
Entity-Relationship Queries over Wikipedia

Xiaonan Li
Department of Computer
Science and Engineering

University of Texas at Arlington

xiaonan.li@mavs.uta.edu

Chengkai Li
Department of Computer
Science and Engineering

University of Texas at Arlington

cli@uta.edu

Cong Yu
Yahoo! Research New York

congyu@yahoo-inc.com

ABSTRACT

Wikipedia is the largest user-generated knowledge base. We
propose a structured query mechanism, entity-relationship

query, for searching entities in Wikipedia corpus by their
properties and inter-relationships. An entity-relationship
query consists of arbitrary number of predicates on desired
entities. The semantics of each predicate is specified with
keywords. Entity-relationship query searches entities di-
rectly over text rather than pre-extracted structured data
stores. This characteristic brings two benefits: (1) Query
semantics can be intuitively expressed by keywords; (2) It
avoids information loss that happens during extraction. We
present a ranking framework for general entity-relationship
queries and a position-based Bounded Cumulative Model for
accurate ranking of query answers. Experiments on INEX
benchmark queries and our own crafted queries show the
effectiveness and accuracy of our ranking method.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models

General Terms

Design, Languages, Performance, Experimentation

Keywords

entity search, entity ranking, structured entity query, Wikipedia

1. INTRODUCTION
Since its inception in January 2001, Wikipedia has risen

to be the largest encyclopedia ever created, containing more
than 3 million articles in English alone as of 2010. It is now
the primary knowledge source for many users on a wide va-
riety of entities, including people, institutions, geographical
locations, events, etc. For discovering and exploring the en-
tities that fascinate them, users are in need of structured
querying facilities, coupled with text retrieval capabilities,
that explicitly deal with the entities, their properties, and
relationships.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SMUC’10, October 30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0386-6/10/10 ...$10.00.

The prevalent manner in which users access Wikipedia
is still keyword-based document search. Although keyword
search has been quite effective in finding specific pages match-
ing the keywords, there clearly exists a mismatch between
its document-centric view and the aforementioned entity-
centric user information needs. Users’ tasks often cannot be
clearly expressed with simple keyword queries and process-
ing the query results may require substantial user efforts.

Example 1 (Motivating Example): Consider a business
analyst investigating the development of Silicon Valley. Par-
ticularly, she is interested in this task: Find the list of compa-

nies and their founders, where the companies are in Silicon
Valley and the founders are Stanford graduates.

There are two major mismatches that make keyword search
unsuitable for resolving this task. First, the task focuses on
typed entities, PERSON and COMPANY, and, in database
terminology, their “join” relationships. Second, the task
involves synthesizing information scattered across different
places, therefore a simple list of pages is not sufficient. For
instance, one page may tell the analyst that Jerry Yang is
a founder of Yahoo!, but whether Yahoo! is a Silicon Valley
company and whether Jerry Yang is a Stanford graduate
may have to be found in other pages.

While conceptually simple, with only keyword search, tasks
like the above one require substantial user efforts to perform
multiple searches and assemble information from a poten-
tially large number of articles. Our analyst may start with
a search on “Silicon Valley company” and scan through the
potentially long list of result articles to, hopefully, fetch a
list of companies that are likely to be in Silicon Valley. She
then similarly issues another search on “Stanford graduate”
to find a list of people graduated from Stanford Univer-
sity. She then manually combine entities in these two lists
and, by multiple additional searches, check if a company was
founded by a person, for each pair of person and company.
Alternatively, she can also go through the list of companies
and, for each company, find its founders and check if Stan-
ford is their alma mater by multiple search queries. Both
are painful options and require the user to break down the
task into a time-consuming, error-prone iterative procedure
of searching, reading, and re-searching.

Wikipedia (and the Web) contains various tables and lists,
which can be extracted into databases for powerful queries [8].
For example, a page showing a list of Silicon Valley compa-
nies may exist. However, it is unrealistic to expect such
pages always exist for arbitrary user tasks. Moreover, it is
less common to find such tables/lists for relationships be-
tween entities, e.g., who founded which company.

We propose entity-relationship query1, a declarative query
mechanism for the aforementioned task. The results of such
queries are tuples of entities that are likely to meet the se-
mantic requirements of the query, instead of articles con-
taining such entities. For example, our analyst can write
the following SQL-like query for Example 1.

Query 1 (Entity-Relationship Query for Example 1):
SELECT x, y
FROM PERSON x, COMPANY y
WHERE x:["Stanford", "graduate"] // Predicate p1

AND y:["Silicon Valley"] // Predicate p2
AND x,y:["found"] // Predicate p3

We take a DB-IR integration approach in proposing this
direction. On the one hand, entity-relationship queries have
explicit structured components: typed entity variables (e.g.,
x, bound to entities of type PERSON, and y, for entities of
type COMPANY), selection predicates for selecting entities
by their properties (e.g., predicate p1), and relation pred-

icates for specifying relations between entities (e.g., predi-
cate p3 for the requirement that y was founded by x). On
the other hand, the individual predicates are specified by
keyword-based constraints. The query semantics dictates
that entities satisfy a predicate by a simple and intuitive re-
quirement: the entities co-occur with the keywords in some
contexts. Such contexts can be sentences, windows of texts,
etc. For simplicity, we use sentence as context in this pa-
per. For example, predicate p1 requires every PERSON in
the query answer to co-occur with “Stanford” and “gradu-
ate” in at least one sentence. In short, we aim to capture
entity properties and relationships through shallow syntax
requirements implied by users at query-time2, instead of ex-
plicitly extracting and reasoning about complex semantic
information in text before query-time [7, 5, 12, 15, 9, 16,
13]. Although such syntax clue is by no means rigorous or
error-proof, it becomes robust when we take into account
the redundancy in a corpus: true facts are more likely to
be repetitively stated in multiple places. This intuition has
been widely used in Web search and mining, e.g., informa-
tion extraction [7, 5] and entity search and ranking [11].

We implemented a prototype entity-relationship query sys-
tem in Apache Lucene3. The system consists of several com-
ponents. The Indexer creates an Entity-Centric Index. It
associates each term w with a list of entities (ordered by
entity IDs) that co-occur with w somewhere in the corpus.
For each entity e in the list, it further records where w and
e co-occur. Leveraging this design, the Retriever efficiently
retrieves entities and co-occurrence contexts. The results
are fed to Ranker for ranking. This paper reports our study
on ranking. Interested readers are referred to [19] for details
on index and query processing.

Challenges: Entity-relationship queries can yield many
false answers due to abundant accidental co-occurrences (e.g.,
false evidence such as “X’s partner is a Stanford graduate”
for predicate p1). Therefore, how to rank query answers
presents a critical challenge. First, the presence of multiple
predicates in a query requires us to aggregate the rankings of
entities for multiple predicates. Second, many true answers

1It should not be confused with the well-known ER model.
2The effectiveness of such entity-relationship queries par-
tially relies on the user’s capability in forming proper key-
word constraints, like in IR queries.
3http://lucene.apache.org/

have small numbers of co-occurrence contexts (i.e., low re-
dundancy) in Wikipedia. Using redundancy solely is not
sufficient to tell such entities apart from false answers.

Contributions: To the best of our knowledge, this
paper is the first attempt to study multi-predicate entity-
relationship query and its ranking problem. We present a
ranking framework for general entity-relationship queries. It
first evaluates how well an answer satisfies individual predi-
cates and then aggregates multiple predicate scores into an
answer score. A Bounded Cumulative Model (BCM) is pro-
posed for scoring predicates. BCM relies on redundant co-
occurrence contexts for robust evaluation. To improve the
ranking accuracy for answers with small numbers of sup-
porting contexts, BCM performs refined assessment on each
co-occurrence context based on three positional features–
proximity, ordering pattern, and mutual exclusion. Contexts
that are likely to be true evidence are given higher impor-
tance. Existing systems only exploit proximity feature [10,
11] and may not leverage redundancy [10]. In summary, we
make the following contributions in this paper:

• We propose the concept of entity-relationship queries,
for structured querying of entities directly over Wikipedia
text with complex constraints (i.e., multiple predicates).

• We propose a ranking framework and a position-based
Bounded Cumulative Model for ranking the answers
to entity-relationship queries.

• We conduct comprehensive experiments to verify the
effectiveness of the ranking method on both bench-
mark queries and our own crafted queries.

The rest of the paper is organized as follows. Section 2 re-
views related work. Section 3.1 formally defines the concept
of entity-relationship query and its ranking problem. In Sec-
tion 3.2, we discuss three position-based features, which are
used in our Cumulative Model (Section 3.3) and Bounded
Cumulative Model (Section 3.4). Empirical results are re-
ported in Section 4. Section 5 discusses limitations and fu-
ture work. Section 6 concludes the paper.

2. RELATED WORK
Previous studies on structured querying of the Web focus

on DB-based approach that explicitly extracts structured
information into databases [7, 5, 12, 15, 9, 16, 13]. This
approach lends itself to the rich and mature techniques of
database querying. The DB-based approach is constrained
by the capability of the information extraction (IE) and nat-
ural language processing (NLP) techniques. Particularly,
it requires explicit identification of the “names” of entity
relationships. For example, if a “found” relation between
Jerry Yang and Yahoo! was not detected during the extrac-
tion phase, such information is lost and could not be queried.

Some systems [25, 17, 14, 6] explicitly encode entities and
their relations (and general knowledge) in RDF, the W3C
recommendation of data model for Semantic Web. They can
thus leverage the rich expressiveness of query languages like
SPARQL [2] for querying entities. Some of them [25, 17,
6] only capture structured and semi-structured information,
e.g., infoboxes in Wikipedia, leaving out the implicit infor-
mation in unstructured text. For example, YAGO only sup-
ports around 100 relations [24] unified from WordNet and
Wikipedia. Other systems apply IE techniques over Web
pages to bootstrap RDF extraction [14], thus bearing the
same limitation of the aforementioned DB-based approach.

Entity ranking has gained significant interest recently [23,
3, 4, 27, 26]. However, they focus on different problem set-
tings from ours. Take, for example, the INEX Entity Rank-
ing track [3]. The participant systems should find named
entities relevant to some narrative descriptions. The focus
is to accurately understand the descriptions and rank en-
tities accordingly. There are often type constraints on the
entities as well. However, they do not have the concept of
“predicates” and do not deal with multiple predicates.

The studies most related to ours are [10, 11, 28]. Chakrabarti
et al. [10] learns an optimal scoring function on proxim-
ity feature, but it only scores entities by single context. It
makes no attempt to integrate information found in mul-
tiple documents. Leveraging the redundancy on the Web,
EntityRank [11] aggregates scores of locally evaluated co-
occurrence contexts into global scores to improve ranking.
The Content Query Language [28] extends EntityRank with
more context matching patterns. All three systems only fo-
cus on queries comparable to our single-predicate queries
and thus do not study multi-predicate queries.

3. POSITION-BASED RANKING

3.1 Problem Statement
We formalize an entity-relationship query as q=〈V, P 〉.

V is a set of entity variables. Each v ∈ V is bound to enti-
ties of certain type, e.g., PERSON. P is a set of predicates.
Each p ∈ P is a pair 〈Vp, Cp〉, where Vp ⊆ V and Cp is a
set of phrases4. Query 1 is thus formalized as q1=〈V, P 〉,
where V=〈x:PERSON, y:COMPANY〉 and P={p1, p2, p3}.
Among the predicates, p1=〈{x}, {“Stanford”, “graduate”}〉
and p2=〈{y}, {“Silicon Valley”}〉 are selection predicates, and
p3=〈{x, y}, {“found”}〉 is a relation predicate.

An answer to a query q is a tuple of entities, denoted by
t. For each v ∈ V , there is a corresponding entity e ∈ t in-
stantiated from v, e.g., t=〈Jerry Yang, Yahoo!〉 for Query 1.
Given a predicate p=〈Vp, Cp〉, we use tp to represent the
sub-tuple of t such that each entity e ∈ tp is instantiated
from a corresponding v ∈ Vp. Take p1 in Query 1 for exam-
ple. tp1=〈Jerry Yang〉 because Vp1 has only one variable x
and Jerry Yang is instantiated from x. Similarly, tp3=t.

Given a predicate p, if a sentence contains all the phrases
in Cp and one entity for each variable in Vp, it is a (co-
occurrence) context for p. These entities in whole are said
to satisfy p. Suppose three sentences are found in the corpus:

s1: Stanford University graduates Jerry Yang and ...

s2: ...a senior manager at Yahoo! in Silicon Valley.

s3: Jerry Yang co-founded Yahoo!.

Jerry Yang satisfies p1 by sentence s1; Yahoo! satisfies p2
by sentence s2; and they together satisfy p3 by s3. Assem-
bling the information together, the entity tuple 〈Jerry Yang,
Yahoo!〉 is composed as an answer to the query since it sat-
isfies all the query predicates. Note that in s1, Stanford
University is treated as plain text since it is neither a PER-
SON nor a COMPANY.

A co-occurrence context of answer t for predicate p=〈Vp,

Cp〉 is a quadruple 〈doc, sent, V̂p, Ĉp〉. doc and sent refer
to the document ID and the sentence number that together
identify a unique sentence in the corpus. V̂p are the posi-

tions of entities in the aforementioned sub-tuple tp and Ĉp

4A single keyword is treated as a phrase of length 1.

are the positions of phrases in Cp. Suppose the aforemen-
tioned s1 is the 8th sentence of document 9. In this context,
Jerry Yang spans from position 3 to 4 and the two phrases
(“Stanford”and “graduate”) are at positions 0 and 2. Hence,
it is represented as 〈9, 8, {〈3, 4〉}, {0, 2}〉.

Note that there can be multiple contexts of tp1 , each being
a sentence containing Jerry Yang, “Stanford”, and “gradu-
ate”. We denote all contexts of tp by φp(t). Without loss
of generality, we use sentence and context interchangeably
unless distinction is needed.

Problem Statement: Denote all answers to query q=〈V, P 〉
byA. Our goal is to rank the answers in A according to infor-
mation provided by φ={φp|p ∈ P}, where φp=

⋃
t∈A φp(t).

Since the information that is used for ranking, φ, is pri-
marily position information (i.e., documents IDs, sentence
numbers, entity spans and phrase positions), the problem is
called position-based ranking problem.

Given a query q=〈V,P 〉, our ranking framework con-
sists of three scoring functions FS , FR and FA, such that
for each answer t: (1) its score on a selection predicate p ∈ P
is given by FS

p (t); (2) its score on a relation predicate p ∈ P

is given by FR
p (t); and (3) its final score FA(t) (the answer

score) aggregates all predicate scores obtained via FS and
FR. In this framework, the scores of different predicates are
computed independently from each other. The intuition can
be explained as follows. In Query 1, whether a PERSON
is a Stanford graduate (p1) is independent from whether
she founded any COMPANY (p3) and certainly irrelevant
to whether a COMPANY is in Silicon Valley (p2).

The rest of this section proposes our position-based rank-
ing method following this framework.

3.2 Position-Based Features
This section studies three position-based features that are

derivable from a co-occurrence context. These features are
the key components in our Cumulative Model (CM) and
Bounded Cumulative Model (BCM) that are introduced later.

3.2.1 Proximity

Intuitively, if the entities in tp and the keywords in Cp are
close to each other in a context s ∈ φp(t), they likely belong
to the same grammatical unit of the corresponding sentence
(e.g., a phrase like Stanford University graduate Jerry Yang)
and thus form a piece of true evidence. Given predicate p,
we define the proximity of tp in s as

proxp(t, s) = proxp(tp, s) =

∑
e∈tp

|token(e, s)|+
∑

c∈Cp
|c|

|scopep(tp, s)|

where |token(e, s)| is the number of tokens in s representing
entity e; |c| is the number of tokens in phrase c; scopep(tp, s)
is the smallest scope in s covering all the entities in tp and all
the phrases in Cp (a scope is a consecutive sequence of tokens
in s); and consequently |scopep(tp, s)| is the total number of
tokens in the scope. Note that the proximity value is in the
range of [0,1] by this definition.

Different representations may be used in various places to
refer to the same entity and may have different numbers of
tokens. For example, the entity IBM may be represented
by “IBM”, “Big Blue”, or “International Business Machine”.
Hence, |token(IBM, s)| may be 1, 2, or 3 in different s.

Example 2: The following two sentences are both contexts
of the underlined entities for predicate p1 in Query 1. Con-

text s1 is true evidence, supporting a true positive, while s4
is false, supporting a false positive.

s1: Stanford University graduates Jerry Yang and ...

s4: A professor at Stanford University, Colin Marlow had a

relationship with Cristina Yang before she graduated ...

Predicate p1 has two phrases, “Stanford” and “graduate”,
each with one token, hence

∑
c∈Cp1

|c|=2. In s1, the PER-

SON Jerry Yang is represented by two tokens, “Jerry” and
“Yang”, hence

∑
e∈tp1

|token(e, s1)|=2. The scope covering

the entity and the two phrases spans 5 tokens, from “Stan-
ford” to “Yang”, thus |scopep1(tp1 , s1)|=5. Therefore, the
proximity of Jerry Yang in s1 is proxp1(tp1 , s1)=

2+2
5

=0.8.

Similarly, the proximity of Colin Marlow in s4 is 2+2
13

=0.31.
Based on proximity alone, we say that s1 is more likely to
be true evidence and therefore, Jerry Yang is more likely to
satisfy p1 than Colin Marlow, given no other context.

3.2.2 Ordering Pattern

An ordering pattern refers to the order of entities and
phrases in a co-occurrence context. Consider again predicate
p1=〈{x}, {“Stanford”, “graduate”}〉 in Query 1. Let c1 be
the first phrase (“Stanford”) and c2 the second (“graduate”).
This predicate has six different ordering patterns (xc1c2,
xc2c1, c1xc2, c2xc1, c1c2x and c2c1x). Generally, if we de-
note all possible patterns of a predicate p by Op, we have
|Op|=(|Vp| + |Cp|)!. Note that, extra tokens and punctua-
tions between entities and phrases are irrelevant to the pat-
terns. Hence, “Stanford University graduate, Jerry Yang”
and “Stanford graduate Jerry Yang” follow the same pat-
tern, c1c2x.

We observe that some ordering patterns are better indi-
cators of true evidence than others. For example, to express
that somebody is a graduate of Stanford University, true ev-
idence usually follows the pattern c1c2x (e.g., s1). Context
following another pattern, c1xc2, is likely to be false evidence
(e.g., s4). To distinguish good patterns (those that tend to
indicate true evidence) from others, we may assign a dif-
ferent weight to each pattern, so that entities supported by
contexts following good patterns are scored higher. How-
ever, it is impossible to pre-determine the weights since
the goodness of ordering patterns are predicate-dependent.
To illustrate, c1c2x is a good pattern for predicate p1 in
Query 1, but may not be equally good for another predicate
p′1=〈{x:NOVEL}, {“by”, “Jane Austen”}〉, because it is less
common to see true evidence such as

... written by Jane Austen, Pride and Prejudice ...

In our approach, the weights of ordering patterns for a
predicate p are dynamically derived from φp, the set of all
co-occurrence contexts for p. Denoting φp(o) as the subset
of contexts following pattern o, we define the weight of o for
predicate p as its frequency in φp,

fp(o) = |φp(o)|/|φp|

This definition assumes that good patterns appear more
often than bad ones. Although in theory there might be a
pattern frequently appearing in false evidence, making a bad
pattern more common, we do not observe such case in our
experiments.

Another possible direction is leveraging Machine Learning
techniques to predict which patterns lead to better results.
While we are also exploring this direction as future work,
we note here that one significant challenge of the Machine

Learning approach is the need to obtain training data, which
can be costly in terms of human effort.

3.2.3 Mutual Exclusion

Given a predicate p, multiple contexts in φp may have the
same 〈doc, sent〉 value (i.e., come from the same sentence).
They are contexts of different entities and may follow dif-
ferent ordering patterns in that sentence. The co-existence
of different patterns in one sentence is called collision and
the patterns are referred to as colliding patterns. The mu-
tual exclusion rule dictates that, when collision happens, at
most one colliding pattern is effective and the sentence is
only considered evidence following that pattern.
Example 3: The following sentence illustrates mutual ex-
clusion rule for p1 in Query 1. The sentence appears as three
contexts, one for each underlined entity. Ric Weiland fol-
lows the pattern o1=xc2c1. Paul Allan and Bill Gates follow
o2=c2c1x. Semantically, the former pattern is the effective
pattern and the sentence is only evidence of Ric Weiland.

s5: After Ric Weiland graduated from Stanford University,

Paul Allen and Bill Gates hired him in 1975 ...

Without understanding the semantics, it is difficult to de-
cide which colliding pattern is absolutely effective. There-
fore, we relax the rule with a credit mechanism, where every
colliding pattern is considered partially effective, and pat-
terns with higher credits are more likely to be effective than
those with lower credits. We assume each sentence s (that is
a context of at least one sub-tuple tp for predicate p) has a
total credit of 1, meaning that there is only one effective pat-
tern. Given a predicate p, denote the colliding patterns in s
by Op(s) ⊆ Op. Each o ∈ Op(s) gets a credit creditp(o, s),
and

∑
o∈Op(s)

creditp(o, s)=1.

To allocate credits to the colliding patterns Op(s), we
adopt the intuition that patterns followed by more promi-
nent entities are more likely to be effective. Specifically, let
Tp(o, s) be all sub-tuples on p following pattern o in s. For
each o ∈ Op(s), we choose a representative from Tp(o, s),
denoted by T ∗

p (o, s), which is the one with the highest prox-
imity value, i.e., T ∗

p (o, s)=argmaxtp∈Tp(o,s) proxp(tp, s). We
compare the representatives (and thus the patterns that they
follow) by how prominent they are, i.e., by their overall num-
bers of contexts in φp. The credit of o in sentence s is

creditp(o, s) =
|φp(T

∗

p (o, s))|∑
o′∈Op(s)

|φp(T ∗
p (o′, s))|

where φp(T
∗

p (o, s)) is the set of contexts of T
∗

p (o, s) for pred-
icate p. Note that we choose the most proximate sub-tuple
as the representative of a colliding pattern and allocate cred-
its based on representatives only. The intuition is that the
most proximate sub-tuple is most likely to form a grammat-
ical unit with phrases in Cp, and hence the most reliable one
for allocating credits.

In Example 3, t1=T ∗

p1
(o1, s)=Ric Weiland (i.e., the repre-

sentative of pattern o1 is Ric Weiland) since he is the only
PERSON in s following pattern o1. t

2=T ∗

p1
(o2, s)=Paul Allen

because he has higher proximity (0.67) than Bill Gates (0.44),
though both follow o2. Suppose Ric Weiland is found in
4 contexts (|φp1(t

1)|=4) and Paul Allen in 2 (|φp1(t
2)|=2).

Then, creditp1(o1, s)=
4

4+2
=0.67 and creditp1(o2, s)=0.33.

Note that the pattern credit here is different from the
weight of pattern in Section 3.2.2. The weight of pattern o
is a global measure (aggregated over φp) of how frequent,
and thus how reliable, pattern o is. The credit of o, on the

contrary, is a local measure particular to each sentence s,
indicating how likely o is the effective pattern in s.

3.3 Single-Predicate Scoring
So far, we have introduced all the position-based features

for assessing individual contexts. Integrating these features
together, this section presents Cumulative Model (CM) for
scoring an answer on a single predicate. We assume that FS

is the same as FR (i.e., the same function is used for scoring
all predicates), hence for brevity, we use Fp(t) instead of
FS
p (t) and FR

p (t).
Let φp(t, o)⊆φp(t) be all contexts of t for predicate p that

follow pattern o∈Op. Our Cumulative Model (CM) is

Fp(t) =
∑

o∈Op

(fp(o)
∑

s∈φp(t,o)

proxp(t, s)creditp(o, s))

where fp(o) is the weight of pattern o; proxp(t, s) is tp’s
proximity in context s; creditp(o, s) is the credit of o in s.

The model divides φp(t), t’s contexts for p, into |Op| groups,
{φp(t, o)|o ∈ Op}, so that contexts in each group follow the
same pattern. For each group φp(t, o), the model computes a
group score (the inner summation). The group scores are lin-
early combined using weights fp(o) (the outer summation),
such that the group scores of better patterns account more
in Fp(t). The kernel of the function, proxp(t, s) creditp(o, s),
assesses how likely s is true evidence of t for predicate p. It
is monotonic to both the proximity of tp and the credit of
tp’s pattern o. Answers supported by contexts having higher
proximities and pattern credits will accumulate higher scores
and thus ranked higher.

It is interesting to note that CM can be customized easily
by switching on and off its component features, so that we
can evaluate the effectiveness of individual features. While
detailed evaluations are presented in Section 4, below we list
three important customizations.

COUNT Fp(t) =
∑

o∈Op

(1
∑

s∈φp(t,o)

1) =
∑

o∈Op

|φp(t, o)| = |φp(t)|

PROX Fp(t) =
∑

o∈Op

∑

s∈φp(t,o)

proxp(t, s) =
∑

s∈φp(t)

proxp(t, s)

MEX Fp(t) =
∑

o∈Op

∑

s∈φp(t,o)

creditp(o, s) =
∑

s∈φp(t)

creditp(o, s)

3.4 Multi-Predicate Scoring
We extend our single-predicate scoring model to handle

multi-predicate queries. Given a query answer, CM com-
putes a score on each predicate. However, it remains unclear
how to derive the final score, FA(t), from predicate scores.

With CM, predicate scores are unbounded, i.e., the more
contexts the higher scores. When multiple predicate scores
are aggregated, some could be so high that they dominate
the aggregate score, which is called predicate dominance.
To alleviate this problem, we propose Bounded Cumulative
Model (BCM) as an alternative for scoring predicates:

Fp(t) =
∑

o∈Op

(fp(o)[1−
∏

s∈φp(t,o)

(1− proxp(t, s)creditp(o, s))])

BCM uses the same three features as CM does, but dif-
fers from CM in the computation of group scores, each of
which is computed from a set of contexts φp(t, o). Basically,
BCM bounds all group scores in the range [0,1], and con-
sequently it bounds the predicate scores within [0,1], since∑

o∈Op
fp(o)=1 according to Section 3.2.2.

Table 1: Example Answers
x y p1 p2 p3 Π Σ

t1 Jerry Yang Yahoo! 0.8 0.7 0.8 0.448 2.3
t2 Larry Page Google 0.6 0.5 0.6 0.18 1.7
t3 Scott McNealy Cisco 0.9 0.8 0.2 0.144 1.9
t4 Bill Gates IKEA 0.3 0.1 0.2 0.006 0.6

Given an answer t to query q=〈V,P 〉, t’s final score, FA(t),
is computed as the product of its scores on all predicates,

FA(t) =
∏

p∈P

Fp(t)

where Fp(t) can be either BCM or CM. For our problem,
product is a more reasonable aggregate function than sum-
mation, another common aggregate function, because it fa-
vors answers with balanced predicate scores over those with
polarized ones. To illustrate why balanced scores should
be favored, consider the case in Table 1. The table shows
four answers to the query of Query 1. For each answer, it
lists all three predicate scores (by BCM), as well as the fi-
nal scores using product and summation, respectively. The
two aggregates agree on the ranking of t1 and t4, which get
unanimously (i.e., balanced) high and low predicate scores,
but disagree on t2 and t3. The true positive, t2, gets mod-
est and balanced scores on all the predicates. It is correctly
ranked higher than t3, a false positive, by product, but loses
the comparison by summation. Answer t3 gains high scores
on p1 and p2 (Both are indeed satisfied by t3.), but low score
on p3 (In reality, it does not satisfy p3.). However, the final
score of t3 by summation is dominated by the high scoring
predicates and thus t3 is mistakenly ranked above t2.

4. EXPERIMENTS
In this section, we provide the empirical evaluation results

of our prototype system implemented in Apache Lucene.

4.1 Data and Query Sets
We used the 2008-07-24 snapshot of Wikipedia5. After

we removed all the irrelevant pages (such as category and
administrative pages), there were about 2.4 million articles.
This article set is used as the entity catalog. Each article
is the description of an entity, by Wikipedia’s nature of be-
ing an encyclopedia, and the article title corresponds to the
entity name. We predefined 10 entity types (Table 2) and
assigned about 0.75 million entities to these types based on
simple hand-crafted rules, mainly using their categories in
Wikipedia. For example, if an article belongs to a category
whose name ends with “novels” (e.g., British novels) it is
treated as an entity of type NOVEL. This simple method
turns out sufficiently accurate for our experiments.

The same article set is also used as the corpus. For each
article, we removed its section titles, tables, infoboxes, ref-
erences, etc., retaining only the main textual content. The
main text is segmented into sentences. We removed punctu-
ation marks and stemmed all words using the Porter Stem-
mer [1]. We consider the internal links, hyperlinks from one
Wikipedia article to other Wikipedia articles, as occurrences
of the link targets (entities). In this way, we collected nearly
100 million occurrences of the 0.75 million typed entities.

Named entity recognition (NER) [22] and entity disam-
biguation [14] are intensively studied problems. Our hyperlink-
based occurrence detection can be viewed as a rudimentary

5http://download.wikimedia.org

Table 2: Ten Types from Wikipedia
Type (E)ntities (O)ccurrences O/E
AWARD 1,045 626,340 600
CITY 70,893 28,261,278 389
CLUB 15,688 5,263,865 335
COMPANY 24,191 9,911,372 409
FILM 41,344 3,047,576 74
NOVEL 16,729 1,036,596 63
PERSON 427,974 38,228,272 89
PLAYER 95,347 2,398,959 25
SONG 29,934 732,175 24
UNIVERSITY 19,717 6,141,840 311
TOTAL 742,862 95,648,273 129

entity disambiguation method. Recently we have seen ad-
vanced entity recognition and disambiguation methods us-
ing Wikipedia as entity catalog [20, 21, 18] to automatically
link entities mentioned in plain text to their corresponding
Wikipedia articles. One of our ongoing efforts is to use Wik-
ify 6 (the system based on [21]) to detect entity occurrences
in articles that are not hyperlinks. This method will give
us more comprehensive entity occurrences. Furthermore, it
can be applied on generic Web pages, thus enabling entity-
relationship queries on Web corpus.

Two query sets were used for experiments, INEX17 and
OWN28. INEX17 is adapted from the topics in the En-
tity Ranking track of INEX 2009 [3]. From the 60 topics
in the track, we adapted the ones that are on our prede-
fined 10 entity types. In this way, we obtained 17 queries,
including 11 single-predicate queries and 6 multi-predicate
queries. OWN28 contains our own crafted 28 queries, in-
cluding 16 single-predicate queries and 12 multi-predicate
queries. Since manually collecting complete true answers
for all test queries is prohibitively costly, we alternatively
adopted the depth-N pooling approach used by INEX. Ba-
sically for each query, we pooled the top N answers returned
by all compared methods and manually checked their cor-
rectness. This approach allows us to evaluate precision up
to rank N . Though recall cannot be measured directly with
the pooled ground truth, the Mean Average Precision we
used for evaluation reflects recall to certain degree. N is set
to 100 in our case.

4.2 Answers to Sample Queries
In this section we use several sample queries to demon-

strate the accuracy of our query answering system. The
top-10 answers to each query are displayed. The true an-
swers are marked by bullets.
Case 1 (Big Ten Universities): A student is inter-
ested in the list of big ten universities. She can use a single-
predicate query on entity type UNIVERSITY with keyword
constraint “Big Ten”, as follows.

SELECT x FROM UNIVERSITY x WHERE x:["Big Ten"]

• 〈Michigan State University〉
• 〈Indiana University (Bloomington)〉
• 〈Ohio State University〉
• 〈University of Iowa〉
• 〈University of Illinois at Urbana-Champaign〉
• 〈Purdue University〉
• 〈University of Wisconsin-Madison〉
• 〈Pennsylvania State University〉
• 〈University of Michigan〉
• 〈Northwestern University〉

6
http://wdm.cs.waikato.ac.nz:8080/

Case 2 (Business Analyst): Our motivating Exam-
ple 1– Silicon Valley companies founded by Stanford gradu-
ates. The corresponding query is Query 1.

• 〈Jerry Yang, Yahoo!〉
• 〈Scott McNealy, Sun Microsystems〉
• 〈David Packard, Hewlett-Packard Company〉
• 〈Vinod Khosla, Sun Microsystems〉
• 〈William Hewlett, Hewlett-Packard Company〉
〈Bill Gates, Microsoft〉

• 〈Larry Page, Google〉
• 〈Andy Bechtolsheim, Sun Microsystems〉
〈Vinod Khosla, Kleiner Perkins Caufield & Byers〉
〈Andy Bechtolsheim, Cisco Systems〉

Case 3 (Movie Lover): A movie lover interested in
Academy Award winning films starring Australian actors.

SELECT x, y FROM FILM x, PERSON y
WHERE x:["Academy Award"]

AND y:["Australian" "actor"]
AND x,y:["star"]

• 〈Brokeback Mountain, Heath Ledger〉
• 〈Gladiator, Russell Crowe〉
• 〈A Beautiful Mind, Russell Crowe〉
• 〈Braveheart, Mel Gibson〉
• 〈American Gangster, Russell Crowe〉
〈Munich, Eric Bana〉

• 〈The Adventures of Priscilla, Hugo Weaving〉
• 〈The Adventures of Priscilla, Guy Pearce〉
〈 The Insider, Russell Crowe〉

• 〈L.A. Confidential, Russell Crowe〉

Case 4 (Basketball Fan): A basketball fan looking for
team leaders of NBA champions. Particularly, she is inter-
ested in those NBA Finals MVPs.

SELECT x, y FROM CLUB x, PERSON y
WHERE x:["NBA" "champion"]

AND y:["Finals MVP"]
AND x,y:["led"]

• 〈Golden State Warriors, Rick Barry〉
• 〈Chicago Bulls, Michael Jordan〉
• 〈Los Angeles Lakers, Magic Johnson〉
• 〈Los Angeles Lakers, Kareem Abdul-Jabbar〉
• 〈Boston Celtics, Larry Bird〉
• 〈San Antonio Spurs, Tim Duncan〉
• 〈Detroit Pistons, Isiah Thomas〉
• 〈Los Angeles Lakers, Shaquille O’Neal〉
• 〈Los Angeles Lakers, James Worthy〉
〈Houston Rockets, Moses Malone〉

4.3 Comparing Ranking Methods
In this section, we compare and analyze the multiple rank-

ing methods discussed earlier, namely COUNT, PROX, MEX,
CM and BCM. All the methods differ in how they compute
predicate scores, i.e., Fp(t). For multi-predicate queries, the
same aggregate function, product, is used to compute answer
scores, FA(t). We compare these ranking methods using
three popular measures: nDCG, MAP, and Precision-at-k.

nDCG (Normalized Discounted Cumulative Gain): The
first block in Table 3 shows the average nDCG on single-
predicate queries (Single-11), multi-predicate queries (Multi-
6), and all queries (All-17) from INEX17. Both MEX and
PROX improve over COUNT, by 0.02-0.05 across all three
cases. PROX appears to be more effective than MEX. CM
and BCM are comparable to PROX on Single-11, but fur-
ther improve by more than 0.02 on Multi-6. We only observe
minor difference between CM and BCM.

MAP (Mean Average Precision): The second block of
Table 3 shows the MAP on INEX17. The observations are

Table 3: MAP and nDCG on INEX17/OWN28
Query COUNT MEX PROX CM BCM ER

nDCG on INEX17
Single-11 0.889 0.911 0.920 0.920 0.920 0.904
Multi-6 0.880 0.918 0.932 0.954 0.958 0.927
All-17 0.886 0.913 0.924 0.932 0.933 0.912

MAP on INEX17
Single-11 0.756 0.812 0.843 0.844 0.842 0.779
Multi-6 0.772 0.820 0.852 0.885 0.894 0.809
All-17 0.762 0.815 0.846 0.859 0.860 0.790

nDCG on OWN28
Single-16 0.917 0.943 0.947 0.953 0.954 0.923
Multi-12 0.800 0.812 0.836 0.844 0.878 0.781
ALL-28 0.867 0.887 0.899 0.906 0.922 0.862

MAP on OWN28
Single-16 0.758 0.825 0.838 0.858 0.853 0.760
Multi-12 0.579 0.620 0.660 0.684 0.748 0.521
ALL-28 0.681 0.738 0.762 0.783 0.808 0.658

mostly similar to those from the nDCG analysis. Note that
a larger distinction between CM and BCM is observed on
Multi-6, with BCM about 0.01 better than CM.

For further investigation, we repeat the above experiments
on OWN28 and provide the results in the bottom half of Ta-
ble 3. Most results are consistent with INEX17. However, on
multi-predicate queries in OWN28 (Multi-12), BCM shows
clear advantage over CM in terms of both nDCG (by 0.034)
and MAP (by 0.064). The different observations on INEX17
and OWN28 is because, we believe, OWN28 has more multi-
predicate queries than INEX17 and the advantage of BCM
is more stably observed on OWN28.

Precision-at-k: To further analyze how various meth-
ods perform at different ranks, we plot precision-at-k curves.
Figure 1(a)(b) shows the results for k=10. COUNT has the
worst performance. PROX is consistently better than MEX
across all ranks, but worse than CM and BCM, agreeing with
the conclusion drawn from nDCG and MAP analysis. BCM
is consistently the best among all, while CM has inconsistent
performance on INEX17 and OWN28. Figure 1(c)(d) show
the results for k=50. Each curve shows the average preci-
sion of the corresponding method for queries that returned
50 or more answers, including 7 queries in INEX17 and 18
in OWN28. In Figure 1(c), CM and BCM excel before k=10
and BCM is slightly better. PROX is the best after k=10
but is significantly worse than BCM at top ranks. In Fig-
ure 1(d), BCM is clearly the best among all, although a little
worse than CM between 10 and 25.

In summary, the individual features are effective for en-
tity ranking and they work best in concert when they are
integrated into CM and BCM. BCM rivals CM on single-
predicate queries, and excels on multi-predicate queries be-
cause BCM alleviates the predicate dominance problem.

4.4 BCM vs. Other Entity Ranking Methods
As a first study on multi-predicate entity-relationship query,

we did not find directly comparable systems. Instead, we
chose three state-of-the-art systems proposed for related prob-
lems: EntityRank, INEX and INRIA. All three systems used
Wikipedia as corpus and entity catalog, though INEX and
INRIA used different snapshots from ours.

EntityRank (ER) [11] outperforms another closely re-
lated method [10] by a large margin, in term of MRR. We
re-implemented ER as a plugin for scoring individual pred-
icates (FS, FR). As ER focuses on single-predicate queries,

performance on such queries can be fairly compared. For
multi-predicate queries, the predicate scores computed by
ER are aggregated with the same function, product, for com-
puting answer scores (FA).

We tested ER on our data set. In Table 3, both CM and
BCM outperform ER by large margins. The advantage of
CM/BCM over ER is more clear on multi-predicate queries
than on single-predicate ones. The peak margin (0.22) in
terms of MAP is observed on Multi-12 from OWN28, be-
tween BCM and ER. In Figure 1, ER rivals PROX, CM,
and BCM at top-2, verifying the high MRR reported in [11].
However, it deteriorates very fast when k > 2, dropping be-
low 0.7 around k=5, while BCM remains above 0.7 even at
k=10. It indicates that BCM is more robust for queries with
multiple true answers. This is because BCM exploits more
features than ER and is thus able to promote the ranking of
some hard true answers indistinguishable by ER.

INEX Entity Ranking track [3] focuses on a different
problem setting. INEX queries are specified as narrative de-
scriptions on the desired entities. Participating systems can
use any techniques to answer the queries, but need to un-
derstand the query descriptions, which itself is challenging,
thus their MAPs may tend to be low. The MAP achieved by
the best system participating in the 2009 track is 0.517. To
avoid the overhead of assessing participating systems, INEX
used a sampling strategy to estimate their MAPs.

INRIA [26] works on the same problem as INEX. Un-
like INEX participants, it is not based on co-occurrence of
entities and query inputs. Rather, it ranks entities by link
analysis and tf-idf weighting. It achieves MAP of 0.390 on
18 topics adapted from INEX 2006 ad hoc track.

In comparison with INEX and INRIA, the MAP achieved
by BCM on INEX17 is 0.860. We acknowledge that this
comparison is not strictly fair. First, the results are based
on different query sets (INEX17 is a subset of INEX Entity
Ranking topics) and snapshots of Wikipedia. Second, they
focus on different query styles (structured query vs. narra-
tive description). However, our argument is that the high
MAP of BCM at least indicates that the structured entity-
relationship queries can be highly effective in reality.

5. FUTURE WORK
This paper is the first work in the direction of multi-

predicate entity-relationship queries. The distinguishing char-
acteristic of our approach is to combine IR-style keyword
constraints with SQL-style structured query constructs. As
the initial exploratory study along this line, our work has
mainly focused on designing an accurate ranking framework
and building a prototype system, to demonstrates the ef-
fectiveness and promises of the approach. We have thus
only supported basic keyword constraints in the queries. To
deploy a production query system with good usability in
practice, we need to support more advanced query features.
Here we briefly enumerate several such features.

Our current definition of entity-relationship query does
not support querying entities by name (e.g., find entities
whose names contain “Michael”) or querying the relation-
ship between entities (e.g., find the relationship between
Bill Gates and Microsoft). One direction of our future work
is to support these types of queries.

Although the predicates in entity-relationship query are
keyword-based, it can be a burden for users to choose the
right keywords. We are exploring two extensions to address

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1 2 3 4 5 6 7 8 9 10

COUNT
MEX

PROX
CM

BCM
ER

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

COUNT
MEX

PROX
CM

BCM
ER

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

COUNT
MEX

PROX
CM

BCM
ER

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

COUNT
MEX

PROX
CM

BCM
ER

(a) k = 10 on INEX17 (b) k = 10 on OWN28 (c) k = 50 on INEX17 (d) k = 50 on OWN28

Figure 1: Precision-at-k on INEX17/OWN28

this concern. First, query suggestion can directly help users
find the proper keywords. For example, after the user types
“Stanford” for p1 of Query 1, the system could suggest a list
of keywords that commonly co-occur with “Stanford” in the
corpus or in the query log, such as “graduate”, “professor”,
etc. Second, the strict keyword matching can be relaxed by
query expansion, e.g., allowing a context for p1 to contain
“alumni”, if not “graduate”. Synonym thesaurus and para-
phrases mined from the corpus may be used for this purpose.
New challenges on ranking shall arise with query expansion.

In addition to position-based features, the assessment of
co-occurrence contexts can be improved with more features
such as syntactic information (e.g., part-of-speech tags) and
lexicographic information. The BCM model may be ex-
tended with new factors for these features.

6. CONCLUSION
Entity-relationship query is a structured facility to query

entities over Wikipedia. It distinguishes itself by (1) allow-
ing multiple keyword-based predicates in a query and (2)
searching directly in corpus instead of pre-extracted data
stores. As a result, entity-relationship query supports se-
mantics expressed with keywords and avoids information
loss that happens when pre-extracting facts into data stores.
We presented a ranking framework for entity-relationship
queries and a Bounded Cumulative Model under this frame-
work. Our ranking method exploits three intuitive positional
features, which are shown to be effective on both benchmark
queries and our own crafted queries.

7. REFERENCES
[1] http://tartarus.org/ martin/porterstemmer/.
[2] http://www.w3.org/tr/rdf-sparql-query.
[3] INEX 2009 entity-ranking track.

http://www.inex.otago.ac.nz/tracks/entity-
ranking/entity-ranking.asp.

[4] TREC 2009 entity track: Searching for entities and
properties of entities.
http://ilps.science.uva.nl/trec-entity/guidelines/.

[5] E. Agichtein and L. Gravano. Snowball: Extracting
relations from large plain-text collections. In DL, 2000.

[6] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, , and Z. Ives. DBpedia: A nucleus for a
Web of open data. In Int.l Semantic Web Conf., 2007.

[7] S. Brin. Extracting patterns and relations from the
world wide web. In WebDB, 1998.

[8] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: exploring the power of tables on
the web. Proc. VLDB Endow., 1(1):538–549, 2008.

[9] M. J. Cafarella, C. Ré, D. Suciu, O. Etzioni, and
M. Banko. Structured querying of Web text. In CIDR,
pages 225–234, 2007.

[10] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing

scoring functions and indexes for proximity search in
type-annotated corpora. In WWW, 2006.

[11] T. Cheng, X. Yan, and K. C.-C. Chang. EntityRank:
searching entities directly and holistically. In VLDB,
pages 387–398, 2007.

[12] E. Chu, A. Baid, T. Chen, A. Doan, and J. Naughton.
A relational approach to incrementally extracting and
querying structure in unstructured data. In VLDB,
pages 1045–1056, 2007.

[13] P. DeRose, W. Shen, F. Chen, A. Doan, and
R. Ramakrishnan. Building structured Web
community portals: a top-down, compositional, and
incremental approach. In VLDB, 2007.

[14] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha,
A. Jhingran, T. Kanungo, S. Rajagopalan,
A. Tomkins, J. A. Tomlin, and J. Y. Zien. SemTag
and seeker: bootstrapping the semantic Web via
automated semantic annotation. In WWW, 2003.

[15] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld.
Open information extraction from the Web. Commun.
ACM, 51(12):68–74, 2008.

[16] E. Kandogan, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar semantic
search: a database approach to information retrieval.
In SIGMOD, pages 790–792, 2006.

[17] G. Kasneci, F. Suchanek, G. Ifrim, M. Ramanath, and
G. Weikum. NAGA: Searching and ranking
knowledge. In ICDE, pages 953–962, 2008.

[18] S. Kulkarni, A. Singh, G. Ramakrishnan, and
S. Chakrabarti. Collective annotation of Wikipedia
entities in Web text. In KDD, pages 457–466, 2009.

[19] X. Li, C. Li, and C. Yu. Structured querying of
annotation-rich web text with shallow semantics.
Technical report, Univ. of Texas at Arlington, 2010.

[20] R. Mihalcea and A. Csomai. Wikify!: linking
documents to encyclopedic knowledge. In CIKM, 2007.

[21] D. Milne and I. H. Witten. Learning to link with
wikipedia. In CIKM, 2008.

[22] Nadeau, David, Sekine, and Satoshi.
[23] D. Petkova and W. B. Croft. Proximity-based

document representation for named entity retrieval. In
CIKM, 2007.

[24] F. Suchanek. Automated Construction and Growth of a
Large Ontology. PhD thesis, Saarland University, 2009.

[25] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO:
a core of semantic knowledge unifying WordNet and
Wikipedia. In WWW, 2007.

[26] A.-M. Vercoustre, J. A. Thom, and J. Pehcevski.
Entity ranking in wikipedia. In SAC, 2008.

[27] H. Zaragoza, H. Rode, P. Mika, J. Atserias,
M. Ciaramita, and G. Attardi. Ranking very many
typed entities on Wikipedia. In CIKM, 2007.

[28] M. Zhou, T. Cheng, and K. C.-C. Chang.
Data-oriented content query system: searching for
data into text on the web. In WSDM, 2010.

