
Query Routing: Finding Ways in the Maze of the Deep Web

Govind Kabra Chengkai Li Kevin Chen-Chuan Chang
Department of Computer Science, University of Illinois at Urbana-Champaign

gkabra2@uiuc.edu, cli@uiuc.edu, kcchang@cs.uiuc.edu

Abstract

This paper presents a source selection system based on
attribute co-occurrence framework for ranking and select-
ing Deep Web sources that provide information relevant to
users requirement. Given the huge number of heterogeneous
Deep Web data sources, the end users may not know the
sources that can satisfy their information needs. Selecting
and ranking sources in relevance to the user requirements is
challenging. Our system finds appropriate sources for such
users by allowing them to input just an imprecise initial
query. As a key insight, we observe that the semantics and
relationships between deep Web sources are self-revealing
through their query interfaces, and in essence, through the
co-occurrences between attributes. Based on this insight,
we design a co-occurrence based attribute graph for cap-
turing the relevances of attributes, and using them in rank-
ing of sources in the order of relevance to user’s require-
ment. Further, we present an iterative algorithm that real-
izes our model. Our preliminary evaluation on real-world
sources demonstrates the effectiveness of our approach.

1. Introduction

The Web has been rapidly “deepened” by the massive
Web data-sources: While the surface Web has linked bil-
lions of HTML pages, a far more significant amount of in-
formation is hidden in the deep Web, behind query forms
of the Web data-sources like amazon.com. These Web data-
sources are often also referred to as hidden or invisible Web.
The July 2000 survey [3] claims that there are 500 bil-
lion hidden pages in

� � �
Web data-sources. Another study

[5] estimates 450,000 such Web data-sources. Recently, at-
tempts towards integrating such large scale deep Web data-
sources has gained much attention. We discuss some of the
research efforts related to our paper in Section 6.

Information underlying numerous such Web data-
sources cannot be accessed directly through static URL
links. These sources allow the users to access the under-
lying information by querying through their query inter-
faces. With myriad data-sources on the Web, a user may not
know the sources that can satisfy her information require-
ments. Consider, user Amy in New York who is joining the
graduate school in Chicago. What are the data-sources that
can book her flight from New York to Chicago (e.g., or-
bitz.com)? Where can she purchase books for her grad-
uate studies (e.g., barnesandnoble.com)? Where can she
find a part-time job (e.g., monster.com)? In the deep-Web
there may be many sources that can satisfy her infor-
mation needs, but she may not be aware of their ex-
istence. This paper presents a system that provides a
solution to this important problem: While the num-
ber of Web data-sources are in the order of

� � �
, how to find

the data-sources that are most relevant to the user’s require-
ments?

Finding the relevant sources is challenging because the
user’s information requirement may not be distinctively
clear. In our earlier example, Amy is interested in buying
books for her graduate studies, but it is not distinctively
clear whether she is interested in graduate books, or sci-
ence books, or literature, or publications, or journals. The
information requirements of users cannot be enumerated.
We shall refer to users information requirement as her do-
main of interest.

Different users may be interested in different domains,
thereby making the notion of domain very ad-hoc in nature.
Further, the information that a user can access naturally de-
pends on what is available on the deep web, and thus is dy-
namic. Thus, the domain of interest is ad-hoc, dynamic and
not distinctively enumerated, and thus finding sources rele-
vant to users domain of interest becomes very challenging.

However, observe that the query interfaces of the data-
sources contain the attributes that tend to describe the in-

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 06,2010 at 21:40:03 UTC from IEEE Xplore. Restrictions apply.

formation accessible through them. For example, the query
interface of a source like barnesandnoble.com contains at-
tributes such as author, title, ISBN, etc., indicating that it
is about books. The query interface of orbitz.com contains
attributes such as from, to, departure date. Hence, even
though the domain of interest may not always be distinc-
tively clear, user would know certain attributes that tend to
describe the object of her interest and therefore, are also
likely to be used on the query interface of a relevant data-
source. Capitalizing on this observation, we attempt to build
a source selection system, where user may specify a set of
attributes as input, and the system finds the sources that are
most relevant to the information requirements of user. For
instance, in earlier example, Amy can give an input query:
(from, to, departure date) to find sources that allow her to
book airline tickets.

The system we propose in this paper is robust to the in-
completeness or impreciseness in user queries. This require-
ment becomes necessary with the observation that the users
may not be aware of all the attributes, or even the best at-
tributes for their domain of interest. In earlier example, for
the query given by Amy, there are many other attributes,
such as cabin, airline, number of passengers, trip type that
are also relevant, but not specified in her query. Under such
situation, the user query shall be incomplete and imprecise.
As we shall see later, our system is able to find relevant an-
swers even under such situations, and thus frees the user
from the worries of choosing the best set of attributes to
query our system.

The key insight, underlying the solution we develop,
is that though the autonomous heterogeneous sources are
seemingly independent, the information they provide is
“self-revealing” through the attributes used in their query
interfaces. To be more specific, we observe following two
mutually recursive phenomenons:

� Relevant attributes occur in relevant sources: The
attributes that occur often in sources relevant to some
domain are more relevant to that domain.

� Relevant sources contain relevant attributes: The
relevance of a source to some domain is reflected by
the relevance of attributes used in its query interface.

As a consequence of above phenomenons, the attributes
that are relevant to some domain co-occur with other at-
tributes relevant to that domain very often. In other words,
if some attributes are known to be relevant to a domain then
an attribute that co-occurs often with these attributes is also
likely to be relevant.

Based on this observation, our system constructs a co-
occurrence based attribute linkage graph. Using this graph,
and the user query, it finds the relevance of other attributes.
Using the attribute relevances thus obtained, the system then
finds the relevance scores for sources.

The co-occurrence based attribute relevance modeling is
based on recursive observations and thus develops a recur-
sive reinforcing relation for estimating attribute relevances.
To make this model usable in an online system, we develop
an iterative algorithm that can compute the attribute rele-
vances on-the-fly, and thus rank the sources in order of rel-
evance to users interest.

In IR community, models have been developed to find
the Page-Rank [4] or hub-authority scores [13] of web pages
using the hyperlink based web graph. However, these mod-
els are not directly applicable to our problem setting. In Sec-
tion 2, we contrast these models with the underlying model
of our system.

Many recent research efforts in the direction of large
scale integration [9, 17, 10, 16] focus on “domain-based”
integration issues, i.e., integrating the sources that provide
access to similar type of objects. As an input to their system,
these solutions require set of sources that are all about same
domain. Clearly, such set of sources are not readily avail-
able, and requires tiring manual collection. In this regards,
the methodology presented in this paper can be used to auto-
mate the process of generating input for such domain-based
information integration solutions.

In sum, the main contributions of this paper are:

� We propose a novel attribute co-occurrence graph
for modeling the relevance of attributes.

� We present an iterative algorithm that computes at-
tribute relevances given just an imprecise user query,
and thus find the relevant sources.

� We report experiments based on dataset of real Web
sources. Our preliminary results demonstrate the ef-
fectiveness of our approach.

The remainder of the paper is organized as follows: In
Section 2 we present the co-occurrence based attribute link-
age graph, develop a framework to compute the attribute
relevances and explain how to rank the sources using the at-
tribute relevances. In Section 3, we give the details of our it-
erative solution that computes the attribute relevances, and
thus ranks sources. A preliminary experimental evaluation
of our approach is given in Section 4. We summarize the fu-
ture research directions that we intend to pursue in Section

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 06,2010 at 21:40:03 UTC from IEEE Xplore. Restrictions apply.

5. Finally, we discuss research efforts related to our work in
Section 6, before we conclude our paper in Section 7.

2. Foundation: Attribute and Source Rele-
vance

We begin this section with a formal specification of our
problem. We then present the attribute co-occurrence based
linkage graph. Next, we describe how we model the rele-
vance of attributes to the domain of interest to user. Finally,
we explain how we use these relevance to rank sources.

2.1. Problem Specification

Given the set of web data-sources and a user query con-
taining a set of attributes, our goal is to find the set of
sources that are most likely to satisfy the user’s informa-
tion requirements. Below we give some notations that we
use throughout this paper.

Definition 1 (Web DataSources): We apply our algorithm
on a set of data-sources

� � � � � 	 	 	 � � �
 �
. Each

� � �
has an as-

sociated set of attributes occurring on its query interface de-
noted by � �

. The attribute vocabulary set, � , is defined as
union of the set of attributes on each of these data-sources,
i.e., � � � � �

.

Definition 2 (Source Ranking): Given web data-sources
and a user query � � � � � � 	 	 	 � � � # �

, the goal is to find a
source ranking, % = & � � ' � � 	 	 	 � � � '
 *

, in the order of rele-
vance to � .

2.2. Attribute Co-Occurrence Graph

Every data source has a query interface containing a set
of attributes. A user can access the information underlying
these data sources by specifying values for these attributes.
These attributes tend to give an indication of the type of in-
formation accessible through the query interfaces they oc-
cur in.

Consequently, the attribute sets corresponding to the
query interfaces of different sources providing similar in-
formation are likely to have many common attributes. For
example, consider the query interfaces at the data sources -
amazon.com and barnesandnoble.com providing informa-
tion about books. Both of them contain the attributes - au-
thor, title, publisher, ISBN. However, one should carefully
note that all the sources that provide similar information do
not have exactly the same set of attributes on their query in-
terfaces. More specifically, there may be some attributes in

� that occur in large number of such data sources, while
there may be some other attributes that occur in fewer of
these data sources, and rest of the attributes not occurring
at all in any of these sources. An attribute that is more fre-
quent across the query interfaces of sources providing sim-
ilar information can be expected to be more important, i.e.,
a source where such attribute occurs is more likely to pro-
vide the similar information. In order to quantify this impor-
tance measure, we associate a relevance score with each at-
tribute. This relevance score represents how likely a query
interface containing this attribute will provide information
of interest to user.

We develop a methodology wherein relevance of at-
tributes is determined using the relevances of other at-
tributes. We discuss in more detail about this in Section
2.3. In this section we now describe the details of our co-
occurrence based attribute graph.

In this graph view, there is a vertex (also referred to as
node) corresponding to each attribute in the attribute vocab-
ulary. Two attributes are said to co-occur if they are both
present in some source. The attribute co-occurrence graph
has weighted directed edges between any two nodes corre-
sponding to some co-occurring attributes. We detail how to
determine the weights for these edges shortly. Before that,
we would like to draw attention of our readers to the follow-
ing observation.

A graph constructed as above shares some similarity
with the hyper-link based web graph used by search engines
(e.g., google.com). The nodes in two graphs correspond to
attributes versus web pages. The edges are directed in both
the graphs. The weights of these edges in attribute graph
model is based on the number of sources the two attributes
co-occur in, while in the web graph the weights are based on
the hyper-links between pages. Such a web graph is used by
search engines to determine the importance(or page rank) of
different web-pages. We develop similar framework to de-
termine the relevance score for each of the attributes.

Inspite of various similarities that our approach shares
with page rank modeling, the two approaches have a sharply
distinguishing aspect. The page rank is concerned about
finding the static importance of every page, while in our
case, we determine the relevance of an attribute for every in-
put query. More specifically, we do not have any notion of
static importance of an attribute. For every user query, we
apply our framework to determine the relevance of each at-
tribute to the users interest.

Now we describe how the edge weights are determined
in co-occurrence based attribute graph. Then we move on to

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 06,2010 at 21:40:03 UTC from IEEE Xplore. Restrictions apply.

discuss how we use this graph to model attribute relevances.

We denote the weight of the directed edge � � � � � � �
,

between the nodes corresponding to attributes
� �

and
� �

as� � �
. This weight gives the conditional relevance measure

of attribute
� �

given the attribute
� �

is known to be rel-
evant. The idea here is that more frequently the attribute� �

co-occurs with
� �

as compared to other attributes co-
occurring with

� �
, higher is the degree to which it gets the

relevance induced from
� �

. Thus, this weight gives the de-
gree to which relevance is induced from

� �
to

� �
. Mathe-

matically, if � �
 � � � �
 � � � � � � � � � � �
denote the number of

sources that attributes
� �

and
� �

co-occur in, then � � �
is

given by following expression.

� � � � � �
 � � � �
 � � � � � � � � � � �
� � 	 � � � �
 � � � �
 � � � � � � � � � � � (1)

2.3. Attribute Relevance Modeling

The user query contains a set of key attributes that the
user thinks will be relevant to her information needs. This
means that these are the set of attributes that are likely to be
used in query interfaces of the sources that provide infor-
mation that is of interest to user.

As motivated earlier, the user query is both incomplete
and imprecise. It is incomplete because there may be some
attributes that are not specified in the input query, but may
occur in the query interfaces of sources of interest to user.
It is imprecise because the key attributes do not necessarily
have to occur in the query interfaces of sources of interest
to user. As we mentioned in Section 2.2, we associate with
each attribute a relevance measure. This relevance measure
indicates how likely the attribute is to be used in a query in-
terface of interest to user. In this section we describe how to
model these relevance measures.

The attributes that are specified in the user query have
strong relevance to users interest. There may be some other
attributes that are not present in the user query, but occur in
many of the data sources in which the input attributes oc-
cur. There is a strong likelihood that these attributes that co-
occur with input attributes are also relevant. Furthermore,
the attributes that co-occur with these set of attributes are
also likely to have some relevance to user query, and so on.

Essentially, any relevant attribute shall lead to increas-
ing the relevance of its co-occurring attributes. Such prop-
agation of relevances may take place over multiple hops of
co-occurrences, thereby resulting in each attribute having
some relevance to user query.

In order to discriminate the attributes on the basis of their
degree of relevances, we need to carefully model such rele-
vance propagation. We use a model similar to the page rank
model, where some important page induces all the pages to
which it has hyperlinks in proportion to the strength of the
outward hyperlink based edges. In our case also, an attribute
influences each of its co-occurring attribute in proportion to
the weights of the outgoing edges it has to those attributes.
The relevance of an attribute is determined by aggregation
of the relevances induced by each of its co-occurring at-
tributes. For the purpose of this paper, we use an additive
scheme to aggregate the relevances coming in via different
incident edges, and leave the study of other sophisticated
combination functions to future study.

Let us denote the relevance of an attribute
� �

by � � � � �
,

then the formulation we obtain is as follows:

� � � � � � � " � � $ � &
 � � � � � � � � � �
(2)

The decay factor

in this formulation implies that when
a node influences its co-occurring attributes, it does this
only by a fraction

of its own relevance measure. This

has correspondence to the Page-Rank model where from
the current page the random surfer takes one of the outgo-
ing links with some probability,

, and jumps to any arbi-

trary page with probability � � (
 �
. Such a decay factor is

important in our model because there could be cycles in our
graph, and the relevances may keep propagating infinitely
along these cycles.

It is important to note here that these attribute relevance
measures are not probabilities. But they give us a relative
measure to discriminate between different attributes with
regards to their degree of relevances.

Notice that the formulation in Equation 2 involves all
the attributes in � , which may contain attributes that never
co-occur with

� �
. This broad inclusion is not inconsistent

with our development because for such attributes the edge
weight, � � �

, will be zero.

2.4. Source Relevance

Now we describe how to use the attribute relevance for-
mulated as described above to find the relevance score for
different sources. Every data source has a set of attributes
on its query interface. The relevances of attributes give a
measure of how likely the interfaces on which they oc-
cur are of interest to user. Consequently, the sources that
contain more attributes with higher relevances are going

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 06,2010 at 21:40:03 UTC from IEEE Xplore. Restrictions apply.

to have higher likelihood of being relevant to users infor-
mation requirements. If a source contains, many attributes
with lower relevance, it is likely that the information pro-
vided by such a source is not of interest to user. Therefore,
the source relevance score formulation should give higher
score to the sources that contain more number of high rele-
vance attributes and less number of low relevance attributes.
Mathematically, the score for a data source

� � �
is denoted

as
� � � � � � � � � �

, and is given by:

� � � � � � � � � � 	
� � 	 �
 � �
 �

� � � � (3)

In the above formula, normalization with
� � � �

, i.e., the
number of attributes on the query interface of

� � �
, is nec-

essary as this would penalize the sources having attributes
with lower relevances. Thus using this function assigns high
score to sources that contain more number of high relevance
attributes, and lesser number of low relevance attributes.

The above ranking function is very simple in nature.
There is a wealth of ranking functions that have been stud-
ied in IR research. In order not to lose our focus, we leave
investigation of other scoring functions for future explo-
rations.

However, we would like to draw the attention of our
readers to the contrast between above scoring function and
TFIDF, a very popular scoring measure in IR domain.
Firstly, in order to capture the importance of any key-word,
TFIDF penalizes it by its frequency across the documents,
while in our solution, we have the estimates of the relevance
of each attribute readily available. Secondly, we want to pe-
nalize the sources where some attributes are not very rele-
vant, and realize this using normalization with

� � � �
.

From the discussion so far, the above two step pro-
cedure for finding relevant sources seem to be complete.
But if we observe Equation 2 carefully, we see that it is
a recursive reinforcement formulation where estimation of
relevance value for

 �
requires these estimates for all at-

tributes co-occurring with

 �

. For a non-trivial attribute
co-occurrence graphs, the relevance estimates for all co-
occurring attributes may not be available when we have to
compute the relevance of

 �
. The complexity of this prob-

lem becomes more evident with the realization that the at-
tributes co-occurring with

 �
cannot themselves estimate

their own relevances unless the relevance of

 �

is known.
Similar recursive formulations have also been encoun-

tered for computing Page Rank of a page, which depends
on the Page-Rank of other linked pages. In such situations,
iterative solutions have been developed that eventually con-
verge to the correct estimates.

As we already mentioned earlier, that Page Rank needs
to be computed in an off-line fashion, therefore efficiency
issues are not as critical to the solutions developed. In con-
trast, in our problem setting, we need to run our solution in
an online fashion for every user query.

This requirement makes the designs of iterative solutions
for page rank computation unsuitable in this scenario. In
next section, we present an alternative iterative algorithm
that allows for attribute relevances to be computed in an on-
line fashion. Note, however, that the source ranking proce-
dure using the attribute relevances thus obtained remains the
same as discussed above.

3. Online Algorithm: Iterative and Progres-
sive

We now present an algorithm that iteratively estimates
the attribute relevance values. The general idea is that the
relevance score of some attribute is re-estimated at each it-
eration, thereby triggering changes in relevance scores of
some other attributes. These affected attributes are then
queued up for updation of their relevances in future itera-
tions.

We begin this section by giving a very simpli-
fied view of the estimation mechanism. Suppose at
some iteration, attribute relevance is � for

 �
and is� �

for rest of the attributes

 �

. From Equation 2, we
know that � 	 � �
 	 � � � � �
 � � �
 � �

. Now suppose
at some iteration, � �
 � �

changes from � �
to � � �

, re-
sulting in � �
 � �

to change from � to � � , such that,
� � 	 � � � � � � 	 � �
 	 � � � � � � � �
 � � �
 � �

.
Instead of updating � to � � as above, we alternatively up-

date � �
 � �
using the following mechanism. We show that

the estimate for � �
 � �
obtained thus is also � � .

To begin with, we calculate � � �
, a quantity that would be

used to adjust � �
 � �
to account for the change in � �
 � �

.

� � � 	 �
 � � �
 � � � � � � � �
(4)

Now we apply � � �
on to the old estimate of � �
 � �

, � , to
give us its new estimate, � �

, as follows:

� � 	 � � � 	 �
	 �
 � � �
 � � � � � � � � 	 ��
 	 � � � � �
 � � �
 � �

	 �
 � � �
 � � � 	 ��
 	 � � � � � � �
�
 � � � � �

Thus we see that estimate, � �
, obtained above is exactly

the same as � � .

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 06,2010 at 21:40:03 UTC from IEEE Xplore. Restrictions apply.

Informally speaking, when � � � � �
changes from � �

to� � �
, node

� �
informs node

� �
about this change by send-

ing it a quantity � � �
. Node

� �
then applies � � �

on its current
relevance estimate, � , to adjust it to a new value � �

. This al-
ternative mechanism forms the basis for our algorithm.

At each iteration, our algorithm adjusts the relevance
score of one of the attributes that has some pending � . We
call this procedure as expanding the attribute node. In gen-
eral situation, we may not be able to expand

� �
immedi-

ately following the expansion of
� �

. This may happen if we
choose to expand some other attribute nodes for next sev-
eral iterations. During these iterations, the relevance scores
of some more co-occurring attributes of

� �
may change, and

they would send appropriate � value to node
� �

. Moreover,
we could have chosen to expand some co-occurring node
of

� �
more than once during these iterations, which means

there could be more than one � value pending from any of
the co-occurring node of

� �
. All the � values transferred to� �

need to be memorized until the iteration in which we ex-
pand

� �
.

For such memorization, we maintain a quantity � � with
every attribute

� � , which is set to zero whenever
� � is ex-

panded. While expanding
� � , � � is applied on its current

relevance score, � � , thereby changing it to � �
� , such that� �

� � � � � � �
Corresponding to this change,

� � transfers some � �
� �

to each of its co-occurring attribute
� �

, such that � �
� � �� � � �

� � � � � �
�

� � � �
.

Each of these co-occurring attributes aggregate incom-
ing � �

� �
with their � �

values such that � �
� � � � � �

� �
.

Thus, every time node
� � receives some � resulting from

expansion of one of its co-occurring attribute, it updates � �
value. Eventually, at some iteration when

� � is expanded,
� � is applied to its most recent estimate for relevance score
to obtain a new estimate.

Having informally discussed our iterative algorithm, we
give a high-level description of the algorithm in Figure 1.

Higher the value of � , higher is the change in relevance
score. Consequently, higher are the values of � transferred
to co-occurring nodes. Thus, the higher value of � are ex-
pected to trigger larger changes. We, therefore, prioritize
our node expansion in the order of pending � .

Such careful prioritization implies that the nodes expect-
ing higher changes in relevance values will be expanded ear-
lier. In contrast, the earlier work on Page Rank computation
estimates the page rank of every page at every iteration. In
our system, there is no notion of static relevance measure,
but the relevance measure here needs to be computed for

Input:
� 	 : input query attributes.

Output:
�
 : ranked list of sources

Procedure:
01. � � � 	 	 , � � �

1; UPDATEORADD(� ,
� � � � �

)
02. while � is not empty and limit not reached
03. (

� � � � �)
�

POP � � �
04. � �

�
P[u]

05. � �
�

� � � � � �
06. for each

� � 	 � � � � � � �
 � � � �
07. (

� � � � �
)

�
PEEP � � � � �

//if it doesn’t exist set � �
to

�

08. � �
� � � � � � �

� � � � � �
�

� � � �
09. � � � � � � � �

� �
10. UPDATEORADD(� ,

� � � � �
)

11. P[u]
� � �

�
12.

�
RANKSOURCES � � �

13. return

Figure 1. Online Iterative Algorithm

every user query. Our iterative mechanism allows us to it-
erate on those attributes whose relevance values are likely
to undergo higher changes. Such methodology is, therefore,
more suited to our problem setting.

More recent works on developing algorithms for faster
page rank computation essentially iterate more on those set
of pages that are expected to have higher changes in their
page ranks. We believe our solution can also be extended
for faster page rank computation and thus offers an alterna-
tive to these recent developments. Further investigation on
this is beyond the scope of this paper, and have been left to
future studies.

4. Experimental Evaluation

We begin this section by presenting the experimental
setup. Then we present results of several experiments, and
also give insight into how our algorithm is able to retrieve
good quality results.

We manually collected a dataset of Deep Web Sources
using Web Directories(e.g., invisibleweb.com, bright-
planet.com, webfile.com) and Web search engines (e.g.,
google.com). The dataset contains 494 Web query in-
terfaces and totally 370 attributes providing informa-
tion about diverse domains, viz., airfares, automo-

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 06,2010 at 21:40:03 UTC from IEEE Xplore. Restrictions apply.

� � � � �
 �
 � !

� � � � � # � � � � % � � � � & � (� �) * , . !

� � � � � 0 � � � 3 � � � � � � (� � � & 6 � !

� � � � � 8 � 9 � � : � � (; � � � � � � & 9 � !

� � � � � @ � � & � (� � � 6 � � � � � & � � 6 � � � !

� � � � � D �
 � � � � � � !

� � � � � F �
 � � � � � � � � � � (� � 6 % & (� !

Figure 2. Test Queries

biles, books, car rentals, hotels, jobs, movies, and music
records. This dataset is part of the UIUC Web Integra-
tion Repository and available on-line for public viewing at
http://eagle.cs.uiuc.edu/metaquerier.

We extracted the query interfaces of these data sources.
These query interfaces are designed by Web programmers,
who use some text that describe the attributes. We find that
the text used to describe the same attributes on different
query interfaces may differ to various degrees, ranging from
some minor syntactic variations, to the use of synonymous
words. The dataset we use in following experiments has
been obtained by manually applying simple cleaning rules
on the original dataset.

To evaluate the effectiveness of our algorithm we tested it
over various queries listed in Figure 2. The algorithm takes
as input the set of attributes in the user query. For instance,
if a user is interested in buying airline tickets, then the in-
put attributes of the query can be (from, to, departure date,
destination date), as shown in Query 1 of Figure 2.

4.1. Quality of Results

We run our algorithm for each of the input queries in Fig-
ure 2, iteratively until � values fall below 0.001. We set the
value of

�
at 0.85. Upon termination, the algorithm has a

relevance value associated with each attribute. We summa-
rize the top-5 attributes for each of the test query in Fig-
ure 3(a). The algorithm then uses these attribute relevances
to compute a relevance score for each data source. We sum-
marize the top-30 sources returned by this algorithm in Fig-
ure 3(b).

The y-axes of the two figures correspond to the test
Queries 1-7, while the x-axes has the id numbers of at-
tributes (Figure 3(a)), and of data sources (Figure 3(b)). A
point (x, y) in Figure 3(b) represents that the source with in-
dex x was in the top-30 data sources for Query y. Similarly

in Figure 3(a), it would represent that the attribute with id
number x was in the top-5 attributes for Query y.

Observe the results for Query 1, Query 2 and Query 3.
The set of top-5 attributes for these queries have small over-
lapping, and the top-30 sources are very different. This
should not be surprising because these queries corre-
spond to users who are interested in very different types
of sources, viz., airlines, books and automobiles, respec-
tively. Thus we see that our algorithm is able to identify the
sources that best correspond to domain the user is inter-
ested in and does not output sources that are not related to
that domain.

While on the other hand, Query 4 and Query 5 have many
common top-5 attributes; Also, they have some top-30
sources that are different, while a set of sources are present
in top-30 results for both the queries. These queries are for
e-commerce Web sites for Music Records and Movies. In
the real Web, there are some sources that only sell either
Music Records, or Movie CD. While there are many Web
sources that would give access to both types of contents,
and require the user to specify the values for attributes that
are related to both domains. Using this algorithm we are in-
deed able to return both categories of sources.

Robustness to imprecise and incomplete queries
We now demonstrate a very appealing property of our

system. Observe that, Query 1, Query 6, and Query 7 are all
likely to be posed by a user who is interested in e-commerce
Web sites in airfare domain. These queries differ in terms of
the input attributes. This is likely to happen very often, be-
cause users of our system may not always know the best set
of attributes for the domains they are interested in. Observe
the top ranked attributes and the top ranked sources ob-
tained for these 3 queries in Figure 3(a) and Figure 3(b) re-
spectively. As we can see, the results obtained are very sim-
ilar disregarding the variation in the input query attributes.

This property of our system frees the user to worry about
finding the right set of attributes to query with. Even with
a set of attributes that may not best describe the type of
sources she is interested in, the algorithm will be able to di-
rect her to the right set of sources.

Zooming into the Graph: Finding other relevant at-
tributes

In this experiment, we study the attributes with high rele-
vance. In interest of space, we limit this discussion to Query
1. This query is likely to be posed by a user who is interested
in finding some e-commerce Web sites that provide infor-
mation about airfares. We summarize the top-15 attributes
for this query in Figure 4.

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 06,2010 at 21:40:03 UTC from IEEE Xplore. Restrictions apply.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350

Q
ue

ry
 N

um
be

r

Attribute Indexes

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450 500

Q
ue

ry
 N

um
be

r

Source Indexes

(a) Top-5 attributes for each query (b) Top-30 sources for each query

Figure 3. Evaluation over Test Queries

Rank (Index) Name
1 (6) departure date
2 (7) return date
3 (18) to
4 (4) from
5 (9) adult
6 (10) child
7 (16) trip type
8 (8) class
9 (19) return

10 (12) infant
11 (1) city
12 (14) departure
13 (15) senior
14 (28) airline
15 (2) destination

Figure 4. Top15 relevant attributes for Query
1

The top-4 attributes in Figure 4 are contained in Query
1. Based on the co-occurrence analysis, the algorithm is
able to zoom into one region of the attribute connectivity
graph, and is able to find other attributes that are also rele-
vant. In particular, attributes - adult, child, infants, trip type,
cabin and airline are other attributes our algorithm predicts
to have high likelihood of being relevant to airfare domain.

Robustness to Noisy data The texts used for same attribute
across different query interfaces are often syntactic varia-

tions, or sometimes usage of synonymous words describing
the same attributes. This renders our data set to be noisy.
As we mentioned earlier, we applied simple cleaning rules
to resolve straightforward synonymous words. Such simple
rules are not able to identify that texts - to, destination, des-
tination city and to city actually refer to the same attribute.
But if we observe Figure 4 carefully, we see that it also as-
signs high relevance values to return which actually refers
to return date; departure and destination, that are variations
for attributes from and to respectively.

Thus our algorithm is robust to such noises in data,
and can deliver good quality answers even in presence of
such noises in data. From this perspective, our work can
be viewed as the generalization of correlation mining based
schema matching [9]. Their approach is limited in two
ways. Firstly, their solution can be applied only when all
the sources are about same object. Secondly, they use only
immediate co-occurrence statistics. By successively propa-
gating � values across edges of our graph, we are able to
elegantly capture multi-hop-co-occurrence statistics, with-
out requiring the sources to be partitioned into different do-
mains.

5. Future Research Directions

Progressive Result Generation

In our experimental studies, we observed that our system
is able to retrieve highly relevant sources. As we noted, that
the higher values of � leads to higher changes in the prefer-
ence values for attributes, and therefore priortizing our iter-

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 06,2010 at 21:40:03 UTC from IEEE Xplore. Restrictions apply.

ative algorithm over values of � enables us to find the rele-
vant sources quicker.

The performance requirement of different users of our
system shall vary. Some users may be interested only in
retrieving the Top-10 sources for their input query, while
some others may be interested in Top-30 sources. Finding
all relevant sources may thus become unnecessary for ev-
ery user. Builiding upon the same hypothesis, that higher
values of � shall lead to larger changes in attribute rele-
vances, we believe that we should be able to tune our system
to generate the relevant sources progressively. More specif-
ically, we believe that due to priortization based on � val-
ues, our system should be able to find Top-10 sources be-
fore it has found the later sources. Thus, we can tune our
system to present to the user the Top-10 sources as soon as
they are available, while continue to compute the sources
ranked

� � � �
to

� � � �
in the background.

Stemming of Attributes

The user in our system is required to submit an exact
matching attribute to the one in our repository. We believe
such exact matching of attributes is undesirable. We there-
fore intend to split the text of every attribute name into its
constituting words, and use those words for partial matches
of the input queries. This if done in a naive way, would mag-
nify the size and complexity of our attribute co-occurrence
graph, and also may produce spurious results. We are cur-
rently working on developing sophisticated ways to imple-
ment this idea.

6. Related Work

A wealth of work has been done in general information
integration systems [15, 7], where sources are configured
a priori for specific tasks. Several integration systems have
been developed in a relatively small scale: e.g. Information
manifold, TSIMMIS, Infomaster, Garlic, DISCO, Softbot,
Ariadne, and others. In contrast, for text databases, there
have been more efforts in large scale distributed search, i.e.,
meta-search (e.g. [8]).

Database sources on the Deep Web has gained much at-
tention from the community recently. Ipeirotis et al. [12, 11]
classify and summarize contents of text databases by send-
ing probing queries to the sources. Raghavan et al. [14] have
built a crawler for the deep web. The work of [6] and [1]
discuss the wrapper generation techniques. He and Chang
propose statistical approach for schema matching over deep

Web sources [9]. Zhang et al. [17] propose a parsing frame-
work for extracting Web query interfaces. He [10] and Wu
et al. [16] apply clustering technique for integrating deep
Web interfaces.

An extensive survey [5] on deep Web was conducted to
observe characteristics of the sources and study the impli-
cations of these characteristics on exploring and integrating
Web databases. It clearly identifies large-scale as a major
challenge that exists for integration of structured databases.

Query expansion technique in IR and Web search ex-
pands users’ original query with new terms and re-weights
the terms in the expanded query [2]. The inherent idea of
using co-occurrences of our probabilistic model shares sim-
ilarity with these efforts. In our scenario, attribute vocabu-
lary has been known to converge [5], therefore, it was possi-
ble for us to develop an extensive modeling of attribute rel-
evance that cleanly subsumes these past efforts.

Recursive definitions are used to find the importances of
Web pages [13, 4], where iterative solutions have been de-
veloped to make such formulations computable. Our ap-
proach share some similarities with these work. The iter-
ative solution used in these work are not suitable for our
problem setting. We propose more sophisticated iterative
solution in this paper to find the relevance of attributes, and
thus find the high ranked sources.

7. Conclusion

In this paper, we present a co-occurrence based attribute
relevance model and an efficient iterative algorithm for find-
ing Web sources relevant to users information requirements.
Our preliminary experiments on real-world sources illus-
trate that sources can be ranked reasonably well to match
users’ interests. This paper thus opens an interesting re-
search direction for the novel problem of source ranking on
deep Web. Important issues to investigate in future and po-
tential solutions with key insights have been identified.

Our solution for finding the right sources can be viewed
as search problem in deep-web. A classic analogy comes
from surface-web information retrieval domain, where we
saw recent developments of keyword-based search engines
(e.g., Google) vs. early attempts of organizing web direc-
tories (e.g.Yahoo!). We do not require to draw hard bound-
aries or partition our repository into domains because the
notion of domain in our study is only virtual. Given the in-
put attributes, the algorithm harnesses the statistical infor-
mation in data to identify the most relevant set of sources.

Our work can also be viewed as on-the-fly partitioning
to cluster out the set of sources that are most likely to fall

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 06,2010 at 21:40:03 UTC from IEEE Xplore. Restrictions apply.

in the class of sources users is interested in. A static clus-
tering algorithm, on the other hand, partitions data without
any knowledge about the granularity of partitioning user’s
query may require.

Categorization approach is used in Web directory ser-
vices such as Yahoo directory dir.yahoo.com. The static
clustering or categorization scheme may not be able to han-
dle the dynamic and ad-hoc nature of our problem setting.
For example, such approaches may have either merged Mu-
sic Records and Movies into same cluster, or might have
partitioned Automobiles into imported cars, second-hand
cars, and motor-cycles. Both of these can be undesirable
in ad-hoc querying scenario, where partitions should be de-
termined based on user requirements. Moreover, given the
huge number of structured sources, if a clustering approach
attempts to maintain the hierarchical partitioning of dataset
with varying degrees of granularities, it would become very
costly and totally unnecessary.

References

[1] A. Arasu and H. Garcia-Molina. Extracting structured data
from web pages. In ACM SIGMOD, 2003.

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press / Addison-Wesley, 1999.

[3] BrightPlanet.com. The deep web: Surfacing hidden
value. Accessible at http://brightplanet.com/-
deep content/deepwebwhitepaper.pdf, 2000.

[4] S. Brin and L. Page. The anatomy of a large-scale hypertex-
tual web search engine. In Proceedings of WWW7, 1998.

[5] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Struc-
tured databases on the web: Observations and implications.
SIGMOD Record, 33(3):61–70, 2004.

[6] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: To-
wards automatic data extraction from large web sites. In The
VLDB Journal, pages 109–118, 2001.

[7] D. Florescu, A. Y. Levy, and A. O. Mendelzon. Database
techniques for the world-wide web: A survey. SIGMOD
Record, 27(3):59–74, 1998.

[8] L. Gravano, C.-C. K. Chang, H. Garcı́a-Molina,
and A. Paepcke. STARTS: Stanford protocol pro-
posal for internet retrieval and search. Accessible at
http://www-db.stanford.edu/˜gravano/-

starts.html, Aug. 1996.

[9] B. He and K. C.-C. Chang. Statistical schema matching
across web query interfaces. In ACM SIGMOD, 2003.

[10] H. He, W. Meng, C. T. Yu, and Z. Wu. Wise-integrator:
An automatic integrator of web search interfaces for e-
commerce. In VLDB, pages 357–368, 2003.

[11] P. G. Ipeirotis and L. Gravano. Distributed search over the
hidden-web: Hierarchical sampling and selection. In VLDB,
2002.

[12] P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe, count, and
classify: Categorizing hidden web databases. In ACM SIG-
MOD, 2001.

[13] J. M. Kleinberg. Authoritative sources in a hyperlinked en-
vironment. JACM, 46(5):604–632, 1999.

[14] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. In VLDB, 2001.

[15] J. D. Ullman. Information integration using logical views.
Delphi, Greece, Jan. 1997.

[16] W. Wu, C. T. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query inter-
faces on the deep web. In ACM SIGMOD, pages 95–106,
2004.

[17] Z. Zhang, B. He, and K. C.-C. Chang. Understanding web
query interfaces: Best-effort parsing with hidden syntax. In
ACM SIGMOD, 2004.

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 06,2010 at 21:40:03 UTC from IEEE Xplore. Restrictions apply.

