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Abstract

The large number of structured database
sources on the Web presents pressing need
for information integration at a large scale.
How can we enable systematic access to this
“deep Web”? We observe that, while au-
tonomous sources are seemingly independent,
their query schemas often reveal certain cor-
relations, such that sources in the same struc-
tured domain (e.g., books, cars) tend to share
a “locality” of query attributes. This paper
thus develops the notion of attribute locali-
ties, which is key for many schema-based in-
tegration tasks– such as source clustering and
query mediation. Such attribute localities,
while very useful, are computational expen-
sive to discover. However, our observation
further indicates that the localities are often
self-revealing, when attributes are linearly or-
dered in a certain way, reflecting their con-
nectivities. We thus further propose a novel
ordering-based approach, which discovers lo-
calities by progressive construction, guided by
attribute connectivities. Our experimental s-
tudy shows that our notion of localities natu-
rally capture the inherent structured domains,
and our approach effectively discovers such lo-
calities, over hundreds of real Web sources.

1 Introduction

The Web has been rapidly “deepened” by the massive
searchable Web databases: While the surface Web has
linked billions of static HTML pages, a far more signif-
icant amount of information is hidden in the deep Web,
behind the query forms of searchable databases. One
example of deep Web sources is Amazon.com. These
Web databases are often also referred to as the hidden
or invisible Web. The July 2000 survey of [1] claims
that there were 500 billion hidden pages in 105 online
sources. Such information cannot be accessed directly
through static URL links; they are only available as

responses to dynamic queries submitted through the
query interface of a database.

A wealth of work has been done in general infor-
mation integration systems [2, 3], where sources are
configured a priori for specific tasks. Several integra-
tion systems have been developed in a relatively small
scale: e.g. Information manifold, TSIMMIS, Infomas-
ter, Garlic, DISCO, Softbot, Ariadne, and others. In
contrast, for text databases, there have been more ef-
forts in large scale distributed search, i.e., meta-search
(e.g. [4]).

We conduct an extensive survey [5] on deep We-
b to observe characteristics of the sources and study
the implications of these characteristics on exploring
and integrating Web databases. Although there are
more structured databases on Web as we surveyed,
relatively less work is done in this area as compared
with text databases. The same challenges of large s-
cale, which are equally important and difficult (if not
more), exist for structured databases. We believe that
the large number of structured sources on the Web
presents pressing need for information integration at a
large scale.

This paper focuses on structured databases on the
deep Web, which provide structured information by
accepting queries over the attributes on their query
interfaces, or schemas (e.g., author and title for Ama-
zon.com). Thus, our focus essentially distinguishs text
sources, which normally provide keyword-based search
interfaces for text documents. Since data must be re-
trieved with queries, any attempts for integration must
essentially interact with source schemas, which there-
fore are naturally the central notions for deep Web
sources.

On the deep Web, we observe a distinguishing char-
acteristic that offers a fresh view for schema-based
large scale integration: while autonomous sources are
seemingly independent, their query schemas often re-
veal certain correlations, such that sources in the same
structured domain (e.g., books, cars) tend to share a
“locality” of query attributes. Further, these localities
naturally capture the inherent structured domains of
sources.
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This paper thus develops the notion of attribute
localities, which is key for many schema-based inte-
gration tasks– such as source clustering, query expan-
sion and source selection. For example, the natural
correspondence between attribute localities and source
domains allows us to cluster sources. Given a set of
sources, we can discover the localities among all the
attributes, therefore the domain of a source can be re-
constructed by finding the localities of the attributes
that are contained in this source. We postpone case
studies on applications of attribute localities to Sec-
tion 6.

The attribute localities, while very useful, are com-
putational expensive to discover, because the num-
ber of possible localities configurations for a set of
attributes is even larger than the number of possible
partitions of these attributes. Therefore a brute force
approach is not suitable for discovering the localities.

However, our observation further indicates that the
localities are often self-revealing, when attributes are
linearly ordered in a certain way. Inspired by this ob-
servation, we propose a novel ordering-based approach,
which discovers localities by progressively constructing
such an attribute order. Indeed, the characteristics re-
vealed by the attribute order we observed can tell us
how to construct it. We find that such an ordering
reflects the connectivities between attributes. To be
more specific, first, attributes belong to a locality gath-
er together, highly connected to each other and weakly
connected to attributes in other localities. Second, the
attributes within a locality are roughly ordered accord-
ing to their degree of connectivities to other attributes
in the same locality. Finally, for an attribute at the
border of two localities, it has few connectivities to the
attributes in previous localities, but has high connec-
tivities to the attributes in the succeeding locality.

Based on these observations, we develop an al-
gorithm COLD (Connectivity-guided Ordering-based
Locality Discovery) to discover attribute localities. It
starts with an initial locality containing an initial at-
tribute, constructs attribute order by greedily append-
ing the attribute that has the highest connectivities to
current locality, and detects the transition points be-
tween consecutive localities.

We also find that straightforward direct attribute
connectivity is not a good measure. Considering the
high importance of connectivity measure to robustness
of the algorithm, we develop a new indirect connectiv-
ity measure, context link, that takes into consideration
the contextual co-occurrences of attributes.

We performed experiments on about 500 real
sources in 8 domains. The result shows that our notion
of localities naturally capture the inherent structured
domains, and our approach effectively discovers such
localities.

To highlight, we summarize the main contributions
of this paper as follows:

• We develop the notion of attribute localities
based on an interesting phenomenon observed on
the deep Web sources. Such attribute localities is
key for many schema-based integration tasks.

• We propose a novel ordering-based localities
discovery approach, inspired by the inherent
characteristics of such localities.

• We present connectivity-guided ordering
construction algorithm COLD, which pro-
gressively construct an attribute order according
to the connectivities between attributes, also in-
spired by the characteristics of localities.

• We develop context link as an indirect attribute
connectivity measure, which is more robust than
straightforward direct connectivity.

• We report experiments based on dataset of
real Web sources. Our experimental result ver-
ifies the effectiveness and practicality of our ap-
proach. We also conduct case studies to demon-
strate the applications of attribute localities in the
real world.

The remainder of the paper is organized as follows.
Section 2 motivates the notion of attribute localities
based on observations on the deep Web sources. Sec-
tion 3 introduces the connectivity-guided ordering ap-
proach for localities discovery, the detailed algorithm
for which is presented in Section 4. We report the
experiments and evaluation in Section 5. Section 6
demonstrates the case studies on applications of at-
tribute localities. Section 7 discusses related works.
Finally, we make concluding remarks in Section 8. Ap-
pendix A shows the detailed experiment results.

2 Attribute Localities

With the virtually unlimited amount of information,
the deep Web is clearly an important frontier for da-
ta integration. This “wild” frontier of the deep We-
b is characterized by its unprecedented scale. As
a challenge: Sources online are virtually unlimited.
Thus, any attempts to make the deep Web accessi-
ble and useful must cope with the challenge of large-
scale integration. Second, as an opportunity: However,
while sources proliferate, in aggregate, their complexi-
ty tends to be “concerted,” revealing some underlying
“structure”. In particular, we observe that there exists
naturally formed “localities” of attributes, correspond-
ing to different source domains. Such attribute local-
ities is very useful for exploring and integrating deep
Web sources. In this section, we present our obser-
vation of localities and briefly discuss its applications,
then we formally define the notion of “locality” and
propose the problem of locality discovery.

2.1 Observation: Locality Phenomenon

We manually collected our dataset of deep We-
b sources using Web directories(e.g., InvisibleWe-
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domain sources domain sources

Airfares 53 Hotels 38
Automobiles 102 Jobs 55
Books 69 Movies 78
CarRentals 24 MusicRecords 75

Figure 1: Deep Web Repository:494 sources,8 domains.

b.com, BrightPlanet.com, WebFile.com) and search
engines (e.g. Google.com). In particular,
we collect 494 sources in eight domains, which
are Airfares(AI), Automobiles(AU), Books(B),
CarRentals(C), Hotels(H), Jobs(J), Movies(MO),
and MusicRecords(MU). Figure 1 summarizes our
dataset. We have released this dataset, the Deep We-

b Repository, available online at http://eagle.cs.-
uiuc.edu/metaquerier.

From this dataset, we observe a distinguishing char-
acteristic that offers a fresh view for schema-based
large scale integration: while autonomous sources are
seemingly independent, their query schemas often re-
veal certain correlations, such that an attribute tends
to relate to certain others, and they together form a
locality of query attributes (e.g., author, title, ISBN and
publisher).

Further, these localities naturally capture the in-
herent structure domains of sources, such that sources
in the same domain tend to share a “locality” (e.g.,
author, title, ISBN, and publisher for the Books domain,
and make, model, year for the Automobiles domain).

Figure 2(a) plots how attributes (the y-axis) occur
in sources (the x-axis), so that a dot at (x, y) indi-
cates that the schema of source x contains attribute
y. Note that sources are ordered according to their
domains, and attributes according to their order of
first-occurrence along these ordered sources. Observe
that each densely-dotted triangle along the diagonal
represents an attribute locality, which is also square-
ly aligned with the domain boundaries of sources on
the x-axis. The attributes that have occurrences on-
ly within some triangle are domain specific attributes.
The attributes that have occurrences outside of the
triangles are across domain.

As we have observed, we thus hypothesize the ex-
istence of attribute localities across sources. In fac-
t, we believe such existence is to be expected: For
each structured domain, naturally there is a conceptu-
al pool of common attributes, or vocabulary, that char-
acterizes the structured database objects exported by
sources in that domain. These sources draw attributes
from this vocabulary to form schemas. Therefore at a
large scale with many sources of the same domain, we
see their attributes form localities. Moreover, the lo-
calities correspond to different domains are naturally
distinguishable from each other because the conceptu-
al attribute pools for the domains are distinguishable,
otherwise the source query interfaces can not tell user-
s what kind of databases objects they export, thus

would be confusing and useless to the users.

2.2 Definition of Locality

We have observed attribute localities in the above sec-
tion, thus in this section we formally develop the no-
tion of locality, which is key for many schema-based
integration tasks– such as source clustering, query ex-
pansion and source selection. First, the natural corre-
spondence between attribute localities and source do-
mains enables identifying the domain of a source ac-
cording to the localities of its schema attributes, there-
fore indirectly solves the problem of source cluster-
ing. Second, the localities enables expanding users’
query attributes with relevant attributes in the local-
ities. Last, based on source clustering and query ex-
pansion, source selection for answering users’ queries
is enabled.

We postpone the detailed case studies on these ap-
plications to Section 6. Below we formally define at-
tribute locality and illustrate the concepts with exam-
ples.

As the building block of deep Web sources, query
attributes are shown as the labels of query form ele-
ments on Web pages. The schema of a source contains
a set of attributes. From now on, we will use schema
and source interchangeably because we do not concern
other features of a source in this paper.

Definition 1 (Attribute-Source Space): An
attribute-source space is a 3-tuple (V ,S,D): The
vocabulary V is a set of attributes {a1, ..., an}. S is a
set of sources {s1, ..., sm}, where si ⊂ V for 1 ≤ i ≤ m.
Every attributes in V occur in some sources in S,
i.e., V = ∪si. D is a set of domains {d1, ..., dk} that
partitions S, i.e., S = ∪di and di ∩ dj = Ø.

An example of attribute-source space is shown in
Figure 3. There are three domains: Automobiles,
Books, and Movies, each of which contains 10 sources
and 10 attributes. There are altogether 25 attributes
because there are attributes (e.g., title) across multiple
domains.

Definition 2 (Locality): A locality configuration on
vocabulary V , lV , is {l1, ..., lt} where li ⊆ V for 1 ≤
i ≤ t, and V = ∪li. It is possible that li ∩ lj 6= Ø for
li, lj ∈ lV .

LV is used to denote the set of all locality configu-
rations on V , i.e., LV = {lV}.

Note that we consider domains as disjoint, which
is a reasonable assumption based on the real world
situation. However, we consider localities as overlap-
ping, because there exist attributes that are common
to multiple domains, and thus localities (e.g., title in
both Books and Movies).
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(a) Locality: domain by domain. (b) No locality: shuffled across domains. (c) Locality: shuffled within domains.

Figure 2: Attribute locality phenomenon: attribute distributions over source domains.

Domain: Books
title, author, ISBN, publisher, price, subject, format, publication Date,
keyword, category

Sb1: ( title, author, ISBN, publisher, price )
Sb2: ( publisher subject, price, format, publication Date )
Sb3: ( title, author, price )
Sb4: ( title, author, ISBN, keyword, format )
Sb5: ( title, author )
Sb6: ( title, ISBN, keyword, category )
Sb7: ( title, author, ISBN, keyword )
Sb8: ( title, author, ISBN, publisher, subject )
Sb9: ( title, author, keyword, publisher, price )
Sb10: ( title, keyword, category )

Domain: Automobiles
make, model, year, style, type, zip code, price, color, state, area

Sa1: ( make, model, year, style, type )
Sa2: ( make, zip code )
Sa3: ( make, model, price, year, color )
Sa4: ( make, model, price, zip code, type )
Sa5: ( make, model, price, year )
Sa6: ( price, zip code )
Sa7: ( make, model, price, year, zip code, state )
Sa8: ( make, year, zip code )
Sa9: ( make, price, type, area )
Sa10: ( make, model, price, year, type )

Domain: Movies
title, actor, director, price, genre, rating, format, type, cast/crew, studio

Sm1: ( title, actor, director, price )
Sm2: ( title, actor, director, genre, rating, price, format, type )
Sm3: ( title, actor, director, genre )
Sm4: ( actor, director, rating, format type )
Sm5: ( title, format, cast/crew, studio )
Sm6: ( actor, director, type, studio )
Sm7: ( actor, director, genre, rating )
Sm8: ( title, cast/crew )
Sm9: ( title, genre, price, format, studio )
Sm10: ( title, actor, director )

Figure 3: Example of attribute-source space

locality 1 locality 2 locality 3

title
author
ISBN
publisher
price
subject
format
publication date
keyword
category

title
actor
director
price
genre
rating
format
type
cast/crew
studio

make
model
year
style
type
zip code
price
color
state
area

Figure 4: Example of attribute localities

Definition 3 (Domain Attributes Projection):
For an attribute-source space (V ,S,D), the do-
main attributes projection, lD, is {l1, ..., lk}, where
li = ∪sj∈di

sj.

Given the observed existence of attribute localities
and its promising applications, our problem is to un-
cover such a hidden locality configuration, lV ∈ LV

for the attribute-source space (V ,S,D), with V and S
as given and D as hidden. LV is the set of all pos-
sible locality configurations, among which there are
good and poor ones. The domain attributes projec-
tion lD is an instance of locality configuration, i.e.,

lD ∈ LV . For example, domain attributes projection
for the attribute-source space in Figure 3 is shown in
Figure 4. Naturally it is a good locality configuration
because it is generated according to the real domains
of sources. However, without domain knowledge, it is
non-trivial to discover such a locality configuration, as
we discuss in the section below.

2.3 Difficulties in Locality Discovery

The locality phenomenon is self-revealing only when
we order sources domain by domain, as we did in Fig-
ure 2(a). Without such knowledge of domains, it is
non-trivial to discover locality. Figure 2(b) plots how
attributes (the y-axis) occur in sources (the x-axis) in
the same way as in Figure 2(a), but the sources on
the x-axis are randomly from all domains instead of
domain by domain. Obviously we can only see a sin-
gle sparse triangle covering all the sources and all the
attributes, instead of localities.

Consider attributes as nodes in an attribute graph,
in which two attributes (nodes) are connected by an
edge if they co-occur in some schemas. The edge is
weighted by the number of co-occurrences of the two
attributes. Imagine the extreme case that all domains
of sources are isolated from each other without any
shared attribute, and all the sources in a domain have
the exact same schema. In such a case, each attribute
locality is a “perfect” clique on the graph.

However, the concept of locality as “clique” would
be fuzzy rather than definite because the real world is
much more complex than the ideal case. Above we as-
sume there exists “perfect” localities which have two
properties: fully connected attributes within locality,
and isolated localities. It is clear that there is even no
single such “perfect” clique in the real world. There-
fore it is nontrivial to find the fuzzy “cliques”, i.e.,
localities.

First, the attributes within a locality are not fully
connected. To begin with, two attributes in a locality
may not co-occur frequently or even do not co-occur.
Moreover, two attributes with few co-occurrences are
not necessarily weakly associated. Instead, they could
be strongly associated if they both heavily co-occur
with other common attributes in the locality. Final-
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ly, the degree of association for each attribute pair is
different.

Second, the attributes from different localities are
related instead of isolated. As shown in Figure 2(a),
there exists a lot of attributes that occur in multi-
ple domains, which we name linking attributes. The
existence of linking attributes reflects the natural se-
mantic connections between different domains. For
example, attribute 55 in Figure 2(a) is title, which oc-
curs in multiple domains such as Books, Movies, and
MusicRecords.

Furthermore, such linking attributes are abundant,
frequent and they are the only constituents of many
sources, as we observed from the dataset. First, there
are a large amount of linking attributes. Among the
422 attributes in all sources, 17.5%(74/422) are linking
attributes. Second, these linking attributes occur fre-
quently. Intuitively, the more domains an attribute oc-
curs in, the more frequent it is. Among the top 20 fre-
quent attributes, 18 attributes are linking attributes.
Third, the linking attributes constitute a large amount
of sources. 21.9% (108/494) sources contain only link-
ing attributes.

3 Locality Discovery: Connectivity-
Guided Ordering

Attribute localities are difficult to uncover as we dis-
cussed in Section 2.3. However, we further observe
that the localities are often self-revealing, when at-
tributes are linearly ordered in a certain way. Indeed,
the characteristics revealed by the attribute order we
observed can tell us how to construct it. We find
that such an order reflects the connectivities between
attributes. Inspired by this observation, we propose
a novel connectivity-guided ordering-based approach,
which discovers localities by progressively constructing
such an attribute order.

3.1 Observation: Attribute Ordering

From Figure 2(a), we observe two interesting attribute
ordering effects, which are macro ordering and micro

ordering respectively.
Macro ordering: Attributes belong to a locality

gather together and localities appear on the y-axis in
the order corresponding to the order of domains on the
x-axis. Therefore we observe that each densely-dotted
triangle along the diagonal is squarely aligned with the
domain boundaries of sources on the x-axis.

Micro ordering: the attributes within a locality
are roughly ordered according to their numbers of co-
occurrences with other attributes in the same locali-
ty. Therefore we see the thick bottom and sparse top
of triangles, because the vertical alignment of two at-
tributes represents their co-occurrence.

Moreover, the order of observing domains and the
order of observing sources within a domain does not

have much impact on these two attribute ordering ef-
fects. Figure 2(c) plots how attributes (the y-axis)
occur in sources (the x-axis) in the same way as in
Figure 2(a), but the domains are in a different order
from Figure 2(a) and sources within each domain are
observed with a random different order. Interestingly,
we still observe the ordering effects.

3.2 Locality Discovery: Connectivity-Guided
Greedy Ordering

The ordering effects shown by the localities in Fig-
ure 2(a) motivate us to find localities along the order
of attributes. Once we find a “magic” attribute order
as in Figure 2(a), the localities themselves would be
self-revealed. What is left to do is just detecting the
transition points at the border of consecutive domains.

Suppose there are altogether n attributes (|V| = n),
then the number of possible ordering schemes is n!.
This prohibiting large number makes it infeasible a
naive approach of evaluating all possible orderings.

Indeed, the characteristics revealed by the “mag-
ic” order in Figure 2(a) can tell us how to construct
it. We find that the attribute order reflects the con-
nectivities between attributes. To be more specific,
first, attributes gathered in the same locality are high-
ly connected to each other and weakly connected to
attributes in other localities. Therefore we observe
the dense triangles and relatively sparse region out-
side of the triangles. Second, the micro ordering effect
tells us that attributes within a locality are roughly
ordered according to their number of co-occurrences
with other attributes in the same locality. The num-
ber of co-occurrences reflect connectivities. Finally,
for an attribute at the border of two localities, it has
few connectivities to the attributes in previous local-
ities, but has high connectivities to the attributes in
the succeeding locality.

According to the above observations, we propose
to greedily construct an attribute order guided by at-
tribute connectivities for discovering localities. Specif-
ically, assume we have a function C to evaluate the
connectivities between an attribute and a locality, s-
tarting from one locality L containing one attribute
a (the most frequent attribute, as in our algorithm),
the following three rules can be used to construct a
sequence of attributes:

Rule 1: The next attribute to be added into the se-
quence, anext, is the one that has the highest con-
nectivities to attributes in current locality L, i.e.,
anext = argmaxaC(a,L).

Rule 2: If there is no attribute that has connectivities
to current locality L, i.e., C(anext,L) = 0, then a new
attribute will start a new locality, which becomes the
current locality.
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Rule 3: Suppose a is the last attribute and a′

is the second to last attribute in the sequence. If
both C(anext,L) and C(a′,L \ {a′, a}) is higher than
C(a,L \ {a}) (which means a is highly connected to
anext but less connected to other attributes in L),
then a and anext start a new locality, which becomes
the current locality.

We introduce the details of the algorithm in Section 4,
including the function C mentioned above. Below we
introduce how to compute the connectivities between
two attributes, which is the foundation of C.

3.3 Context Link: Serving as Connectivity

Mutual information is a measure of the amount of
information one random variable contains about an-
other [6], therefore could be used to capture the
correlation between two attributes. Suppose p(x =
1) is the probability that attribute x appear in a
schema and p(x = 1, y = 1) is the probability
that attribute x and y appear together in a schema.
The mutual information of x and y is I(x; y) =
∑1

x=0

∑1
y=0 p(x, y)log

p(x,y)
p(x)p(y) .

However the correlation expressed by mutual infor-
mation does not capture the connectivity that we de-
sire. The reason is that mutual information considers
presence the same important as absence in schema da-
ta, while connectivity only considers co-occurrences as
important. Mutual information combines four situ-
ations: both x and y are presented, none of them is
presented, x but y is presented, and y but x is present-
ed. For example, it considers x and y highly correlated
if x always occur in a schema when y does not occur.

Therefore we define connectivity of two attributes
as following. Instead of combining the four situations,
it only measures whether the probability of x and y
co-occurring in a schema is significant. The extra 1 is
for the purpose of making the result value be over 0.

Definition 4 (Connectivity): c(x, y|V ,S) = p(x =

1, y = 1)log(1 + p(x=1,y=1)
p(x=1)p(y=1) ).

This definition is based on the direct connectivities
of two attributes. However, attributes may be indi-
rectly connected.

Example 1: Suppose there are two domains of
schemas, Books and Movies, as shown in Figure 5. The
first domain contains 5 attributes title, author, ISBN,
subject, and format. The second domain contains 6 at-
tributes title, actor, director, genre, rating, and format.
Note that although subject and format do not co-occur
at all, they both co-occur with other attributes. There-
fore although their direct connectivity is zero, they
should have high indirect connectivity. On the other
hand, although format and rating co-occur once, they
do not both co-occur with many common attributes.

Domain: Books
title, author, ISBN, subject, format

( title, author, ISBN, subject )
( title, author, ISBN, format )
( title, author, subject )
( title, author, format )
( author, ISBN, subject )
( author, ISBN, format )

Domain: Movies
title, actor, director, genre, rating, format

( title, actor, director )
( title, genre, rating, format)
( title, actor, director, genre )
( title, actor, director, rating )
( actor, director, genre)

Figure 5: Example of indirect connectivity

Therefore their indirect connectivity is low. More-
over, if we take into consideration that title occurs in
most sources, then it should endow less connectivity
between format and rating.

As a better similarity measure for two transaction-
s than direct similarity such as Jaccard coefficient,
“link” is defined in [7] as the number of common
neighbors of two transactions. Inspired by this idea,
we extend the concept of connectivity of attributes to
context link.

Definition 5 (Context Link): For a vocabulary
V and a set of sources S, the context link be-
tween two attributes x, y ∈ V , link(x, y|V ,S), is
defined as the sum of their direct link and in-
direct links, i.e., link(x, y|V ,S) = c(x, y|V ,S) +
∑+∞

i=1 wi · linki(x, y|V ,S), where linki(x, y|V ,S) =∑
a1,...,ai∈V,a1,...,ai 6=x,y min(c(x, a1|V ,S), c(a1, a2|V ,S),

..., c(ai, y|V ,S)). linki(x, y|V ,S) is context i-link of
x and y, which is the indirect link between x and y
through other i attributes, i.e., x and a1 co-occur, a2
and a3 co-occur, ..., ai and y co-occur. All the i-links
are weighted by some wi.

The computation of full context link is exponen-
tially complex, therefore we adopt only context 1-link
with weight 1, which experimentally is shown to be a
good selection. Thus, link(x, y|V ,S) = c(x, y|V ,S) +∑

a∈V,a 6=x,y min(c(x, a|V ,S), c(a, y|V ,S)).

Example 2: For the attribute-source space in
Example1, c(format, subject) = 0 and c(format, rating) =
0.113, but link(format, subject) = 0.738 and
link(format, rating) = 0.425.

4 Algorithm COLD: Connectivity-
guided Ordering-based Locality
Discovery

In this section, we introduce the Algorithm COLD

(Connectivity-guided Ordering-based Locality
Discovery) for discovering attribute localities,
which starts with an initial locality containing an
initial attribute, constructs attribute order by greedily
appending the attribute that has the highest connec-
tivities to current locality, and detects the transition
points between consecutive localities. The algorithm
is shown in Figure 6. It consists of five steps: filtering,
ordering, reallocating, multiple allocating, and putting

back filtered attributes. Below we explain the details
of each step one by one.
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Algorithm Loality DisoveryInput:� V : input attributesOutput:� L: loalitiesProedure:01. (1) Filtering Rare Attributes:02. V 0  fv j v 2 V ; frequeny(v) > 1g03. (2) Ordering Attributes:04. astart  argmaxa2V0frequeny(a)05. L Order (V 0; astart)06. (3) Realloating:07. L0  flj9l0 2 L; link(l; l0) > loalitiness(l)g08. L  Realloate(L n L0;L0) //TLH09. Realloating based on SRH (Setion 4.3)10. L0  fljl 2 L; l:size() = 1g11. L  Realloate(L n L0;L0) //SLH12. (4) Multiple Alloating:13. for l 2 L14. l l[faja 2 V ; a =2 l; link(a; l) > loalitiness(l)g15. (5) Putting Bak Filtered Attributes:16. L  Realloate(L; fV n V 0g)
Figure 6: Algorithm: Locality Discovery

4.1 Step 1: Filtering

This step filters those attributes that occur only in one
source. Empirically we find that these rare attributes
weaken the robustness of the following steps of the
algorithm. Therefore we do not let these attributes
participate in the rest steps. Instead, we put back
these attributes in the last step. Intuitively since such
a rare attribute only occur in one schema, its localities
can easily be determined according to other attributes
in that schema.

Example 3: From now on, we use the small example
of attribute-source space in Figure 3 to illustrate the
algorithm. The results for the attribute-source space
of the dataset we collect are reported in Appendix.
The example in Figure 3 contains 3 domains, each of
which contains 10 sources and 10 attributes. In the
filtering step, publication data, state, style, color, and area

are filtered because they only occur once.

4.2 Step 2: Ordering

The details of the function Order in Figure 6 is shown
in Figure 7. It starts with the attribute of highest
frequency, as the initial locality. As motivated in Sec-
tion 3, the attributes ordering is greedily construct-
ed by iteratively adding attribute that has the high-
est connectivities to current locality. The connectivity
between two attributes is captured by the context link
defined in Section 3.3, based on which the connectiv-
ities between an attribute and a locality is defined as
attribute-locality link, shown below.

Algorithm Order (V ; astart)Input:� V : input attributes.� astart: starting attribute.Output:� L: loalities.Proedure:01. L fg; CL  fastartg; V Vn fastartg02. while V is not empty03. amax  argmaxa2V link(a; CL)04. if link(amax; CL) = 0 then05. L.insert(CL)06. astart  argmaxa2Vfrequeny(a)07. CL  fastartg; V Vn fastartg08. else09. if CL:size() > 2 then10. a CL[CL:size()℄; a0  CL[CL:size()� 1℄11. if link(a0; CL n fa0; ag) > link(a; CL n fag)12. and link(amax; CL) > link(a; CL n fag)13. then14. L.insert(CL n fag)15. CL  fag16. CL:insert(amax); V Vn famaxg17. L.insert(CL)18. return L
Figure 7: Algorithm Order

Definition 6 (Attribute-Locality Link): Given a
locality l = {a1, ..., ak} and an attribute a /∈ l, the
attribute-locality link between a and l, link(a, l) =
1
k

∑k

i=1 link(a, ai).

The function Order has two facilitating data struc-
tures. L is used to record all the discovered localities.
CL is the current locality. Under two situations, CL
is inserted into L and a new CL is formed. First is
when there is no attribute that has connectivity to CL,
therefore no attribute can be added into it. After CL
is inserted into L, the most frequent attribute among
the rest attributes is selected as the initial attribute of
a new CL, just the same as how the ordering proce-
dure is started. Second is when a transition attribute
is detected (introduced below). In this case, the tran-
sition attribute is treated as the starting attribute of
the new CL.

4.2.1 Transition Attributes

Transition attributes are those attributes on the bor-
der of two consecutive localities, defined below accord-
ing to the third characteristics of the “magic” order as
we described in Section 3.2.

Definition 7 (Transition Attribute): Given a
current locality CL = {a1, a2, ..., ak}, where attributes
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a1, a2, ..., ak are in the order by which they are
added into CL. amax is the attribute that has the
highest connectivity to CL, i.e., amax = argmaxa∈V′

link(a, CL), where V ′ is set of attributes that have
not been included into the attribute ordering yet.
before. ak is a transition attribute if the following two
conditions are satisfied:
(a) link(ak−1, CL \ {ak−1, ak}) > link(ak, CL \ {ak})
(b) link(amax, CL) > link(ak, CL \ {ak})
Note that CL contains at least 3 attributes if ak is a
transition attribute.

After the transition attribute ak is detected, it is
removed from the current locality CL, which is inserted
into L. Then the new current locality CL is set to be
{ak, amax}.

Attribute amax is well connected to the
transition attribute ak, as justified below.
link(ak, CL \ {ak}) > link(amax, CL \ {ak}) be-
cause ak is the attribute that has highest
attribute-locality link to {a1, ..., ak−1}. There-
fore link(amax, CL) > link(amax, CL \ {ak}) ac-
cording to (b) in Definition 7. link(amax, CL) =
link(ak,amax)+(k−1)·link(amax,CL\{ak})

k
, therefore we

have link(ak, amax) > link(amax, CL \ {ak}). This
means amax has high connectivity to ak but not
to the rest of CL. Meanwhile, according to (a) in
Definition 7, ak does not have high connectivity to
CL, at least not as high as its previous attribute ak−1.

Based on the analysis above, it is reasonable to start
a new locality with ak and amax. Even if the decision
is incorrectly made (ak should be in CL or in both), it
can be remedied later by multiple allocation in Step 4.

Example 4: In the example of Figure 3, the most fre-
quent attribute is title, therefore the algorithm starts
with it. The localities found by ordering is shown in
Figure 8(a). Right after each attribute, the domains
in which the attribute has occurrences are listed (A for
Automobiles, B for Books, and M for Movies). Note
that 4 localities are discovered instead of 3. We name
these localities as l1, l2, l3 and l4 for ease of represen-
tations. Attributes in 11 all occur in Books, attributes
in l2 all occur in Movies, and attributes in l3 all oc-
cur in Automobiles except subject. Locality l4 is not
a good one, which contains one attribute from Books
and one attribute from Movies. No linking attributes
are discovered. We show in later steps how these prob-
lems can be removed. We also visualize the discovered
localities by plotting the attribute-locality link of each
attributes to its current locality, as shown in Figure 9.
There are 3 transition attributes, which are actor, make

and category.

4.3 Step3: Reallocating

The localities formed in Step 2 may not be good and
attributes may not be in appropriate localities. We

locality 1 locality 2 locality 3 locality 4
(a) title ( B/M )

author ( B )
ISBN ( B )
keyword ( B )
publisher ( B )
price ( B/A/M )
format ( B/M )

actor ( M )
director ( M )
genre ( M )
rating ( M )
type ( A/M )
studio ( M )

make ( A )
model ( A )
year ( A )
zip code ( A )
subject ( B )

category ( B )
cast/crew ( M )

(b) title ( B/M )
author ( B )
ISBN ( B )
keyword ( B )
publisher ( B )
price ( B/A/M )
format ( B/M )
category ( B )

actor ( M )
director ( M )
genre ( M )
rating ( M )
type ( A/M )
studio ( M )
cast/crew ( M )

make ( A )
model ( A )
year ( A )
zip code ( A )
subject ( B )

(c) title ( B/M )
author ( B )
ISBN ( B )
keyword ( B )
publisher ( B )
price ( B/A/M )
format ( B/M )
category ( B )
subject ( B )

actor ( M )
director ( M )
genre ( M )
rating ( M )
type ( A/M )
studio ( M )
cast/crew ( M )

make ( A )
model ( A )
year ( A )
zip code ( A )

(d) title ( B/M )
author ( B )
ISBN ( B )
keyword ( B )
publisher ( B )
price ( B/A/M )
format ( B/M )
category ( B )
subject ( B )

actor ( M )
director ( M )
genre ( M )
rating ( M )
type ( A/M )
studio ( M )
cast/crew ( M )
title ( B/M )
format ( B/M )

make ( A )
model ( A )
year ( A )
zip code ( A )

(e) title ( B/M )
author ( B )
ISBN ( B )
keyword ( B )
publisher ( B )
price ( B/A/M )
format ( B/M )
category ( B )
subject ( B )
publication
date ( B )

actor ( M )
director ( M )
genre ( M )
rating ( M )
type ( A/M )
studio ( M )
cast/crew ( M )
title ( B/M )
format ( B/M )

make ( A )
model ( A )
year ( A )
zip code ( A )
state ( A )
style ( A )
area ( A )
color ( A )

(a)Ordering; (b)Reallocating: TLH; (c)Reallocating:
SRH; (d)Multiple Allocating; (e)Putting Back.

Figure 8: Results of COLD for the example in Figure 3

solve these problems by detecting inappropriate local-
ities and attribute assignments according to the follow-
ing three heuristics, and reallocating the attributes.

The three heuristics are all based on a Reallocate

function, shown in Figure 10, which assign an attribute
to the locality that has the highest attribute-locality
link with the attribute.

Tight Locality Heuristic (TLH): This heuristic is
for identifying those illy formed localities. It requires
that attributes within a locality should be well con-
nected to each other, corresponding to the first char-
acteristics of the “magic” order as we described in
Section 3.2. All the attributes in locality l is reallo-
cated if there exists another locality l′ such that the
inter-locality link between l and l′ is higher than the
localitiness of l, i.e., link(l, l′) > localitiness(l). The
localitiness and inter-locality link are defined as below.

The localitiness of a locality quantifies the degree of
links between attributes within a locality.

Definition 8 (Localitiness): Given a lo-
cality l, its localitiness is localitiness(l) =

2
|l|·(|l|−1)

∑
x,y∈l,x 6=y link(x, y).

The inter-locality link quantifies the degree of links
between attributes from two localities.
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Figure 9: Ordering Result for Example in Figure 3Algorithm Realloate(L;L0)Input:� L: loalities to be remained� L': loalities to be realloatedOutput:� L: new loalitiesProedure:01. for l0 2 L002. for a 2 l003. lmax  argmaxl2Llink(a; l)04. lmax  lmax[fag05. return L
Figure 10: Algorithm Reallocate

Definition 9 (Inter-Locality Link): Given two lo-
calities l and l′, the inter-locality link between l and l′

is link(l, l′) = 1
|l|·|l′|

∑
x∈l,y∈l′ link(x, y).

Example 5: For example, in Figure 8(a), l4 (category
and cast/crew) is obviously not good. According
to tight locality heuristic, this locality is reallo-
cated because there exists locality, e.g., l1, such
that link(l1, l4) > localitiness(l4). category and
cast/crew are moved to l1 and l2 respectively using
Reallocate({l1, l2, l3}, {l4}). The resulting localities are
shown in Figure 8(b).

Source Representing Heuristic (SRH): This
heuristic is for identifying those inappropriately al-
located attributes. It requires that for an attribute
in a locality, some source that contains the attribute
must corresponds to the same locality. It first corre-
sponds sources to localities by the following method.
A source s = {a1, ..., ak}, treated as a virtual lo-
cality, is determined to correspond to locality l =
argmaxli∈Llink(s, li), i.e., the locality that has the
largest inter-locality link with s. If there exists an
attribute a in locality l, such that there is no source
containing a correspond to l, then reallocate attribute
a.

Example 6: For example, in Figure 8(b), subject

is in l3 which contains mostly attributes from the
Automobiles domain. According to source represent-
ing heuristic, among the sources that are assigned to l3
by the above source-locality correspondence method,
there is no source that contains subject. Therefore
subject is reallocated to l1. The resulting localities are
in Figure 8(c).

Small Locality Heuristic (SLH): This is a simple
heuristic, which requires that the size of each locality
should at least be 2. Those localities with only one
attribute is reallocated.

4.4 Step4: Multiple Allocating

As we find in Section 2.3, there are linking attributes
which occur in multiple domains, therefore should be
in multiple localities. We also find that these link-
ing attributes are large-amount, frequent, and consti-
tuting many sources, thus should not be disregard-
ed. Therefore partitional locality configurations such
as Figure 8(a)(b)(c) should be avoided. The algorithm
allocate attributes to multiple localities based on the
following heuristic.

Multiple Allocating Heuristic (MAH): A at-
tribute a is allocated to a locality l if the attribute-
locality link is higher than localitiness of l, i.e.,
link(a, l) > localitiness(l).

Example 7: The result of allocating attributes to
multiple localities is shown in Figure 8(d). To be spe-
cific, title and format are allocated to domain Movies,
in addition to Books.

4.5 Step5: Putting Back Rare Attributes

Those rare attributes filtered in Step 1 are put back
to suitable localities using the reallocating function
Reallocatein Figure 10.

Example 8: The result of putting back rare at-
tributes is shown in Figure 8(e). We can see that all
the rare attributes (publication data, state, style, color,
and area) are put back to proper localities.

5 Experiments

We conduct experiments of Algorithm COLD on the
deep web sources repository we collected at http://-
eagle.cs.uiuc.edu/metaquerier. There are 494
sources in eight domains, as summarized in Figure 1,
and 422 attributes altogether. We manually extract-
ed attributes from the schemas of these sources. We
also did some straightforward preprocessing to merge
attributes of slight textual variations (e.g., authors and
author). We focus on discovering attribute locality and
consider such attribute extraction and preprocessing
as independent tasks. In particular, attribute extrac-
tion (e.g., extracting title from “please input title”) can
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locality main domain others
1 B:50 MO:5 MU:4 MO/MU:2
2 MO/MU:19 MO:11 MU:10 0
3 MU:44 0
4 MO:41 AU:1
5 H:34 MU:1
6 J:77 C:6 H:4
7 AI:60 AU:2
8 C:29 0
9 AU:55 0

Figure 11: Discovered localities on Deep Web Reposi-
tory

be automated with noun-phrase extraction tools, such
as LinkIT [8].

Due to the space limitation, the localities discovered
on this attribute-source space is shown in Figure 12(in
Appendix). We evaluate the results in Figure 11. Our
algorithm finds 9 localities, which is very close to the
number of domains, 8, without any parameters giv-
en by human experts. For each discovered locality,
most of its attributes are in one domain, and there are
few attributes from other domains allocated to this
locality. For example, all the 55 attributes in local-
ity 9 are from Automobiles (either domain-specific
attributes or linking attributes), and there is no at-
tribute from other domain. We also find that all the
attributes that only occur in one domain are also al-
located to the corresponding localities. Therefore all
the attributes counted under the column “others” in
Figure 11 are at the same time also allocated to the
appropriate localities. For example, the two attributes
from Automobiles that are allocated to locality 7 are
also multiply allocated to locality 9.

Localities 2, 3, and 4 worth special discussions.
Note that our algorithm does not require any pa-
rameter such as number of localities, therefore 9 lo-
calities are discovered although there are 8 domain-
s. Locality 2 corresponds to attributes that occur in
Movies or MusicRecords, locality 3 corresponds to
MusicRecords, and locality 4 corresponds to Movies.
Indeed, such a configuration is not necessarily bad.
By checking our dataset, we find that there are a lot
of schemas accepting queries for both movies and mu-
sic records, although some may emphasize movies and
others emphasize music records. However, we manual-
ly assigned these sources to Movies or MusicRecords,
without realizing beforehand that there should be a
third domain for such kind of sources. The discov-
ering of locality 2 indicates the localities found very
naturally correspond to real world domains, even sub-
tle one.

6 Case Study: Applications

In this section, we introduce three case studies demon-
strating the applications of attribute localities in inte-
grating deep Web sources.

Source Clustering: Figure 2 indicates that there
is a natural mapping between localities and domain-
s. The discovered localities enable us to cluster deep
web sources based on their schemas. For example,
for the localities L = {l1, ..., ln}, construct domains
D = {d1, ..., dn}, where di is corresponding to li. A
source s = {a1, ..., ak}, treated as a virtual locality, is
assigned to the domain corresponding to the locality
that has the largest inter-locality link with the s, i.e.,
domain(s) = di, where i = argmax1≤i≤nlink(s, li).
(Note that this domain assignment uses the same ap-
proach as source representing heuristic in Section 4.3.)
The domains of the sources in Figure 3 are fully recov-
ered by this method.

Existing Web clustering approaches rely on not on-
ly page contents, but also link structure, anchor text
and other features of HTML, therefore are very ex-
pensive compared with using source schemas alone for
clustering. Moreover, these approaches do not deal
with query interfaces expressly, therefore the contents
of pages that contain the query interfaces incur noisy
information, instead of revealing the domains of the
structured databases exported by the interfaces. [9]
classifies text databases with keyword query interfaces
by sending probing queries to the sources to sample
the contents of sources, which is also very expensive.

Query Expansion: Query expansion technique in IR
and Web search expands users’ original query with
new terms and re-weights the terms in the expand-
ed query [10]. Its motivation is the phenomenon that
users often need to spend large amounts of time refor-
mulating their queries to accomplish effective retrieval
because of the lack of detailed knowledge of the re-
trieval environment. Therefore query expansion treats
the original query as an initial attempt and expand-
s it by examining the retrieved documents from the
original query.

Analogously users may feel helpless facing the large
amount of query attributes of the deep Web sources
because she does not know which attribute to query.
Even if she has some attribute in mind, she does not
know which other attributes should she use to further
confine her queries because it is tedious to browse all
the source schemas to figure out the connections be-
tween attributes.

Given the discovered attribute localities, it is easy
to bring up the locality of an attribute. The size of
the returned attributes can be controlled by ranking
the links between the attribute and other attributes
in the locality. We can view this as giving the user
an “advanced query form” based on the input of just
one single attribute. This facility not only eases the
user’s effort to specify query attributes, but also can
tell her useful attributes that she may even do not
know before.

Source Selection: Based on source clustering and
query expansion, source selection is enabled. Suppose
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a user wants to query a set of attributes {a1, ..., ak},
the related localities is {l|∃ai ∈ l, l ∈ L, 1 ≤ i ≤ k}.
Therefore multiple advanced query forms will be pro-
vided to users.

For each locality, the sources that could answer the
expanded queries can be automatically queried after
the user fill the “advanced query form”. As we dis-
cussed before, sources are clustered into domains cor-
responding to localities. The query results of these
sources can be unioned with the help of wrapping tech-
nique [11].

There may be linking attributes across the local-
ities. In that case, these linking attributes are pre-
sented to the user, who further identifies those linking
attributes that she thinks are useful. Consider the case
that there are 2 localities. For such a linking attribute
a, from the two corresponding domains d1 and d2, two
sources s1 ∈ d1 and s2 ∈ d2 that both contain a are
considered to be joinable. Therefore the query results
of s1 and s2 can be joined.

Example 9: For the attribute-source space in Fig-
ure 3, the localities discovered are in Figure 8(e). The
domains are fully recovered using the method intro-
duced in source clustering (therefore we will just use
the hidden domains in Figure 3 to refer to the domain-
s constructed by clustering.) Suppose a user provides
three attributes title, author, and director. The localities
l1 and l2 are identified to be relevant to user’s query,
which correspond to two domains Books and Movies
respectively. Linking attributes title and format are p-
resented to the user, who specifies that title should be
treated as join attribute. The user further specifies
that author and director should be queried with values
she provides. In addition, hinted by the returned lo-
calities, she specifies that subject and genre should also
be queried. Therefore query (sb8 ⊲⊳ sm2)∪ (sb8 ⊲⊳ sm3)
is automatically determined as the final query. After
she fills the values for those attributes to query, pairs
of book (from sb8) and movie (from sm2 or sm3) that
have the same title specified by her and satisfy other
attribute values (author and subject for sb8, director and
genre for sm2 and sm3) are returned to her.

7 Related Works

Database sources on the Web has gained much at-
tention from the community recently. Ipeirotis et
al. [9, 12] classify and summarize contents of text
databases by sending probing queries to the sources.
Raghavan et al. [13] have built a crawler for the deep
web. Davulcu et al. [14] propose a 3-layer architecture
for querying Web sources with navigational query in-
terfaces. [11] discusses the wrapper generation tech-
niques, targeting at extraction of semantic information
out of HTML pages populated by backend databases.

Much work is focusing on schema matching, which
takes two schemas as input and produces a mapping

between elements of the two schemas that correspond
semantically to each other. The work on this topic is
surveyed in [15].

We can abstract the schema data studied in this
paper as market basket data (or transaction data) if
we view an attribute as a product item, and a schema
of attributes as a transaction of items. Association
rules [16] are used to identify frequently associated
products in market basket data. However, association
rules does not capture the concept of localities. As
discussed in [17], association rules can only represent
very fine-grained knowledge, thus too many valid as-
sociation rules would be found if applied on schemas,
and each rule contains a small number of attributes.
Conceptually, association rules only captures strong
perfect cliques in the attribute graph mentioned in Sec-
tion 2.3 because all attributes in a frequent attribute
set have to co-occur over the “support” [16].

Clustering is a technique for grouping data into clus-
ters so that data points within a cluster have high sim-
ilarity and data points across different clusters have
high dissimilarity. Surveys of different clustering algo-
rithms can be found in [18, 19]. Although bearing sim-
ilarities to clusters, the concept of locality distinguishes
from cluster a lot. First of all, traditional clustering
algorithms are not designed for clustering transaction
data. Second, they cluster data points instead of the
attributes of the points.

ROCK [7] is a clustering algorithm for transaction
and categorical attributes. It defines a novel simi-
larity measure for transactions, link, which uses the
common neighbors between two transactions as simi-
larity instead of using direct similarity measure such
as Jaccard coefficient. Based on link, ROCK employs
an agglomerative hierarchical clustering algorithm to
cluster transactions and categorical data.

The concept of link inspires us to develop contex-
t link between attributes in this paper. However,
ROCK [7] requires many carefully selected parame-
ters such as number of clusters, threshold for defining
neighbors based on which link is defined, and a im-
portant function defining the criterion function, which
measures the goodness of clusters. Moreover, the hi-
erarchical clustering methods generate a tree presen-
tation of the results, which has large size. Without
specifying the parameters such as number of clusters
and merging threshold, the tree presentation cannot
be turned into partitional result, and thus is difficult
to digest. However, our algorithm generate localities
which naturally correspond to domains.

[17] develops a method for clustering items in trans-
action data based on association rule hypergraph mod-
el. It first find frequent itemsets, based on which a
weighted hypergraph is constructed. Hypergraph par-
titioning [20] is performed on the association rule hy-
pergraph to find clusters. To achieve good clustering
results, this approach requires carefully selected pa-
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rameters. Only frequent attributes will participate in
clustering. This approach also assumes no overlapping
items across clusters, which contrasts with the signifi-
cant linking attributes in schema data.

8 Conclusions

In this paper, we develop a notion of attribute lo-
calities for schemas of deep Web sources. While au-
tonomous sources are seemingly independent, their
query schemas often reveal certain correlations, such
that sources in the same structured domain tend to
share a “locality” of query attributes. Such localities,
while useful for many integration tasks, are difficult to
discover. However, we find that the localities are self-
revealing, when attributes are linearly ordered in a way
reflecting their connectivities. Inspired by these obser-
vations, we propose a novel ordering-based approach
for discovering localities, which greedily and progres-
sively construct an attribute order according to the
connectivities between attributes. The experimental
results of our algorithm COLD on real Web sources ver-
ifies the effectiveness and practicality of our approach.
Three case studies on applications of attribute locali-
ties shows that attribute localities is promising for en-
abling systematic access to the structured deep Web
sources.
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Appendix
locality 1 locality 2 locality 3

Title ( AI AU B J MO MU )
ISBN ( B MO )
Author ( B MO )
Keyword ( AU B J MO MU )
Subject ( B MO )
Format ( B MO MU )
Publisher ( B MU )
Price ( AU B H MO MU )
Category ( AI AU B J MO MU )
Binding ( B )
Section ( B )
Content ( B MU )
Topic ( B )
Person ( MO )
Book Code ( B )
Theater ( MO )
Last Name ( B )
First Name ( B )
Description ( B MO MU )
Item Number ( B MU )
Publication Year ( B MU )
Series ( AU B )
First Edition ( B )
Signed ( B )
Dust Jacket ( B )
Publication Date ( B )
Print Status ( B )
Reader Age ( B )
Shipping Destination ( B )
Language ( B MO )
Date Added ( MO MU )

Music Category ( MU )
People ( MO )
Director ( MO MU )
Alibris ID ( B )
Added Within ( B )
Soundex ( B )
Award ( B )
Review Source ( B )
Vendor ( B )
Audience ( B )
Imprint ( B )
CBD Stock Number ( B )
User Level ( B )
Availability ( B )
Catelog Number ( B )
Item Description ( B )
Book Class ( B )
Annotation ( B )
Lexile ( B )
Interest Level ( B )
Reading Level ( B )
Dewey Decimal ( B )
Copyright ( B )
Reading Program ( B )
Review ( B )
Movie ( MO )
Code Number ( MO )
KeyWord ( MU )
Singer ( MU )
Player ( MU )

Director ( MO MU )
Actor ( MO MU )
Genre ( MO MU )
Rating ( AU MO )
Movie Title ( MO MU )
Artist ( B MO MU )
Synopsis ( MO )
Group ( B MO MU )
Media ( B MO MU )
Song Track ( MO MU )
Inventory ( MO MU )
Condition ( MO MU )
Band ( MU )
Software ( J MU )
Cast/Crew ( MO MU )
Decade ( MO )
Screenwriter ( MO )
Region Code ( MO )
Category ( AI AU B J MO MU )
Title ( AI AU B J MO MU )
Keyword ( AU B J MO MU )
Format ( B MO MU )
Catalog Number ( MO MU )
Studio ( MO )
Label ( MO MU )
Album ( MO MU )
Producer ( MO MU )
Album Title ( MO )
Song Title ( MO )
Movie Soundtrack ( MO )
DVD Title ( MO )
Character ( MO )
Similar Artist ( MU )
Video ( MU )
Photo ( MU )
Station ( MU )
Hardware ( MU )
News ( MU )
Rington ( MU )
Tour Date ( MU )

Catalog Number ( MO MU )
Label ( MO MU )
Composer ( MO MU )
Performer ( B MU )
Orchestra ( MU )
Conductor ( MU )
Media Type ( B MU )
Musician ( MU )
Song ( MU )
Album ( MO MU )
CD Title ( MU )
Ensemble ( MU )
Work Title ( MU )
Instrument ( MU )
Soundtrack ( MU )
Release Year ( MO MU )
Style ( AU MU )
Record Label ( MU )
Sub Category ( MU )
Music Type ( MU )
Title ( AI AU B J MO MU )
Format ( B MO MU )

Artist ( B MO MU )
Recording Name ( MU )
Venue ( MU )
Recording Quality ( MU )
Guest ( MU )
Video Title ( MU )
DVD ( MU )
Track ( MU )
Album Info ( MU )
Raga ( MU )
Speed ( MU )
Date Added ( MU )
Track Artist ( MU )
Track Title ( MU )
CD Release Year ( MU )
Barcode ( MU )
Guest Artist ( MU )
Catalog Code ( MU )
Release Month ( MU )
Composition ( MU )
Piece ( MU )
Soloist ( MU )

locality 4 locality 5 locality 6
Producer ( MO MU )
Studio ( MO )
Writer ( MO MU )
Department ( B MO )
Part Number ( AU MO )
Release Date ( B MO )
Starring ( MO )
DVD Release Year ( MO )
Theatrical Release Year ( MO )
Special Feature ( MO )
Closed Caption ( MO )
Category ( AI AU B J MO MU )
Title ( AI AU B J MO MU )
Price ( AU B H MO MU )
Rating ( AU MO )
Format ( B MO MU )
Actor ( MO MU )
Director ( MO MU )
Genre ( MO MU )
Date ( AU )
Language Audio Track ( MO )
Picture Format ( MO )
Subtitle ( MO )
Audio Type ( MO )
Certificate ( MO )
Wide Screen ( MO )
Keywords ( MO )
Regional Coding ( MO )
Video Format ( MO )
Audio Encoding ( MO )
Production Year ( MO )
Subtitle Language ( MO )
Audio Language ( MO )
Version ( MO )
Tomatometer ( MO )
Plot ( MO )
Legend ( MO )
Editor ( MO )
Cinematographer ( MO )
Sound ( MO )
Running Time ( MO )
Extra Info ( MO )

Check Out Date ( H )
Check In Date ( H )
Number of Rooms ( H )
Airport Code ( C H )
Property Type ( H )
Adults per Room ( H )
Hotel Chain ( H )
Hotel Name ( H )
Amenities ( H )
Smoking ( H )
Bed Type ( H )
Number of Beds ( H )
Number of Guests ( H )
Rate ( H )
Number of Nights ( H )
Lodging Type ( H )
Arrival Date ( H )
Room Type ( H )
Facilities ( H )
Radius ( AU H J )
Currency ( AI B C H )
Number of Adults ( AI H )
State ( AU B C H J MU )
Postal/Zip Code ( AU C H J )
City ( AU B C H J MO )
Number of Cribs ( H )
Star Rating ( H )
Arriving Day ( H )
Hotel Brand ( H )
Address ( H )
Details ( H )
Activities ( H )
Hotel Type ( H )
Local Region ( H )
Date Uploaded ( MU )

State ( AU B C H J MU )
City ( AU B C H J MO )
Country(AU B C H J MO MU)
Profession ( J )
End Date ( H J )
Start Date ( C H J )
Industry Sector ( J )
Job Level ( J )
Sector ( J )
Travel ( J )
Date Listed ( J )
Industry Category ( J )
Position Type ( J )
Company Name ( J )
Location ( AU B C H J )
Job Type ( J )
Salary ( J )
Industry ( J )
Education ( J )
Job Title ( J )
Company Type ( J )
Experience Level ( J )
Experience ( J )
Date Posted ( J )
Discipline ( J )
Degree ( J )
Job Category ( J )
Job Skill ( J )
Date Range ( J )
Employment Type ( J )
Company ( J )
Postal/Zip Code ( AU C H J )
Keyword ( AU B J MO MU )
Check In Date ( H )
Check Out Date ( H )
Hotel Name ( H )
Number of Rooms ( H )
Car Group ( C )
Start Time ( C )
Finish Date ( C )
Finish Time ( C )
Delivery to Address ( C )
Puck Up Location ( C )
Job ID ( J )

Work Type ( J )
Job Detail ( J )
Job Location ( J )
Career Type ( J )
Provice ( J )
Corporate Partner ( J )
Commute ( J )
Role Title ( J )
Tax Term ( J )
Field Experience ( J )
Length ( J )
Specialty ( J )
Position Category ( J )
Management ( J )
Entry Level ( J )
Sate ( J )
Job Area ( J )
Employment Level ( J )
Job Duration ( J )
Employer Name ( J )
General Vicinity ( J )
Skill ( J )
Business Travel ( J )
Schedule ( J )
Company Size ( J )
Job Posted By ( J )
Visa Sponsorship ( J )
Field ( J )
Duration ( J )
Organization Type ( J )
Position Description ( J )
Job Freshness ( J )
Time Period ( J )
Job Sector ( J )
Travel Level ( J )
Relocation Cost Paid ( J )
Employer ( J )
Skill Title ( J )
Function ( J )
Job Description ( J )
Mode ( J )
Job Date ( J )
Role ( J )

locality 7 locality 8 locality 9
Number of Adults ( AI H )
Number of Children ( AI H )
Departure Date ( AI H )
Return Date ( AI C )
Departure Time ( AI )
Return Time ( AI C )
Destination City ( AI )
Area Code ( AU )
Brand ( AU )
Leaving From ( AI )
Going To ( AI )
One Way ( AI )
Round Trip ( AI )
Number of Infants ( AI )
Number of Seniors ( AI H )
Class ( AI AU )
Airline ( AI C )
Number of Passengers ( AI )
Departure City ( AI )
Cabin ( AI )
Destination ( AI H )
Arrival City ( AI )
NonStop ( AI )
Service Class ( AI )
Number of Connections ( AI )
Number of Stops ( AI )
Number of Travelers ( AI )
Travel Class ( AI )
Fare Type ( AI )
Return City ( AI C )
Cabin Class ( AI )
Origin ( AI )

Number of Tickets ( AI )
Vacation Destination ( AI )
Cruise Destination ( AI )
Cruise Ship ( AI )
Type of Class ( AI )
Number of Babes ( AI )
Frequent Flyer Number ( AI )
Multi Cities ( AI )
Leaving On ( AI )
Returning On ( AI )
eCertificate ( AI )
Pricing Option ( AI )
Avoid Change Penalties ( AI )
No Advance Purchase-
Restrictions ( AI )
Direct Flights Only ( AI )
Preferred Airlines ( AI )
Departing From ( AI )
Departing Date ( AI )
Booking Class ( AI )
Fare ( AI )
Class of Service ( AI )
Reference Code ( AI )
Certificate Number ( AI )
Maximum Bid Amount ( AI )
Auction Number ( AI )
Package Type ( AI )
Auction Ending Before ( AI )
Promotion Code ( AI )
Number of Youth ( AI )
Multiple Destinations ( AI )

Flight Number ( C )
Pick Up Date ( C )
Pick Up Time ( C )
Drop Off Date ( C )
Drop Off Time ( C )
Pick Up Location ( C )
Drop Off Location ( C )
Pick Up City ( C )
Car Type ( AU C )
Drop Off City ( C )
Air Conditioning ( C )
Transmission ( AU C )
Car Rental Company ( C )
Car Class ( C )
Drop Off Country ( C )
Pick Up Country ( C )
Country of Residence ( C )
Car Category ( C )
Driver’s Age ( C )
Preferred Agencies ( C )
Return Location ( C )
Street ( C H )
Vehicle Class ( C )
Rental Location ( C )
Pick Up Point ( C )
Car Transmission ( C )
Vicinity ( C )
Rental Car Company ( C )
Travelers ( C )

Postal/Zip Code ( AU C H J )
Year ( AU MO )
Make ( AU )
Model ( AU )
Mileages ( AU )
New ( AU )
Used ( AU B MO MU )
Distance ( AU J )
Body Style ( AU )
Color ( AU )
Options ( AU )
Number of Cylinders ( AU )
Number of Doors ( AU )
Fuel Type ( AU )
Pre-Owned ( AU )
Vehicle Type ( AU )
Engine Size ( AU )
Body Type ( AU )
Vehicle ( AU )
Payment Method ( AU )
County ( AU )
Dealer ( AU )
Stock Number ( AU MO )
Type ( AU B MO MU )
Manufacturer ( AU MO MU )
Region ( AU J MU )
Postcode ( AU )
Area ( AU H J )

E-mail Address ( AU )
Size ( AU H )
Price ( AU B H MO MU )
Transmission ( AU C )
Awards ( AU )
Item Location ( AU )
Internet Price ( AU )
Body ( AU )
Lease Period ( AU )
Monthly Payment ( AU )
Drive Type ( AU )
Number of Seats ( AU )
Fuel Efficiency ( AU )
Features ( AU )
Odometer Reading ( AU )
Seller Type ( AU )
Listing Type ( AU )
Sale Type ( AU )
Engine ( AU )
Number of Sears ( AU )
Trade or Private ( AU )
Registration Year ( AU )
Drive Wheels ( AU )
Purchase Time ( AU )
Type of Vehicle ( AU )
Model Description ( AU )
Classification ( AU )

Figure 12: Results of the Algorithm COLD for sources in our Deep Web Repository
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