
EntityEngine: Answering Entity-Relationship Queries
using Shallow Semantics

Xiaonan Li
University of Texas at Arlington

xiaonan.li@mavs.uta.edu

Chengkai Li
University of Texas at Arlington

cli@uta.edu

Cong Yu
Yahoo! Research New York

congyu@yahoo-inc.com

ABSTRACT
We introduce EntityEngine, a system for answering entity-
relationship queries over text. Such queries combine SQL-
like structures with IR-style keyword constraints and there-
fore, can be expressive and flexible in querying about enti-
ties and their relationships. EntityEngine consists of various
offline and online components, including a position-based
ranking model for accurate ranking of query answers and a
novel entity-centric index for efficient query evaluation.

Categories and Subject Descriptors: H.3.3 Information
Storage and Retrieval: Information Search and Retrieval

General Terms: Algorithms, Design, Experimentation

Keywords: entity search, entity ranking, structured entity
query, Wikipedia

1. INTRODUCTION
The Web is now an information repository full of entities.

In discovering fascinating entities, Web users are in need of
structured querying facilities that explicitly deal with the
entities, their properties, and relationships.

Example 1 (Motivating Example): Consider a business
analyst interested in this task: Find the list of companies

and their founders, where the companies are in Silicon Val-
ley and the founders are Stanford graduates.

Two major mismatches make keyword search unsuitable
for resolving such tasks. First, our tasks focus on typed en-
tities such as PERSON and COMPANY and, in database
terminology, their “join” relationships. Second, our tasks of-
ten require synthesizing information scattered across differ-
ent places. For instance, one page may tell the analyst that
Jerry Yang is a founder of Yahoo!, but whether Yahoo! is a
Silicon Valley company and whether Jerry Yang is a Stan-
ford graduate may only be found in other pages. Therefore,
with only keyword search, the user has to manually assemble
information from many result pages of multiple searches.

In this paper, we demonstrate EntityEngine (http://idir.uta.
edu/erq), a system for answering entity-relationship query
(ERQ), for solving tasks like the above one. An SQL-like
declarative query mechanism, ERQ produces entities directly
instead of documents. Below is the query for Example 1.
Query 1 (Entity-Relationship Query for Example 1):
SELECT x, y
FROM PERSON x, COMPANY y
WHERE x:["Stanford", "graduate"] // Predicate p1

AND y:["Silicon Valley"] // Predicate p2

AND x,y:["found"] // Predicate p3

Copyright is held by the author/owner(s).
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
ACM 978-1-4503-0099-5/10/10.

We take a DB-IR integration approach in proposing entity-
relationship queries. On the one hand, ERQs have explicit
structured components: typed entity variables (e.g., x, bound
to entities of type PERSON), selection predicates (e.g., p1),
and relation predicates (e.g., p3 for the requirement that
x founded y). In general, an ERQ may have an arbitrary
number of variables and predicates. On the other hand, the
predicates are specified by keyword-based constraints. The
query semantics dictates that entities satisfy a predicate by a
simple and intuitive requirement: the entities co-occur with
the keywords in some contexts. A context can be a sen-
tence, a window of text, etc. For simplicity, we use sentence
as context in this demo. For example, predicate p1 requires
every x in the query answer to co-occur with “Stanford” and
“graduate” in some sentence1. In other words, we aim to
capture entity properties and relationships through shallow
syntax requirements implied by users at query-time2. Al-
though such syntax clue is by no means rigorous or error-
proof (e.g., false evidence such as “X’s partner is a Stanford
graduate”), it becomes robust when we take into account the
repetitive nature of the Web: true facts are more likely to
be stated on many different pages.

Our approach is different from previous work in two im-
portant aspects. (1) We support complex queries with mul-
tiple selection and relation predicates. Studies on entity
search [2, 3, 6] focus on single-predicate queries. The INEX
and TREC entity tracks do not consider entity relation-
ships, i.e., relation predicates. (2) The DB-based approach
of structured querying of the Web [1] explicitly extracts in-
formation into databases (or similarly into RDF [5]), which
will then be queried. This approach is constrained by the ca-
pability of the information extraction (IE) and natural lan-
guage processing (NLP) techniques. Particularly, it requires
explicit identification of the “names” of entity relationships.
For example, if a “found” relation between Jerry Yang and
Yahoo! was not detected during extraction phase, the infor-
mation is lost and could not be queried. By contrast, ERQ,
as an alternative to the DB-based approach, relies on users
in forming keyword constraints. It is particularly attractive
for tasks where entity properties and relationships cannot be
satisfactorily extracted given the capacity of IE techniques.

2. SYSTEM ARCHITECTURE
Entity Catalog and Corpus: The 2008-07-24 snapshot

of Wikipedia (about 2.5 million English articles) is used as

1Query expansion can be applied to increase recall, e.g.,
allowing a context to match “alumni” if not “graduate”.
2The effectiveness of ERQ partially relies on users’ capabil-
ity in choosing proper keywords, as in IR queries.



Figure 1: System Architecture

the entity catalog, i.e., each article describes one entity and
its title is the entity name. The same snapshot is also the
corpus. In an article, the hyperlinks to other Wikipedia
articles are occurrences of the linked entities. About 0.75
million entities are assigned into ten predefined types based
on simple hand-crafted rules. Nearly 100 million occurrences
of these entities are collected from the corpus. We are also
using Wikify 3 to detect entity occurrences in generic Web
pages to enable ERQs on Web corpus.

EntityEngine is implemented upon Apache Lucene. It has
several offline and online components, as shown in Figure 1.

Offline Components: For each article, the Preprocessor
removes section titles, tables, etc., retaining only the main
text, which is segmented into sentences. It then removes
punctuation marks and stems all words. The Classifier as-
signs entities into predefined types based on simple rules.
The Indexer takes preprocessed corpus and typed entities as
input and constructs a novel Entity-Centric Index (ECI) [4]
that records the occurrences of entities in articles. Unlike
conventional document-centric inverted index in IR systems,
ECI orders postings in each inverted list by entity ID instead
of document ID. This design enables more efficient evalua-
tion of ERQs than the document-centric index.

Online Components: The Retriever leverages ECI to
retrieve entities satisfying query predicates. By the seman-
tics of ERQ, a query can yield many false positive answers
due to abundant accidental co-occurrences of entities and
keywords. Therefore, in addition to ranking the answers
according to co-occurrence frequency, it is also critical to
tell true co-occurrence evidence apart from false evidence.
The Ranker is thus based on a Bounded Cumulative Model
(BCM) that integrates three position-based features– prox-
imity, ordering pattern, and mutual exclusion. BCM ranks
co-occurrence contexts by their likelihood of being true ev-
idence. Comprehensive experiments on both INEX bench-
mark queries and our hand-crafted queries verified its supe-
riority over state-of-the-art techniques adapted for ERQ [4].
Finally, the Query Interface is an Ajax-based Web client
that assists users in composing queries and displays ranked
answers with supporting evidence.

3. DEMONSTRATION PLAN
During the demo session, users can either form arbitrary

queries or choose from 45 prepared queries, at our demo site
http://idir.uta.edu/erq. Below we use Query 1 to illustrate.

Query Formulation (Figure 2):
(1) The user specifies entity variable x by selecting type

PERSON from the first combo box. Variable x has one se-
lection predicate, p1, specified by entering keywords “Stan-
ford” and “graduate” in the input field. The user similarly
specifies variable y and predicate p2.

(2) The user can add more selection predicates to x (and

3
http://wdm.cs.waikato.ac.nz:8080/

Figure 2: Query Interface

Figure 3: Result Presentation

y) by clicking the “Add” button beside its predicate and a
blank input field appears below it. The user can also remove
additional predicates by clicking the “X”mark beside them.

(3) To further explore the interface, the user temporarily
defines a third variable CITY z. The user observes four lines
in the bottom part of the interface, corresponding to differ-
ent combinations of the variables– xy, xz, yz, and xyz. Re-
lation predicates on the combinations can be specified in the
corresponding input fields. The user now removes variable
z by de-selecting its type CITY. Then all the combinations
containing z disappear.

(4) The user enters “found” in the input field next to com-
bination xy, specifying the relation predicate p3. The user
clicks the “GO” button and the constructed query is sent to
EntityEngine for evaluation.

Result Interpretation (Figure 3): 25 answers are re-
turned for Query 1. (Figure 3 shows only one of them.) A
snippet is provided under each answer, e.g., the black box in
Figure 3. The snippet shows one context (sentence) for each
predicate, serving as evidence of the answer satisfying the
predicate. In the sentences, entities and query keywords are
highlighted with different colors. The user can browse more
evidence sentences for each predicate (if any) by clicking the
“see all” link at the end of each sentence.

4. REFERENCES
[1] M. J. Cafarella, C. Ré, D. Suciu, O. Etzioni, and M. Banko.

Structured querying of Web text. In CIDR, 2007.

[2] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing scoring
functions and indexes for proximity search in type-annotated
corpora. In WWW, 2006.

[3] T. Cheng, X. Yan, and K. C.-C. Chang. Entityrank: searching
entities directly and holistically. In VLDB, 2007.

[4] X. Li, C. LI, and C. Yu. Structured querying of annotation-rich
web text with shallow semantics. Technical report, CSE
Department, UT-Arlington, 2010.

[5] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: a core of
semantic knowledge unifying WordNet and Wikipedia. In
WWW, 2007.

[6] M. Zhou, T. Cheng, and K. C.-C. Chang. Data-oriented content
query system: searching for data into text on the web. In
WSDM, pages 121–130, 2010.


