
Dynamic Symbolic Database Application Testing

Chengkai Li, Christoph Csallner
Department of Computer Science and Engineering

University of Texas at Arlington
Arlington, TX 76019, USA

{cli,csallner}@uta.edu

ABSTRACT

A database application differs form regular applications in
that some of its inputs may be database queries. The pro-
gram will execute the queries on a database and may use any
result values in its subsequent program logic. This means
that a user-supplied query may determine the values that the
application will use in subsequent branching conditions. At
the same time, a new database application is often required
to work well on a body of existing data stored in some large
database. For systematic testing of database applications,
recent techniques replace the existing database with care-
fully crafted mock databases. Mock databases return values
that will trigger as many execution paths in the application
as possible and thereby maximize overall code coverage of
the database application.

In this paper we offer an alternative approach to database
application testing. Our goal is to support software engi-
neers in focusing testing on the existing body of data the
application is required to work well on. For that, we propose
to side-step mock database generation and instead generate
queries for the existing database. Our key insight is that we
can use the information collected during previous program
executions to systematically generate new queries that will
maximize the coverage of the application under test, while
guaranteeing that the generated test cases focus on the ex-
isting data.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution, testing tools; H.2.8 [Database Man-

agement]: Database Applications; D.2.4 [Software Engi-

neering]: Software/Program Verification—Reliability

General Terms

Algorithms, Design, Reliability, Verification

Keywords

dynamic symbolic execution, test case generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest’10, June 7, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0190-9/10/06 ...$10.00.

1. INTRODUCTION
Maximizing code coverage is an important goal in database

application testing. The more application code our test cases
cover during testing, the higher is our confidence in the cor-
rectness of the application. How to generate test cases to
increase code coverage is a well-known software engineering
problem. If the program under test is a database applica-
tion, this issue is compounded by several problems that are
not addressed by traditional testing techniques. One of these
additional problems stems from the fact that a database
application may expect a query as input, evaluate it on a
database, and use the values in the result set as normal pro-
gram values in subsequent program logic. This means that a
user-supplied query may determine the values that the appli-
cation will use in subsequent branching conditions. In order
to maximize coverage of database application, we therefore
propose to generate database queries such that the result
sets returned from the database will lead to different branch-
ing decisions in the subsequent program logic and thereby
maximize code coverage.

In this paper, we present a novel technique to maximize
code coverage in database applications. Our key insight is
that we can observe the outcome of the branching decisions
taken during program execution, selectively invert some con-
ditions, and convert the resulting constraints to database
queries. In this way, our technique systematically generates
new database queries, such that the values of their result
sets will trigger different branching decisions and thereby
maximize code coverage.

Our technique offers two main advantages over recent ap-
proaches [2, 7, 17] to database application testing. (1) By
generating database queries that the application will issue
against real data, we side-step the entire hard problem of
generating mock databases. This means that (2), with our
technique, we do not have to worry if a generated mock
database is representative of an actual production database.
Instead, our technique focuses on systematic application test-
ing with actual business data. This is important for several
software engineering tasks. For example, for an initial round
of testing, a software engineer may want to ensure that a new
application is able to process existing data. In such a sce-
nario, we want a test case generator to only generate test
cases that correspond to real data.

2. MOTIVATION AND EXAMPLE
New database applications are often required to work well

with the data that is already stored in the database. For
example, a new insurance claims application should work

correctly for the existing customer data, a new book search
application should process existing book data, etc. In many
cases, existing data is not just representative of but identical
to the data that the application is expected to handle. This
is due to the fact that large real-world databases are often
relatively static—new data is added, but existing data is pre-
served. Preserving data makes sense, as they are often very
valuable to the data owner. Given this“mostly append-only”
character of many real-world databases, software engineers
need an effective way to test a new application on existing
data. Our technique supports software engineers in gener-
ating test cases that systematically test the application on
the existing data.

public void dbfoo (Str ing q) { // ”db app ”
query = ”S e l e c t ∗ From r Where ”+q ;
tup l e s = db . execute (query) ;
for (Tuple t : tup l e s) {

int x = t . getValue (1) ;
bar (x) ;

}
}
public void f oo (int [] a r r) { // ”app ”

for (int x : ar r)
bar (x) ;

}
public void bar (int x) {

int z = −x ;
i f (z > 0) { // c1

i f (z < 100) // c2
// . .

}

Listing 1: Application foo and database applica-

tion dbfoo. Maximizing code coverage is harder for

dbfoo—besides reasoning about program logic, we

also need to reason about the input-output relation

of the database.

At a high level, a database application differs from a tra-
ditional application in that the database application may
expect a query as a program input. Since we want to test
the application on real data, we refrain from redirecting the
query to a mock database that returns arbitrary synthetic
data. Instead, we want to execute the query on actual data.
This poses the challenge to generate queries such that the
result of the program executing the query will trigger many
execution paths in the application. For example, in the code
of listing 1, method dbfoo is a minimal database application
that expects an arbitrary query condition from the user. To
test this simple program, we have to generate meaningful
query conditions. The challenge is that the number of pos-
sible, legal program inputs is infinite. Clearly, we cannot try
all of them.

On the other hand, it is also impractical to plainly retrieve
all data from the database. In the dbfoo example, this would
correspond to a query without WHERE clause. There are
several reasons why processing all data is undesirable. First,
real-world databases contain so much data that we simply
may not have enough resources in testing to run a new ap-
plication on the entire database. Second, even if we had the
resources, we may not get access to the entire data, due to
security or other constraints, which essentially place a quota
on the amount of data we can retrieve from the database.
For example, a book search service may allow users to search
a book for arbitrary search terms and return the first n book
pages. But to protect the book’s copyrights, the service may

limit the total number of book pages returned to any given
user. Third, the complete access may be impractical due to
the limited query capability allowed for the database. For
example, deep-Web or hidden-Web sources [1, 4] provide ac-
cess to the underlying databases through limited query inter-
faces. An application can only get the data through queries
allowed by the interfaces. Although various techniques are
proposed to crawl the deep-Web source by querying[14, 11],
it is often impossible to enumerate all the queries.

Database sampling is the process of selecting a random
sample of database tuples. The data statistics collected from
database sampling are useful in many places including data
summarization, query optimization, and data mining. Many
database sampling methods have been proposed, e.g., [18,
13]. These approaches are optimized for obtaining a sam-
ple that is representative of the entire database. A good
sample according to that definition however may be a bad
sample for our purposes. For us, a good sample triggers a
set of program execution paths that is representative of the
program execution paths encountered in production use. In
other words, existing sampling techniques are not aware of
the structure of a given application program. Our technique
can be seen as a database sampling technique that is aware
of the structure of a database application program.

Recent advances in software testing, i.e., using dynamic
symbolic (or “concolic”) execution, allow a systematic ex-
ploration of a program’s execution paths. In a traditional,
database-less program (such as method foo of listing 1), as-
suming program constraints are simple enough, we can use a
concolic execution engine (e.g., Dart [8] or Pex [16]) to sys-
tematically enumerate the different paths through the pro-
gram and thereby maximize coverage. The high-level idea is
to treat the program input as a symbolic variable, observe
the execution path taken, and encode any branching deci-
sions as constraints on the program input variables. Our key
idea is that we can leverage dynamic symbolic execution to
build database query constraints.

We use a dynamic program analysis technique to build
database queries as dynamic techniques are more precise
than static analysis techniques. Although typically being
faster in deriving constraints from the code, a static analysis
may produce results that do not correspond to any actual
program execution.

3. ASSUMPTIONS
We focus on such programs that follow tuple-wise seman-

tics. The program takes one user query at a time and issues
the query to the database, which returns a set of tuples as
the query result. The program iterates through the tuples
one by one and applies program logic over each tuple.

For the database query, we assume it is a single-relation
conjunctive selection query, where each conjunct is a sim-
ple comparison condition between an attribute value and a
constant. More formally, the query can be represented in
relational algebra as follows:

�∗�c1 AND...AND ck (R).

Each ci has the form a ⊙ v, where a is an attribute in the
schema of R, v is a constant value, and ⊙ can be <, ≤,
>, ≥, =, or ∕=. Note that we simply assume the projec-
tion (�) always returns all the attributes, since it is trivial
and independent of our work. The above query does not
consider grouping, aggregation, and join. Database modifi-

cation queries, such as insertion, deletion, and updates, are
not considered either. More complex queries is one subject
of our future work.

A program contains a set of methods. One method is des-
ignated as the program’s entry point or main method. Each
method contains a list of statements. A statement reads or
writes a local variable or heap location (class field, instance
field, or array field), computes an expression, conditionally
transfers control (jumps or “branches”) to another statement
in the method, calls a method, or returns control back to the
calling method. A variable is either a bit-vector (boolean,
short, int, long, etc.) or a heap reference. We currently
ignore floating-point types.

The control-flow graph of a method is a directed graph
that depicts the may-execute-next relation on the method’s
statements. There is an edge from statement s to statement
t if t may be executed directly after s. Given program loops,
a control-flow graph may contain cycles.

In addition to explicit branching (if-statements and loops)
a piece of code may contain several implicit branching state-
ments. These statements, for certain values, throw a run-
time exception, which transfers control to the next suit-
able exception handler. (For example, several language con-
structs perform an operation on an object or array reference,
such as reading or writing an array or instance field or call-
ing an instance method. When attempting to perform such
an operation on a null reference, the runtime system will
throw a null pointer exception.) The exception handler may
be in the same method or a calling method or absent. In
the last case, the program terminates. For example, when
dividing by zero, the runtime system will throw a runtime
exception, which will transfer control to the closest handler
or terminate the program. Control-flow graphs tradition-
ally depict only explicit branching statements. One reason
for omitting implicit branching is that many language con-
structs are implicitly branching, which would lead to very
dense or cluttered control-flow graphs.

If during execution a branching decision depends on a
value returned from the database, we assume that the branch-
ing condition can be be rewritten to a form that is permitted
by the database query language, e.g., a⊙ v. Rewriting (nor-
malizing) symbolic expression during dynamic symbolic exe-
cution has the important side-effect of keeping the symbolic
state representation of the program compact.

4. PROBLEM STATEMENT AND METHOD

4.1 Problem Statement
Given program P , suppose there are s possible program

paths. A program path can be represented as a sequence
of branching conditions (and their negations). That is, for

i from 1 to s, pi=c1i∧...∧c
li
i , where li is the length of the

sequence, and each ci has the form a⊙ v or ∼ (a⊙ v). The
set of s possible program paths is Patℎ(P)={pi∣1 ≤ i ≤ s}.

Our dynamic symbolic engine maintains a tree to repre-
sent execution paths. Each node represents the outcome of
a branch condition. Therefore each execution path is a path
from the root of the tree to some leaf node. For instance,
Figure 1 is a tree of execution paths for method bar in List-
ing 1. Note that all the branches of bar have been executed,
due to the multiple executions of bar with different inputs x
that are from different database tuples.

The paths in a dynamic execution tree form only a subset

true

c1

c2 !c2

!c1

Figure 1: Execution tree for method bar, after exe-

cuting all branches shown in Listing 1.

Algorithm 1 Iterative Testing Method

1: q ← get the first test query; Q ← {q}
2: repeat

3: T ← run q and get the first nq result tuples
4: for each tuple t in T do

5: run the program over t and update the execution
tree treeQ with encountered new execution paths

6: treeQ ← the complement tree of treeQ
7: Qc ← get the candidate queries based on treeQ
8: q ← select a query from Qc

9: Q ← Q ∪ {q}
10: until stopping criteria satisfied

of Patℎ(P), because some program paths may not be reach-
able given the input to the program. Consider a database
instance ℛ and a program P that follows the aforemen-
tioned assumptions. Given a tuple t ∈ ℛ, the execution
path for t is one of the program paths, i.e., there exists
a Patℎt ∈Patℎ(P). The reachable paths of P under ℛ is
Patℎ(P ,ℛ) = {Patℎt∣t ∈ ℛ}. Our test method ℳ iter-
atively sends a set of queries Q={qi} to ℛ. We assume
the database, upon receiving a query qi, will return the
set of result tuples ℛi ⊆ ℛ sequentially to the application.
Our testing method can choose to only fetch the first ni

tuples Ti ⊆ ℛi. Therefore the covered paths of our test
method is Patℎ(P ,ℛ,ℳ) = {Patℎt∣t ∈

∪
Ti
}. By definition

Patℎ(P ,ℛ,ℳ) ⊆ Patℎ(P ,ℛ) ⊆ Patℎ(P).
Our problem is to design a test method ℳ that chooses

test queries Q={qi} such that ∣Patℎ(P ,ℛ,ℳ)∣ is as large
as possible and at the same time,

∑
i
cost(qi) is as small as

possible, where cost(qi) is the cost of query qi. These exists
a tradeoff between these two goals, therefore it is challenging
to achieve aℳ that strives for a good balance of them.

4.2 Overview of the Method
We propose a novel iterative approach that employs dy-

namic symbolic analysis for automatic query generation.
The outline of our method is in Algorithm 1. We start with
an initial query. The application executes upon the query
result tuples, one by one. We analyze the program exe-
cution trace and identify which program paths are covered.
The uncovered paths are due to unsatisfied branching condi-
tions. The testing method decides how many tuples to fetch
for each tested query qi, based on the collected information.
By analyzing the query, the result tuples, the covered and
uncovered paths, and the satisfied and unsatisfied branching
conditions, the method derives a new query, which poten-
tially can bring new tuples that satisfy the failed branching
conditions. Therefore more program paths can be tested.
This process continues iteratively, until no more paths could
be covered, due to either the lack of data in the underlying
database or the full coverage of all the paths.

true

c1

c2

c3

c4

c5 !c5

!c4

!c3

!c2

!c1

c6

c7

c8

c9 !c9

!c8

c10 !c10

!c7

c11 !c11

c12 !c12

!c6(q1)

(q2)

(q3)

(q4)

Figure 2: treeQ, the execution tree after the k queries

are tested.

Given a test query qi, our method will not always exhaust
the result tuples. Instead, it may decide that it has reached
the point of diminishing returns such that testing more tu-
ples may not be as effective as using a new test query. To
intuitively understand this, imagine the result of qi as a se-
quence of tuples. Each tuple results in an execution path.
Multiple tuples may result in the same path. In other words,
from the viewpoint of covering program paths, they are du-
plicate tuples. After a certain number of initial tuples, most
or all distinct paths may have been encountered, therefore
we should stop using more tuples from qi. The benefits are
twofold: less tested tuples means less testing cost, consid-
ering that the program may take a substantial amount of
time to run/test for even just one tuple; less tested tuples
also means less query execution cost, especially for “non-
blocking” query plans that produce results in a pipeline.

Suppose our testing method has issued k queries, Q={q1,
..., qk}. Each query qi yields covered paths {Patℎt∣t ∈ Ti},
therefore the covered paths till qk is Patℎ(P ,ℛ,ℳ,Q) =

{Patℎt∣t ∈
∪k

i=1
Ti}. The key task of the testing method

is thus to derive the next test query qk+1. Given the goal
of maximizing ∣Patℎ(P ,ℛ,ℳ)∣ and minimizing

∑
i cost(qi),

our method is a greedy algorithm that aims at local opti-
mum, i.e., maximizing ∣Patℎ(P ,ℛ,ℳ,Q∪{qk+1})∣−∣Patℎ(P ,
ℛ,ℳ,Q)∣ while minimizing cost (qk+1).

4.3 Details of the Method

Execution Tree

The dynamic symbolic engine maintains and updates an
execution tree that represents the execution paths encoun-
tered for the tuples retrieved for the tested queries. We use
treeQ to denote the execution tree after the k queries are
issued. One example is illustrated in Figure 2. Each node
in the tree represents a branching condition. Therefore each
node can have at most two child nodes, corresponding to
two opposite conditions ci and !ci, respectively. Each path
from the root to a leaf corresponds to the executed program
path for the tuples that satisfy the conjunctive conditions
in the path. For instance, the path from the root to !c4
is the execution path for tuples satisfying c1 ∧ c2 ∧ c3∧!c4.
Among the nodes in the tree, k nodes correspond to the
k issued queries, thus are called queried nodes. We high-
light the queried nodes and list the corresponding query be-
side each queried node. For example, in Figure 2, the 4
issued queries are q1=c1 ∧ c2, q2=!c1, q3=!c1 ∧ c6 ∧ c7, and
q4=!c1 ∧ c6∧!c7∧!c11∧!c12, respectively.

Complement Tree

For each internal node that has only one child node, we
add the other child (which corresponds to the inverse con-

dition of the existing child), to form a complement tree.
The added nodes are thus called complement nodes. We
use dashed lines to represent the edges to the complement
nodes. For example, in Figure 2, the complement nodes
are !c2, !c3, c10, and c11. The path from the root to each
complement node, called a complement path, represents an
execution path that has not been encountered during test-
ing. That path is only different from (the prefix of) some
encountered path by the last condition. For example, the
path for !c3 is c1 ∧ c2∧!c3. It is different from c1 ∧ c2 ∧ c3
by the last condition, and c1 ∧ c2 ∧ c3 is the prefix of several
executed paths, including the ones for c5, !c5, and !c4.

Candidate Queries

Our task is to derive the next query qk+1 that can poten-
tially cover some complement paths. Note that the goal of
our testing method is to cover as many reachable paths as
possible and avoid wasting efforts in trying to cover a path
that cannot be satisfied by any tuple in the database. A
complement path is only slightly different from some exist-
ing path, therefore the chance for the database to have some
tuples satisfying that path is higher than an arbitrary path.
Moreover, the query for a complement path is straightfor-
wardly generated by only inverting the last condition of some
encountered path. On the contrary, using static analysis to
generate other uncovered paths may produce results not cor-
responding to any actual program execution.

Based on the above intuition, a node in the complement
tree represents a candidate for the next query qk+1, if itself
or at least one descendant node is a complement node. In
Figure 2, the candidates are true (the root), c1, c2, !c3, !c2,
!c1, c6, c7, !c8, c10, !c7, c11.

1 We further elaborate on this.
The following types of nodes are candidates:

∙ a leaf complement node: e.g., !c2 corresponds to path
c1∧!c2, which has not been encountered before;

∙ a queried node that has at least one descendant that is a
complement node: e.g., c7 is a queried node and its descen-
dant c10 is newly added. Using query !c1 ∧ c6 ∧ c7 we can
potentially get tuples that cover !c1∧c6∧c7∧!c8∧c10, which
is not covered yet. Note that, as mentioned in Section 4.1,
although the query has been tested before, only the first ni

result tuples were fetched. Therefore if the query is to be
issued again, we should get the tuples beyond the first ni;

∙ a non-queried internal node that has at least one comple-
ment descendant: e.g., c6 is a candidate because by querying
!c1 ∧ c6 we can potentially cover !c1 ∧ c6 ∧ c7∧!c8 ∧ c10 and
!c1 ∧ c6∧!c7 ∧ c11.

The following types of nodes are not candidates:
∙ an existing leaf node: e.g., !c6 corresponds to path !c1∧!c6,
which has been encountered for some tuples. Along that
path, there are no more branching conditions, therefore query
!c1∧!c6 will not cover any new path. For the same reason,
!c12 is not a candidate even though it is a queried node;

∙ an internal node that does not have any complement de-
scendant: e.g., c3 is not a candidate because all its descen-
dants are already covered.

Choosing the Next Query

Given a real-world application, there can be a large num-
ber of candidate queries. The key challenge is to rank the
candidate queries and the most highly ranked candidate be-
comes the next query qk+1. The gist of our method is to

1Note that the root corresponds to the query �∗(R), which
selects all the tuples without constraints.

rank the candidates based on the average cost per new exe-
cution path. That is, given tested queries Q and a candidate
query q, the score of q is

score(q) =
cost(q)

∣Patℎ′(P ,ℛ,ℳ,Q ∪ {q})∣ − ∣Patℎ(P ,ℛ,ℳ,Q)∣
,

where ∣Patℎ′(P ,ℛ,ℳ,Q∪{q})∣ is an estimate of ∣Patℎ(P ,
ℛ,ℳ,Q ∪ {q})∣, and cost(q) is the estimated cost of q.

The cost of a query q is estimated by the following for-
mula, which has two components. The query cost q cost(q)
is the cost of evaluating q in the database, and the testing
cost t cost(q) is the cost of executing the program over the
result tuples and maintaining the execution trace by the dy-
namic symbolic engine. In t cost(q), t is the average time
for testing each tuple. In q cost(q), w is the waiting time
before the first result tuple is available and c is the average
time for getting each tuple. w and c are constants but can
also be query-dependent. Note that more complex and re-
alistic cost formula from a DBMS can be used to estimate
q cost(q).

cost(q) = q cost(q) + t cost(q) = w + c× ∣T ∣+ t× ∣T ∣

Given the next query q, ∣Patℎ′(P ,ℛ,ℳ,Q ∪ {q})∣ and
cost(q) compete with each other, as both are monotonic in
the number of retrieved tuples T for the query. Intuitively
the more tuples retrieved, the higher the cost and, at the
same time, the more covered program paths. To trade off
between ∣Patℎ′(P ,ℛ,ℳ,Q∪{q})∣ and cost(q), we estimate
∣Patℎ′(P ,ℛ,ℳ,Q ∪ {q})∣, as a function of the size of T ,
based on the statistics collected from the tested queried and
from query result cardinality estimation. We then find the
optimal size of T that minimizes score(q). Below we give a
sketch of the method.

Each node in the complement tree corresponds to a query.
A DBMS engine can estimate the size of the query result.
For example, in Figure 1, suppose the queries corresponding
to !c8, c10, and !c10 are q′1, q

′
2, q

′
3, respectively. (They are not

necessarily tested.) If the estimated result sizes for q′2 and q′3
are 10 and 40, respectively, we can estimate the result size of
q′1 to be 10+40=50. In this way we can recursively estimate
the size for each node in the tree. Note that we only use
DBMS to estimate the size for leaf nodes, otherwise there
will be awkward inconsistencies such as the size of q′1 being
smaller than the total sizes of q′2 and q′3. Based on these
numbers, assuming the uniform distribution of tuples, we
estimate that there is one tuple satisfying !c1∧c6∧c7∧!c8∧c10
in every 5 result tuples of q′1. Thus if we use q′1 to cover
the complement path to c10, we would need 5 tuples. In
Figure 1, it is clear that query q′2 is a better choice than
q′1. However, the query corresponding to c6 may be an even
better choice, because it may cover two complement paths
by smaller number of tuples per path.

Note that in principle we can fine-tune the above estima-
tion using the real result size of tested queries. We plan to
investigate it in the future.

Stopping Condition for Testing

In addition to deciding when to stop for each individual
query (i.e., deciding the number of result tuples to fetch),
our method also needs to decide when to stop the whole
testing procedure. One straightforward case is when there
is no candidate query, meaning all possible reachable paths
in the program given the database are encountered. An-
other scenario is when we have exhausted all the tuples in
the database, although there are still candidate queries (i.e.,

uncovered program paths). Thus the uncovered paths can
never be encountered by the tuples in the given database.
However, it is not straightforward to know if we have ex-
hausted the whole table, since the tuples are obtained through
different queries. One solution is to count the number of tu-
ples that reach each program path. For a program path that
has been covered by multiple queries, we use the maximum
number obtained among these queries. If the total number of
tuples across all different paths is larger than the table size,
we know for sure that we have exhausted the table. Such
size information can be obtained from database catalog.

It also makes sense to stop the testing even when there are
still candidate queries and the table is not exhausted, e.g.,
when the limited recourses available for testing are used up.

5. IMPLEMENTATION
In this section we discuss the implementation of our tech-

nique for database application testing.

5.1 Dynamic Symbolic Engine
Our dynamic symbolic execution engine automatically in-

serts instrumentation code into a given method, yielding an
instrumented version of that method. The execution of the
instrumented version behaves just like the original, except
that it also creates a symbolic representation of the program
execution state. In that our engine is similar to previous
ones such as Dart, jCute, and Pex [8, 15, 7, 16].

Whenever execution encounters a call to a database (i.e.,
via Jdbc), we track the corresponding result set. We also
track each tuple that the program reads from the result set.
This allows us to represent each value read from a tuple
with a unique symbolic variable. When we continue dy-
namic symbolic execution of the method, we thereby obtain
a complete symbolic representation of the path taken, in
terms of the symbolic variables we introduced to track the
database result set.

A common challenge in the implementation of a dynamic
symbolic execution engine is minimizing its overhead. For
example, with a naive implementation, we can quickly ex-
haust the main memory of the analysis machine. Several
techniques have been described to keep the symbolic state
as compact as possible, e.g., in the Pex dynamic symbolic
execution system [16].

Compared to other program analysis techniques, an ad-
vantage of dynamic symbolic execution is that it makes it
relatively easy to model all relevant features of a program
precisely. I.e., we can track the exact outcome of a branch
condition encountered during execution. Similarly, we can
track any other implicit or explicit control flow, including
loops, method calls, and recursion. The key observation is
that in dynamic symbolic execution we follow one execution
path at a time. We merely record in symbolic terms both
the state of the runtime system and the executed path. E.g.,
if a given execution path passes through a loop n times, we
record the outcome of n+1 branching decisions, one for each
iteration of the loop.

5.2 Query and Non-Query Parameters
Up to now we have described a scenario in which a pro-

gram expects only parameters that are database queries.
However, many real-world applications take both user queries
and non-query values as parameters. We now extend our
scheme of handling query parameters by also handling reg-

ular parameters. Like in standard dynamic symbolic exe-
cution [8, 15, 7, 16], we treat each regular (non-query) pa-
rameter as a symbolic variable. When combined with our
query parameters, this means that a resulting path condition
ranges over both database attributes and input parameters.

There are two cases. In the first case, the parts of the path
condition that deal with database result values are indepen-
dent from the parts that deal with the non-query param-
eters. This means we can solve the non-query parts using
standard constraint solving techniques and treat the query-
related parts as described in Section 4.2. In the second case,
the resulting path condition has one or more conjuncts cb
that depend on both the query and non-query parameters.
We currently simplify this case using a heuristic that re-
moves all such cb from the path condition, which results in
a path condition that matches case 1 and we proceed as with
any other case 1 path condition.

5.3 Prototype Implementation
In our ongoing prototype implementation, we use the code

instrumentation facilities of Java 5 to rewrite the user pro-
gram at load-time [6], via the third-party open source byte-
code instrumentation framework ASM [3]. Rewriting the
program at the bytecode level allows our analysis to extend
to third-party libraries that are not in Java source code.

For programs that expect both query and non-query pa-
rameter values, we solve the non-query portion of the path
condition using the third-party satisfiability modulo theories
(SMT) solver Z3 [12].

6. RELATED WORK
Despite the widespread use of databases in enterprise com-

puting, historically, there has been relatively little research
interest in database application testing. Only in recent years,
there has been more work on database application testing.
Kapfhammer’s dissertation [10] provides a good review of
the field of database application testing. The following fo-
cuses on work closely related to ours.

The most closely related work, by Emmi et al., applies a
similar dynamic symbolic execution engine to the problem
of maximizing code coverage in database application testing
[7]. Reverse query processing [2] takes a query and a result
set and generates a corresponding input database. Veanes et
al. [17] also generate database state and use the same con-
straint solver that we use in our implementation, Z3 [12].
However, all of these approaches aim at overall code cover-
age. They do not distinguish between actual business data
and contrived (synthetic, generated) data. Our technique
can distinguish between generated and actual data, which is
important for several software engineering tasks.

Prior work on generating database queries by Chays et al.
[5] uses a black-box technique, which is unaware of source
code details such as control or dataflow. It is unclear if and
how this technique can scale up to very large databases and
complex query conditions.

A recent paper by Haller discusses several challenges of
white-box testing of database applications [9]. In this paper,
we go one step further and propose a novel technique for
database application white-box testing.

7. ONGOING AND FUTURE WORK
We are currently implementing our technique as an ap-

plication of our new dynamic symbolic execution engine for

Java, Dsc. Our next step will be to evaluate our proto-
type on existing database applications and their respective
databases. The goal of our evaluation will be twofold. First,
we want to measure if, when allotted the same amount of
time as a mock database generation technique, our tool can
achieve higher coverage of application code that is reachable
with the existing body of data. Second, we plan to conduct
a user study in which we will ask users how they rank bug
reports by our tool when compared with other tools. We
assume that for some tasks users will prefer reports from a
tool that only uses actual data in its test cases.

Beyond evaluating our current technique, we plan to ex-
tend our technique to also take into account limits that may
be imposed on the number of queries we can issue to the
database. Such limits are especially common in the con-
text of software services and deep-web sources, which often
throttle the number of queries a single user can pose.

8. REFERENCES
[1] M. K. Bergman. The deep web: Surfacing hidden value.

Journal of Electronic Publishing, 7(1), Aug. 2001.
[2] C. Binnig, D. Kossmann, and E. Lo. Reverse query

processing. In ICDE, pages 506–515. IEEE, Apr. 2007.

[3] É. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code
manipulation tool to implement adaptable systems. In
Proc. ACM SIGOPS France Journées Composants 2002:
Systèmes à composants adaptables et extensibles (Adaptable
and extensible component systems), Nov. 2002.

[4] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang.
Structured databases on the web: observations and
implications. SIGMOD Rec., 33(3):61–70, 2004.

[5] D. Chays, J. Shahid, and P. G. Frankl. Query-based test
generation for database applications. In DBTest, pages 1–6.
ACM, 2008.

[6] G. A. Cohen, J. S. Chase, and D. L. Kaminsky. Automatic
program transformation with Joie. In Proc. USENIX
Annual Technical Symposium, pages 167–178, June 1998.

[7] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input
generation for database applications. In Proc. ACM
SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), pages 151–162. ACM, July 2007.

[8] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In PLDI, pages 213–223, 2005.

[9] K. Haller. White-box testing for database-driven
applications: a requirements analysis. In DBTest, pages
1–6. ACM, June 2009.

[10] G. M. Kapfhammer. A comprehensive framework for
testing database-centric software applications. PhD thesis,
University of Pittsburgh, 2007.

[11] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen,
and A. Halevy. Google’s deep web crawl. Proc. VLDB
Endow., 1(2):1241–1252, 2008.

[12] L. d. Moura and N. Bjørner. Z3: An efficient SMT solver.
In Proc. 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), pages 337–340. Springer, Apr. 2008.

[13] F. Olken. Random Sampling from Databases. PhD thesis,
University of California, Berkeley, 1993.

[14] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. In VLDB ’01, pages 129–138, 2001.

[15] K. Sen and G. Agha. Cute and jCute: Concolic unit testing
and explicit path model-checking tools. In CAV, 2006.

[16] N. Tillmann and J. de Halleux. Pex - white box test
generation for .Net. In Proc. 2nd International Conference
on Tests And Proofs (TAP), pages 134–153. Springer, 2008.

[17] M. Veanes, P. Grigorenko, P. de Halleux, and N. Tillmann.
Symbolic query exploration. In ICFEM, pages 49–68, 2009.

[18] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, 1985.

