. Expe-
rimental approaches are expensive and time-consuming, therefore
only a limited number of predictions were subject to verification
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Fig. 6. Percentage of PSoL predictions overlapping with other methods ver-
sus decision values. The solid line shows the sum of percentage overlapping
with all other 5 methods. The dash line shows the percentage overlapping
with Affy result.

using Northern blots or RT-PCR. There are also additional dra-
wbacks to such approaches. Since ncRNA expression may vary
according to environmental and physiological conditions,some
authentic ncRNA genes might not be detected under experimental
conditions. In this study, we compared our predictions to results
from previous work. We argued that if our results have more agree-
ments with other studies, that would be a validation of our method.
The data used in our comparison were predicted by methods which
are listed below.

Abbrev. Methods Reference

Affy microarray experiments (Tjadenet al., 2002)
QRNA stochastic context free grammars (Rivaset al., 2001)
IBIS promoter and terminator prediction (Chenet al., 2002)
bGP boosted genetic programming (Saetromet al., 2005)
NNs neural networks (Carteret al., 2001)

The results of pairwise comparison are listed in Table 1. Note
that a predicted ncRNA gene from one method could overlap with
2 predicted ncRNA genes from another method (see Supplemental
Materials figures). In general, PSoL has the largest overlapwith
other methods. This can be seen clearly from row or column sums.
The greater overlap of PSoL with Affy is significant since Affy is the
only experimentally based method which results are more reliable.

SVM function values can be used to measure the confidence of
prediction. In Fig.6 we show the percentage agreements. It is clear,
as the decision values increases, the percentage agreements increa-
ses. This suggests that predictions with higher decision values are
more likely to be true positives. The rank of each predictionbased
on its decision value is provided in Supplemental Material Table 2.
The secondary structures and their genome schema for the top5
predictions are also provided in the supplemental data.

Fig. 7. The length distribution of predicted ncRNA genes and known
ncRNA genes (tRNA and rRNA genes are not included).

3.4 Comparison of the statistics of predictions from
different methods

Currently, there is no consensus as to the characteristics of an
ncRNA gene. In this study, we examined the distribution of length,
GC-content, and MFE (minimum free energy) for predictions from
different methods mentioned above, as shown in Figures 7, 8,9.
Methods based sequence statistics such as NNs, bGP and PSoL
predict more short ncRNA genes. There is less bias in length of
prediction from Affy, QRNA and IBIS when compared to the dis-
tribution of length of known ncRNA genes. The overall GC content
is 50.8% and 40.3% in theE. coli K12 genome and in the interge-
nic regions, respectively. It appears that NNs, bGP and PSoLpick
up prediction with slightly higher GC content than the otherthree
methods.

Currently MFE is commonly used as the major predictor for
ncRNA gene repdictions. Three out of six methods (PSoL, NNs and
bGP) utilize MFE as a prediction parameter. However, as shown in
Figure 9, only a small fraction of both known ncRNA genes and
predictions from all methods has a very low normalized MFE, sug-
gesting that MFE can not be used as the only predictor of an ncRNA
gene.

4 SUMMARY
In summary, the PSoL algorithm addresses two significant concerns
in machine learning for biological systems:(1) the uncertainty of
the negatives or the lack of negatives, and(2) the overwhelming
majority of unlabeled data relative to known positives. This situation
is quite common in many bioinformatics problems. We believeour
method could provide an effective prediction tool in these difficult
situations.

We tested this technique on the prediction of ncRNA genes in
theE.coli genome sequence solely based on known functional RNA
molecules. The 5-fold cross-validation experiments show that PSoL
has a recovery rate of 80%. When we compare our predictions with
results from previous studies, we find that our prediction has the
most overlap with other results, especially with the experimental
microarray data, Affy, suggesting the success of this technique.
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Table 1. Pairwise overlap between ncRNA prediction methods. We listthe number and percentage (in parenthesis) of predictions by the method in the top
row overlapping with those by the method in the first column.

Affy QRNA IBIS NNs bGP PSoL row sum

Affy - 40 (16.1) 41 (20.1) 69 (19.9) 54 (18.8) 90 (21.4) 294 (96.3)
QRNA 40 (12.8) - 33 (16.2) 35 (10.1) 23 (8.0) 59 (14.0) 190 (61.1)
IBIS 41 (13.1) 37 (14.9) - 38 (11.0) 46 (16.0) 48 (11.4) 210 (66.4)
NNs 69 (22.0) 36 (14.5) 40 (19.6) - 101 (35.2) 149 (35.5) 395 (126.8)
bGP 42 (13.4) 18 (7.3) 37 (18.1) 77 (22.3) - 90 (21.4) 264 (82.5)
PSoL 92 (29.4) 55 (22.2) 49 (24.0) 149 (43.1) 115 (40.1) - 460 (158.8)

Column Sum 284 (90.7) 186 (75) 200 (98) 368 (106.4) 339 (118.1) 436 (103.7)

Fig. 8. The GC content distribution of predicted ncRNA genes and known
ncRNA genes (tRNA and rRNA genes are not included).
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• Table 1: Known ncRNA in E.coli used for training;

• Table 2: Predicted ncRNA in E.coli;

• Figure 1: Schema for the top ranked predicted RNA.

• Figure 2: Structure of the top ranked predicted RNA.

• Figure 3: Schema for the 2nd top ranked predicted RNA.

• Figure 4: Structure of the 2nd top ranked predicted RNA.

• Figure 5: Schema for the 3rd top ranked predicted RNA.

• Figure 6: Structure of the 3rd top ranked predicted RNA.

• Figure 7: Schema for the 4th top ranked predicted RNA.

• Figure 8: Structure of the 4th top ranked predicted RNA.

• Figure 9: Schema for the 5th top ranked predicted RNA.

• Figure 10: Structure of the 5th top ranked predicted RNA.
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Table 1. Known ncRNA genes in E.coli used for training dataset.

Gene Start End Strand Type Reference Gene Start End Strand Type Reference
rrsH 223771 225312 + rRNA - rydB 1762737 1762804 - sRNA (Wassarman et al., 2001)
rrlH 225759 228662 + rRNA - rprA 1768396 1768500 + sRNA (Majdalani et al., 2001)
rrfH 228756 228875 + rRNA - SroD 1886041 1886126 - sRNA (Vogel et al., 2003)
ileV 225381 225457 + tRNA - ryeA 1921090 1921338 + sRNA (Wassarman et al., 2001)
alaV 225500 225575 + tRNA - ryeB 1921188 1921308 - sRNA (Wassarman et al., 2001)
aspU 228928 229004 + tRNA - IS092 1985862 1986021 - sRNA (Chen et al., 2002)
thrW 262095 262170 + tRNA - dsrA 2023249 2023335 - sRNA (Sledjeski et al., 1996)
argU 563946 564022 + tRNA - IS102 2069337 2069540 + sRNA (Chen et al., 2002)
glnX 695653 695727 - tRNA - ryeC 2151297 2151445 + sRNA (Rudd, 1999)
metU 695887 695963 - tRNA - ryeD 2151632 2151774 + sRNA (Rudd, 1999)
leuW 696186 696270 - tRNA - ryeE 2165134 2165219 + sRNA (Wassarman et al., 2001)
lysT 779777 779852 + tRNA - micF 2311104 2311196 + sRNA (Mizuno et al., 1984)
valT 779988 780063 + tRNA - SroE 2638615 2638706 - sRNA (Vogel et al., 2003)
serW 925107 925194 - tRNA - ryfA 2651875 2652178 + sRNA (Rudd, 1999)
tyrV 1286467 1286551 - tRNA - tke1 2689212 2689360 - sRNA (Rivas et al., 2001)
cysT 1989937 1990010 - tRNA - SroF 2689213 2689360 - sRNA (Vogel et al., 2003)
glyW 1990065 1990141 - tRNA - ssrA 2753614 2753976 + sRNA (Keiler et al., 1996)
asnT 2042571 2042646 + tRNA - sraD 2812822 2812897 + sRNA (Argaman et al., 2001)
proL 2284231 2284307 + tRNA - csrB 2922178 2922537 - sRNA (Liu et al., 1997)
gltW 2727389 2727464 - tRNA - gcvB 2940718 2940922 + sRNA (Urbanowski et al., 2000)
pheV 3108383 3108458 + tRNA - rygA 2974124 2974211 - sRNA (Rudd, 1999)
selC 3833849 3833943 + tRNA - rygB 2974332 2974407 - sRNA (Rudd, 1999)
trpT 3944581 3944656 + tRNA - ssrS 3054003 3054185 + sRNA (Wassarman et al., 2001)
hisR 3980122 3980198 + tRNA - rygC 3054835 3054985 + sRNA (Wassarman and Storz, 2000)
sokC 16952 17006 + sRNA (Pedersen and Gerdes, 1999) SroG 3182586 3182734 - sRNA (Vogel et al., 2003)
SroA 75516 75608 - sRNA (Vogel et al., 2003) rygD 3192767 3192916 - sRNA (Rivas et al., 2001)

t44 189712 189847 + sRNA (Rivas et al., 2001) sraF 3236015 3236203 + sRNA (Altuvia et al., 1997)
I006 262270 262352 - sRNA (Saetrom et al., 2005) rnpB 3267857 3268233 - sRNA (Brown, 1999)
I001 271879 271979 + sRNA (Saetrom et al., 2005) sraG 3308866 3309039 + sRNA (Argaman et al., 2001)
I005 303544 303594 - sRNA (Saetrom et al., 2005) ryhA 3348218 3348325 + sRNA (Wassarman et al., 2001)

ffs 475672 475785 + sRNA (Brown, 1999) ryhB 3578554 3578647 - sRNA (Wassarman et al., 2001)
SroB 506428 506511 + sRNA (Vogel et al., 2003) IS183 3662494 3662598 + sRNA (Chen et al., 2002)
SroC 685904 686066 - sRNA (Vogel et al., 2003) rdlD 3697765 3697828 + sRNA (Kawano et al., 2002)
I003 719883 719958 + sRNA (Saetrom et al., 2005) I004 3766615 3766665 + sRNA (Saetrom et al., 2005)

rybA 852175 852263 - sRNA (Wassarman et al., 2001) ryiA 3984045 3984216 + sRNA (Wassarman et al., 2001)
rybB 887199 887277 - sRNA (Wassarman et al., 2001) I209 4006562 4006612 + sRNA (Saetrom et al., 2005)
sraB 1145812 1145980 + sRNA (Argaman et al., 2001) spf 4047479 4047587 + sRNA (Mller et al., 2002)
rdlA 1268546 1268612 + sRNA (Kawano et al., 2002) csrC 4048616 4048860 + sRNA (Wassarman et al., 2001)
rdlB 1269081 1269146 + sRNA (Kawano et al., 2002) oxyS 4155864 4155973 - sRNA (Altuvia et al., 1997)
rdlC 1269616 1269683 + sRNA (Kawano et al., 2002) SroH 4187905 4188065 - sRNA (Vogel et al., 2003)
rtT 1286289 1286459 - sRNA (Michelsen et al., 1989) I002 4230937 4231087 - sRNA (Saetrom et al., 2005)

IS061 1403676 1403833 - sRNA (Chen et al., 2002) ryjA 4275506 4275645 - sRNA (Wassarman et al., 2001)
tke8 1435145 1435252 + sRNA (Chen et al., 2002) I044 4366175 4366225 + sRNA (Saetrom et al., 2005)
sokB 1490143 1490195 + sRNA (Pedersen and Gerdes, 1999) I014 4373943 4374003 - sRNA (Saetrom et al., 2005)
dicF 1647406 1647458 + sRNA (Bouch and Bouch, 1989) I010 4527911 4527961 + sRNA (Saetrom et al., 2005)
I008 1702671 1702746 + sRNA (Saetrom et al., 2005) I007 4626216 4626291 + sRNA (Saetrom et al., 2005)

References

Altuvia,S., Weinstein-Fischer,D., Zhang,A., Postow,L. and Storz,G. (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator

and antimutator. Cell, 90 (1), 43–53.

Argaman,L., Hershberg,R., Vogel,J., Bejerano,G., Wagner,E.G., Margalit,H. and Altuvia,S. (2001) Novel small RNA-encoding genes in the intergenic regions

of Escherichia coli. Curr Biol, 11 (12), 941–950.

Bouch,F. and Bouch,J.P. (1989) Genetic evidence that DicF, a second division inhibitor encoded by the Escherichia coli dicB operon, is probably RNA. Mol

Microbiol, 3 (7), 991–994.

Brown,J.W. (1999) The Ribonuclease P Database. Nucleic Acids Res, 27 (1), 314.

Chen,S., Lesnik,E.A., Hall,T.A., Sampath,R., Griffey,R.H., Ecker,D.J. and Blyn,L.B. (2002) A bioinformatics based approach to discover small RNA genes

in the Escherichia coli genome. Biosystems, 65 (2-3), 157–77.

Kawano,M., Oshima,T., Kasai,H. and Mori,H. (2002) Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding

for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol Microbiol, 45 (2), 333–349.

Keiler,K.C., Waller,P.R. and Sauer,R.T. (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA.

Science, 271 (5251), 990–993.

Liu,M.Y., Gui,G., Wei,B., Preston,J.F., Oakford,L., Yksel,U., Giedroc,D.P. and Romeo,T. (1997) The RNA molecule CsrB binds to the global regulatory

protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem, 272 (28), 17502–17510.

2



Majdalani,N., Chen,S., Murrow,J., John,K.S. and Gottesman,S. (2001) Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol

Microbiol, 39 (5), 1382–1394.

Michelsen,U., Bsl,M., Dingermann,T. and Kersten,H. (1989) The tyrT locus of Escherichia coli exhibits a regulatory function for glycine metabolism. J

Bacteriol, 171 (11), 5987–5994.

Mizuno,T., Chou,M.Y. and Inouye,M. (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript

(micRNA). Proc Natl Acad Sci U S A, 81 (7), 1966–1970.

Mller,T., Franch,T., Udesen,C., Gerdes,K. and Valentin-Hansen,P. (2002) Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon.

Genes Dev, 16 (13), 1696–1706.

Pedersen,K. and Gerdes,K. (1999) Multiple hok genes on the chromosome of Escherichia coli. Mol Microbiol, 32 (5), 1090–1102.

Rivas,E., Klein,R.J., Jones,T.A. and Eddy,S.R. (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol, 11

(17), 1369–73.

Rudd,K.E. (1999) Novel intergenic repeats of Escherichia coli K-12. Res Microbiol, 150 (9-10), 653–664.

Saetrom,P., Sneve,R., Kristiansen,K.I., Snove,O.,J., Grunfeld,T., Rognes,T. and Seeberg,E. (2005) Predicting non-coding RNA genes in Escherichia coli

with boosted genetic programming. Nucleic Acids Res, 33 (10), 3263–70.

Sledjeski,D.D., Gupta,A. and Gottesman,S. (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth

in Escherichia coli. EMBO J, 15 (15), 3993–4000.

Urbanowski,M.L., Stauffer,L.T. and Stauffer,G.V. (2000) The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and

oligopeptide transport systems in Escherichia coli. Mol Microbiol, 37 (4), 856–868.

Vogel,J., Bartels,V., Tang,T.H., Churakov,G., Slagter-Jager,J.G., Huttenhofer,A. and Wagner,E.G. (2003) RNomics in Escherichia coli detects new sRNA

species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res, 31 (22), 6435–43.

Wassarman,K.M., Repoila,F., Rosenow,C., Storz,G. and Gottesman,S. (2001) Identification of novel small RNAs using comparative genomics and microar-

rays. Genes Dev, 15 (13), 1637–51.

Wassarman,K.M. and Storz,G. (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell, 101 (6), 613–23.

3



Table 2. Predicted sRNA genes by PSoL, ranked according to decision values.

Start End Len Rank Start End Len Rank Start End Len Rank Start End Len Rank Start End Len Rank
11996 12113 117 221 1061671 1061723 52 360 2087280 2087360 80 377 3096472 3096527 55 316 3920130 3920210 80 162
57159 57279 120 58 1067501 1067581 80 282 2088118 2088164 46 250 3100920 3100981 61 204 3923311 3923590 279 203
59369 59449 80 299 1078395 1078475 80 123 2099580 2099660 80 348 3136587 3136644 57 131 3930552 3930792 240 47
63314 63379 65 179 1108414 1108494 80 410 2116596 2116652 56 237 3147576 3147627 51 375 3938856 3938936 80 264
77389 77549 160 277 1112679 1112752 73 314 2135395 2135475 80 122 3151488 3151528 40 86 3938976 3939056 80 111
89282 89362 80 283 1156967 1157042 75 315 2137557 2137677 120 246 3154582 3154704 122 118 3939096 3939381 285 7
89522 89584 62 201 1160984 1161058 74 406 2163593 2163640 47 320 3175976 3176075 99 95 3941222 3941276 54 175

113349 113394 45 371 1169647 1169691 44 290 2183371 2183451 80 12 3181429 3181509 80 402 3958167 3958242 75 202
127757 127862 105 55 1184867 1184947 80 189 2209134 2209183 49 417 3184111 3184153 42 313 3975411 3975491 80 293
131470 131565 95 6 1195726 1195806 80 234 2212794 2212836 42 401 3198696 3198776 80 169 3988450 3988530 80 249
164624 164680 56 190 1195926 1196006 80 276 2213667 2213715 48 157 3208274 3208372 98 185 3992118 3992322 204 96
190649 190807 158 139 1210652 1210772 120 147 2227349 2227408 59 216 3215093 3215147 54 376 3998758 3998988 230 10
191758 191805 47 64 1211636 1211716 80 354 2230798 2230848 50 307 3245118 3245198 80 363 4005351 4005551 200 209
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Figure 5: The schema of the third ranked prediction

GGUGGACCAGAAAAGGGCUUG UC UC U U CUCAUCAG GGU A G CU A UAGUGUCGCCCCUUCG
CAGA

Figure 6: The structure of the third ranked prediction (based on the sequence on the forward strand).
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Figure 7: The schema of the fourth ranked prediction

GGCCGCAUCGUUACCCGGCGCACUAAGUCCUGGCUGAAA CGGGU GGUGCCGUCAGCGCCUUAACCCCGCGUGAGCACACUGUGUUAUGUCA A C A A G C A C AACGUUUCUCCU UG A G A UA C C GCG U G C AC AACA GCUGGCA ACAGGCAG C G GAAAG G UA C G UCAG C U G G CA GUGCUCCUGAA C CACAGGAGACGCG UAUGAACC UGGUGGAUAUCG C CAUUCUUAUCCUCAAA
CUCAUU GU UGC AG CACUGCAACUG C U U G AUGCUGUU C U G A A AU A C C UGAAGUAAUUCAGAUUCAAGUCGCAC

C AAAGGGGAGCGG GA
AACCGCUCCCCUUUUAUAUUUAGCGUGCG

GGUUGGUGUCGGAU

Figure 8: The structure of the fourth ranked prediction (based on the sequence on the forward strand).
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Figure 9: The schema of the fifth ranked prediction

CGCUUGAU
UUGAU GUCUGGCA GUUUAUGGCGGGCGUCC UG C C C G C C ACCCUCCGGGC CGUUGCU U CGCAA

CGUUCA A AUCCGCU C CCGGCGGAUUUGUC
CU A C U C GGGAGAGUGUUCACCGACAAACAAC

Figure 10: The structure of the fifth ranked prediction (based on the sequence on the forward strand).
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