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ABSTRACT

We present a novel query language for large-scale analiyXislh
data on a map-reduce environment, called MRQL, that is expre
sive enough to capture most common data analysis tasks #mel at
same time is amenable to optimization. Our evaluation ptars
constructed using a small number of higher-order physipela
tors that are directly implementable on existing map-redsys-
tems, such as Hadoop. We report on a prototype system impleme
tation and we show some preliminary results on evaluatingUR
queries on a small cluster of PCs running Hadoop.

1. INTRODUCTION

Many web service providers are facing the challenge of cblle
ing and analyzing massive amounts of data, such as datztealle
by web crawlers, search logs, web logs, and streams of ekl-cli
data. Often, these data come in the form of XML, such as the
mediawiki dumps of Wikipedia articles. By analyzing thesaad
these companies gain a competitive edge by improving thelr w
services, providing better ad selection, detecting fréamtuactiv-
ities, and enabling data mining on large scale. The mapeedu
programming mode[ 8] is an emerging framework for cloud eom
puting that enables this data analysis. It facilitates tralel exe-
cution of ad-hoc, long-running large-scale data analysiks on a
shared-nothing cluster of commodity computers connettexligh
a high-speed network. In contrast to parallel databaseghwh-
quire the programmer to first model and load the data befare pr
cessing, the map-reduce model is better suited to one-tili®a
queries over write-once raw data. More importantly, coragao
traditional DBMSs, map-reduce implementations offer doefiult
tolerance and the ability to operate in heterogeneous@mwients,
which are critical for large scale data analysis on comnydukird-
ware.

computation uses the map task to process all input key/\yadire

in parallel by distributing the data among a number of noddhé
cluster (called the map workers), which execute the map itask
parallel without communicating with each other. Then, tregprre-
sults are repartitioned across a number of nodes (callecethee
workers) so that values associated with the same key argguou
and processed by the same node. Finally, each reduce warker a
plies the reduce task to its assigned partition.

Our goal was to design and implement an effective cost-based
optimization framework for the map-reduce programming rem+
ment that improves large-scale data analysis programs raver
data, especially XML documents. We believe that it would be
very hard to optimize general map-reduce programs exptdasse
a general-purpose programming language. Instead, asviidisre
from the success of the relational database technologgram
optimization would be more effective if the programs weréten
in a higher-level query language that hides the implemimtate-
tails and is amenable to optimization. Therefore, one ofgmals
was to design a declarative query language that is powenfuigh
to capture most commonly used map-reduce computationasys e
to learn, has uniform syntax, is extensible, has simple stos
and is easy to compile to efficient map-reduce programs. @n on
hand, we would like to have a declarative query language epow
ful enough to avert the programmer from using ad-hoc mapeed
programs, which may result to suboptimal, error-prone, laaudi
to maintain code. On the other hand, we want to be able to opti-
mize this query language, leveraging the relational quptiyroza-
tion technology. Unfortunately, relational query optiation tech-
niques are not directly applicable to the map-reduce engient.
Consider, for example, the following nested SQL query:

select « from X x
where x.D > (select sum(y.C) from Y y where x.A=y.B)

When defining a map-reduce job, one has to specify a map andA typical method for evaluating this query in current DBMSd0

a reduce task, which may be arbitrary computations written i
general-purpose language [8]. The map task specifies howoto p
cess a single key/value pair to generate a set of interneckiégt/-
value pairs. The reduce task specifies how to merge all irgeiate
values associated with the same intermediate key. A mameed

Copyright is held by the author/owner.
Fourteenth International Workshop on the Web and Datab@sebDB
2011), June 12, 2011 - Athens, Greece.

do a left-outer join betweeR andY on x.A=y.B (it is a left-outer
join because the query must also return theeiples that are not
joined with anyy tuple), to group the result by thekey, and, for
each group, to calculate the sum of alt and compare this sum
with x.D. Unfortunately, this method is suboptimal in a map-reduce
environment because it requires two map-reduce jobs, anibdo
join and one for the group-by. Instead, this query can beuated
with one reduce-side join [24] (a partitioned join), whidguires
only one map-reduce job. Consequently, optimizing nestediegs
requires special techniques that take advantage of théaspéyo-
rithms available in a map-reduce environment. Nested gsietie
very important because any arbitrary map-reduce compuatatn
be expressed declaratively using nested queries, as wahaill

in Section[b. Capturing all map-reduce computations as lsimp
queries was a very important design goal for our framewarkes



it obviates the need for introducing a special map-reduesaion.
Another important goal was to develop an optimizer that I &b
recognize most syntactic forms in the query syntax that quéva-

lent to a map-reduce operation and derive a single map-egjdbc

for each such form. If neither of these two goals is achiewed,
programmer may be forced to use explicit map-reduce computa
tions, rather than declarative queries, which may resugttmpti-
mal code.

We are presenting a novel framework for optimizing and evalu
ating map-reduce computations over XML data that are expres
in an SQL-like query language, called MRQL (the Map-Reduce
Query Language). This language is powerful enough to egpres

tems. Although, HadoopDB uses Hive as the user interfacer,lay
instead of storing table tuples in DFS, it stores them in rechelent
DBMSs in each physical node in the cluster. That way, it inses
the speed of overall processing as it pushes many databesa op
tions into the DBMS directly, and, on the other hand, it iritsathe
benefits of high scalability and high fault-tolerance frdme tmap-
reduce framework. Hadoop+i|[9] takes a different approacinf
HadoopDB: each map-reduce computation is decomposed finto a
execution plan, which is then transformed to take advantéges-
sible indexes attached to data splits. This work though daoés
provide a framework for recognizing joins and filtering imegeal
map-reduce programs, in order to take advantage of the ésdex

most common data analysis tasks over XML text documents, as Manimal [4]16] analyzes the actual map-reduce code to fipdiep

well as over other forms of raw data, such as line-orienteittec-
uments with comma-separated values. Although we havesixen
experience in building XQuery optimizers, we decided toigles

tunities for using B+-tree indexes, projections, and damamres-
sion. It assumes that an index is generated before querutixec
and is used frequently enough to justify the time overhegdired

our own query language because we are planning to extend MRQLto build the index. This assumption may not be valid for anget

to handle many other forms of raw data, such as JSON data,llas we
as structured data, such as relational databases and lkeyrvaps,

in the same query language. To evaluate MRQL queries, we pro-

vide a set of physical plan operators, such as the reduegjiial
that are directly implementable on existing map-reduceesys.
Leveraging the research work in relational databases, ysiems
compiles MRQL queries to an algebra, which is translatedsp
ical plans using cost-based optimizations. Due to spadealiions,
this paper describes the XML fragmentation techniques bgedr
framework to break XML data into manageable fragments treat a
ready for map-reduce evaluation (Secfign 3), some of the MRQ
syntax to query XML data (Sectidd 4), and the physical opesat
used by our framework to evaluate queries (Sedflon 5). Tleeyqu
algebra and optimizer are briefly sketched in Sedtion 6. Widy
be described in detail in a forthcoming paper.

2. RELATED WORK

The map-reduce model was introduced by Google in 2004 [8].
Several large organizations have implemented the mapseedu
paradigm, including Apache Hadodp [24] and Rigl|[20], Ap#che
Facebook Hive [22], Google Sawzall[21], and Microsoft Daya4].
The most popular map-reduce implementation is Hadbop ErB],
open-source project developed by Apache, which is usedytoda
by Yahoo! and many other companies to perform data analysis.
There are also a number of higher-level languages that make m
reduce programming easier, such as HiveQU [22], PigLat0j,[2
Scope([6], and Dryad/Lind [15]. Hive [22, 23] is an open-sumur
project by Facebook that provides a logical RDBMS environime
on top of the map-reduce engine, well-suited for data wareho
ing. Using its high-level query language, HiveQL, users waite
declarative queries, which are optimized and translatedrimap-

queries against raw data. Finally, even though Hadoop gesva
simple XML input format for XML fragmentation, to the best of
our knowledge, there is no other system or language reptoted
XML query processing on a map-reduce environment. (Altoug
there are plans for implementing XQuery on top of Hadoogedal
Xadoop, by D. Kossmann'’s group at ETH [25].)

3. XML DATA FRAGMENTATION

A data parallel computation expects its input data to be-frag
mented into small manageable pieces, which determine traugr
larity of the computation. In a map-reduce environmentheaap
worker is assigned a data split that consists of data fraggneh
map worker processes these data one fragment at a time. |&or re
tional data, a fragment is clearly a relational tuple. Fat fites, a
fragment can be a single line in the file. But for hierarchidata
and nested collections, such as XML data, the choice fortatsgi
fragment size and structure may depend on the actual appiica
that processes these data. For example, the XML data may con-
sist of a number of XML documents, each one containing a singl
XML element, whose size may exceed the memory capacity of a
map worker. Consequently, when processing XML data, it @oul
be desirable to allow custom fragmentations to suit a widgeaf
application needs. Hadoop provides a simple XML input farfoa
XML fragmentation based on a single tagname. Given a daiia spl
of an XML document (which may start and end at arbitrary point
in the document, even in the middle of tagnames), this inpumét
allows us to read the document as a stream of string fragsmts
that each string will contain a single complete element lilaatthe
requested tagname. Then, the programmer may use an XMLrparse
to parse these strings and convert them to objects. The &aigm
tion process is complicated by the fact that the requestrdeaits

reduce jobs that are executed using Hadoop. HiveQL does notmay cross data split boundaries and these data splits migg ies

handle nested collections uniformly: it uses SQL-like syntor
querying data sets but uses vector indexing for nestedotioltes.
Unlike MRQL, HiveQL has many limitations (it is a small sub-
set of SQL) and neither does support nor optimize nestedeguer
Because of these limitations, HiveQL enables users to jplugts-
tom map-reduce scripts into queries. Although Hive useplgm
rule-based optimizations to translate queries, it hasoyptdvide a
comprehensive framework for cost-based optimizationhowés
Pig [12] resembles Hive as it provides a user-friendly gty
language, called PigLatin [20], on top of map-reduce, whibbws
explicit filtering, map, join, and group-by operations. &iklive,
PigLatin performs very few optimizations based on simplk ru
transformations. HadoopDB][1] adapts a hybrid scheme hestwe
map-reduce and parallel databases to gain the benefit ofslgeth

different data nodes in the DFS. Fortunately, this problerimi-

plicitly solved by the Hadoop DFS by permitting to scan bayan
data split to the next, subject to some overhead for trarnsfedata
between nodes.

Our XML fragmentation technique, which was built on top of
the existing Hadoop XML input format, provides a higherdkof
abstraction and better customization. It is a higher-Ibeslause,
instead of deriving a string for each XML element, it constsu
XML data in the MRQL data model, ready to be processed by
MRQL queries. In MRQL, the XML data type is actually a user-
defined type based on data constructors (very similar to #te d
constructors in Haskell):

data XML = Node: ( String, list ((String, String)),
| CData: String

list (XML) )



That is, XML data can be constructed as nodes (which areguple
that contain a tagname, a list of attribute bindings, andadf
children) or text leaves (CData). For examplea x="1">b</a>

is constructed usin@lode(“a”,[(“x",1")],[CData(*b”)]). The MRQL
expression used for parsing an XML document is:

source( tags, xpath, file )

wheretags is a bag of synchronization tagspath is the XPath
expression used for fragmentation, ditel is the document path.
Given a data split from the document, this operation skipteat
until it finds the opening of a synchronization tag and themest
the text upto the matching closing tag into a buffer. Durihg t
storing of an element, it may cross split boundaries, bunduhe
skipping of text, it will stop at the end of the split. The berff
then becomes the current context fpath, which is evaluated in
stream-like fashion using SAX (based on our earlier work])[11
returning XML objects constructed in our MRQL data model.
For example, the following expression:

XMark = source( {"person"}, xpath (.), "xmark.xml");

binds the variablexmark to the result of parsing the document
xmark.xml (generated by the XMark benchmalrk [26]) and returns a
list of person elements. The xpath expression here is théttuat
returns the current context. A more complex example is:

DBLP = source( {"article"," incollection ", "book","inproceedings"},
xpath (.[year=2009]/ title ), "dblp.xml" )

which retrieves the titles of certain bibliography entreglished

in 2009 from DBLP [[7]. Here, we are using multiple synchro-
nization tags since we are interested in elements of meltig-
names. Note that, although the document order is important f
XML data, this order is ignored across fragments but is puesk
within each fragment, as expected, since data splits acepsed
by worker nodes in parallel. MRQL also provides syntax to-nav
igate through XML data. The projection operatieA has been
overloaded to work on XML data. Given an expressioof type
XML or list(XML), e.A returns a list(XML) that contains the subele-
ments ofe with tagnameA (much likee/A in XPath). Similarly,
the syntaxe.x, e.@A, ande.@Qx corresponds to the XPathgx,
e/@A, ande/@x, respectively.

4. THEMAP-REDUCE QUERY LANGUAGE

The MRQL query syntax is influenced by ODMG OQL [5], the
OODB query language developed in the 90's, while its seroanti
has been inspired by the work in the functional programming-c
munity on list comprehensions with group-by and orderib&][1
The select-query syntax in MRQL takes the form:

select [distinct ] e

frompiinei, ..., pninen

[where e ]

[group by p’: e’ [ having ej, ] ]

[order by e, ]
wheree, e1, ..., en, e, €, en, andeg are arbitrary MRQL expres-
sions, which may contain other nested select-queries. MR&Ji-
dles a number of collection types, such as lists (sequenbegp
(multisets), and key-value maps. The difference betweést arid
a bag is that a list supports order-based operations, sticlies
ing. An MRQL query works on collections of values, which are
treated as bags by the query, and returns a new collecticnwés.

If it is an order-by query, the result is a list, otherwisesi. bag.
Treating collections as bags is crucial to our frameworkgeiit
allows the queries to be compiled to map-reduce programishwh
need to shuffle and sort the data before reduction, and entige

use of joins for query evaluation. Them part of an MRQL syn-
tax contains query bindings of the formih ¢’, wherep is a pattern
ande is an MRQL expression that returns a collection. The pattern
p matches each element in the collectigiinding its pattern vari-
ables to the corresponding values in the element. In othedsyo
this query binding specifies an iteration over the collettipone
element at a time, causing the patterno be matched with the
current collection element. In general, a pattern can bettarpa
variable that matches any data, or a tuf@le, . . ., p,) or a record
<Ai : pi1,..., A, : pp> that contain patterng, ..., p,. Pat-
terns are compiled away from queries before query optinaizat

The group-by syntax of an MRQL query takes the fesmoup by
p': €. It partitions the query results into groups so that the mensb
of each group have the samevalue. The patterp’ is bound to
the group-by value, which is unique for each group and is comm
across the group members. As a result, the group-by opeilét®
all the other pattern variables defined in the from-part efgbery
from some typel’ to a bag ofT’, indicating that each such vari-
able must contain multiple values, one for each group menfmer
example, the following query on XMark data:
Query 1:

select ( cat, os, count(p))

from p in XMark,

i in p.profile . interest
group by (cat, os ): ( i.@category,
count(p.watches.@open_auctions) )

groups all persons according to their interests and the eummb
open auctions they watch. For each such group, it returnsuie

ber of persons in the group. The XMark data source returns the
person elements, so thptis one person, andis one ofp’s in-
terests. The variablesat andos in the query header are directly
accessible since they are group-by variables. The vanigloie the
other hand, is lifted to a bag of XML elements. Thasunt(p)
counts all persons whose interests incledeand watchos open
auctions.

Finally, the order by’ syntax orders the result of a query (after
the optional group-by) by the, values. Itis assumed that there is a
default total ordex defined for all data types (including tuples and
bags). The special parametric tylpoe(T"), which has a single data
constructoiinv(v) for a valuev of type T, inverts the total order of
T from < to >. For example, as a part of a select-query

order by ( inv(count(p.watches.@open_auctions)), p.name )

orders people by major ordewunt(p.watches.@open_auctions)
(descending) and minor ordpmhame (ascending).
A more complex query, which is similar to the query Q10 of the
XMark benchmarkl[26], is
Query 2:
select ( cat, count(p), select text(x.name) from xin p)
from p in XMark,
i in p.profile . interest,
¢ in XMark
where c.@id = i.@category
group by cat: text(c.name);

which uses an XML source that retrieves both persons and cate
gories:

XMark = source({"person”,"category"},xpath(.), "xmark.xml");

It groups persons by their interests, and for each grougtitrns
the category name, the number of people whose interestsdimcl
this category, and the set of names of these people.tekh&unc-
tion returns the textual content of element(s).

As yet another example over the DBLP bibliography:



DBLP = source( {"article"," incollection ", "book","inproceedings"},
xpath (.), "dblp.xml" )

the following query
Query 3:
select ( select text(a. title ) from ain DBLP where a.@key = x,
count(a))
from ain DBLP,
cin a.cite
where text(c) <>" ... "
group by x: text(c)
order by inv(count(a))

inverts the citation graph in DBLP by grouping the items bgith
citations and by ordering these groups by the number ofi@itat
they received. The conditiotext(c) <> “..” removes bogus cita-
tions. Note that, the DBLP source is also used in the quergédrea
to retrieve the citation title.

5. THE PHYSICAL OPERATORS

The MRQL physical operators form an algebra over the domain
DataSet(T), which is equivalent to the typeag(T). This domain is
associated with a source list, where each source consistSilef
or directory name in DFS, along with an input format that\a#o
to retrieveT elements from the data source in a stream-like fash-
ion. The input format used for storing the intermediate ltesn
DFS is a sequence file that contains the data in serialized. for
The MRQL expressiosource, described in Sectiol 3, returns a
single source of typeag(XML) whose input format is an XML in-
put format that uses synchronization tags and an XPath taaxt
XML fragments from XML documents. The rest of the physical
operators have nothing to do with XML because they process fr
ments using map-reduce jobs, regardless of the fragmemiator
Each map-reduce operation though is parameterized byidmsct
that are particular to the data format being processed. ®He c
of these functional parameters is evaluated in memory it sk
worker), and therefore can be expressed in some XML algefitra s
able for in-memory evaluation. Our focus here is in the meghice
operations, which are novel, rather than in an XML algebitsictv
has been addressed by earlier work. In addition tosthece ex-
pression, MRQL uses the following physical operators:

e Union(X,Y), returns the union of the DataSetsandY'. It
simply concatenates the source listsXfand Y (the list of file
names), forming a new DataSet.

e MapReduce(m, r) S, transforms a DataSet of type bag(«)
into a DataSet of typdag(3) using a map functionn of type
a— bag((x,7)) and a reduce functionof type(x,bag(y)) — bag(3),
for the arbitrary typesy, 3, v, andx. The map functionn trans-
forms values of typex from the input dataset into a bag of inter-
mediate key-value pairs of tygeg((~,7)). The reduce functiom
merges all intermediate pairs associated with the samefkgpe
x and produces a bag of values of typewhich are incorporated
into the MapReduce result. More specificalMapReduce(m, r) S
is equivalent to the following MRQL query:

select w
from zin (select r(key,y)
from xin S,

(k,y) in m(x)
group by key: k),
win z

that is, we applyn to each value in S to retrieve a bag ofk,y)
pairs. This bag is grouped by the keywhich lifts the variable
y to a bag of values. Since each callrt@enerates a bag of val-
ues, the inner select creates a bag of bags, which is flatmuted
by the outer select query. A straightforward implementatid

MapReduce(m,r) S in a map-reduce platform, such as Hadoop,
is the following Java pseudo-code:

class Mapper

method map ( key, value )
for each (k,v) € m(value) do emit(k, v);
class Reducer
method reduce ( key, values )
B« 0;
for each w € values do B <+~ B U {w};
for each v € r(key,B) do emit(key,v);
where theemit method appends pairs of key-values to the output
stream. The actual implementation of MapReduce in MRQL s of
ten stream-based, which does not materialize the inteatetiag
B in the reduce code (the cases where streaming is enabled are
detected statically by analyzing the reduce function). Aateon
of the MapReduce operation igap(m) S, which is equivalent to
MapReduce without the reduce phase. That is, given a map func
tion m of type o — bag(B), the operatiorMap(m) S transforms a
bag(c) into abag(s). (It is equivalent to the concat-map or flatten-
map in functional programming languages.)

e MapReduce2(mg, my, r)(X,Y), joins the DataSeX of type
bag() with the DataSeY” of typebag(g) to form a DataSet of type
bag(y). The map functionn,, is of typea— bag((x,a’)), wherex
is the join key type, the map function,, is of type— bag((x, 8')),
and the reduce functionis of type( bag(’), bag(s’) ) — bag(y).

This join can be expressed as follows in MRQL:

select w
from zin (select r(X,y")
fromxin X, yinY,
(kx,X") in mg (X),
(ky,y") in my(y)
where kx = ky
group by k: kx),
win z
It applies the map functions:, andm, to the elements € Y
andy € Y, respectively, which perform two tasks: transform the
elements intoe andy’ and extract the join keysx andky. Then,
the transformedX andY elements are joined together based on
their join keys. Finally, the group-by lifts the transforchele-
mentsx’ andy’ to bags of values with the same join kiey=ky and
passes these bagsitoMapReduce?2 captures the well-known equi-
join technique used in map-reduce environments, callediaces
side join [24] or COGROUP in Pig [12]. An implementation of
MapReduce2(mz, my,7)(X,Y) in a map-reduce platform, such
as Hadoop, is shown by the following Java pseudo-code:

class Mapperl
method map(key,value)
for each (k,v) € my(value) do emit(k, (0, v));
class Mapper2
method map(key,value)
for each (k,v) € my(value) do emit(k, (1,v));
class Reducer
method reduce(key,values)
zs <+ {v|(n,v) €values,n =0} ;
ys < {v|(n,v) evalues,n=1};
for each v € r(xs,ys) do emit(key, v);
That is, we need to specify two mappers, each one operatitag on
different data setX or Y. The two mappers apply the join map
functionsm, andm, to the X andY” values, respectively, and tag
each resulting value with a unique source id (0 and 1, resedgt
Then, the reducer, which receives the values from botand Y
grouped by their join keys, separates fiérom theY” values based
on their source id, and applies the functiomo the two resulting
value bags. The actual implementation of MapReduce2 in MRQL



is asymmetric, requiring onlys to be cached in memory, whiles
is often processed in a stream-like fashion. (Such caseetzeted
statically, as is done for MapReduce.) Hencethshould always
be the smallest data source or the 1-side of the 1:N reldtipns

e Finally, Collect(S), allows us to exit the DataSet algebra by
returning abag(T) value from theDataSet(T), S. That is, it extracts
the data from the data set files fhand collects them into a bag.
This operation is the only way to incorporate a map-reducepo
tation inside the functional parameters of another mapgedom-
putation. It is used for specifying flagment-replicate join(also
known as memory-backed join [19]), where the entire dat& sist
cached in memory and each map worker performs the join betwee
each value ofX and the entire cached bay, This join is effective
if Y is small enough to fit in the mapper's memory.

For example, foQuery 1 MRQL generates a plan that consists
of a single MapReduce job:

MapReduce(\p.select ( (i.@category,
count(p.watches.@open_auctions) ),

p)
fromi in p. profile . interest,
A((cat,08),ps). { ( cat, os, count(ps)) } )
( source({"person"},xpath (.), "xmark.xml") )

where an anonymous functioxi.e specifies a unary function (a
lambda abstractionf such thatf(x) = e, while an anonymous
function\(z, y).e specifies a binary functiofisuch thatf (z, y) =

e. Here, for convenience, we have used the MRQL syntax to de-
scribe in-memory bag manipulations. In the actual impletatéon,

we use a bag algebra based on the concat-map operator (also kn
as flatten-map in functional programming languages) to maate
bags in memory. We have used two kinds of implementations for
in-memory bags: stream-based (as Java iterators) and\med.
The MRQL compiler uses the former only when it staticallyeats
that the bag is traversed once.

MRQL translatesQuery 2into a workflow of two cascaded
MapReduce jobs: The inner MapReduce performs a self-joén ov
the XMark DataSet, while the outer one groups the result bg-ca
gory name. Self-joins do not require a MapReduce?2 (an exin)-j
operation. Instead, they can be evaluated using a regulpRista
duce where the map function repeats each input element:twice
once under a key equal to the left join key, and a second tirderun
a key equal to the right join key. MRQL translat@siery 3into

only. Recall that the reduce functiercan be any function that gets
two bags as input and returns a bag as output, so that, foj@ach
key value, the input bags hold the elements fidrandY” that have
this key value. Function can combine these two input bags in such
a way that the nesting of elements in the resulting bag wafldat
the desirable nesting of the elements in the MRQL query. iBhas
powerful idea that, in most cases, eliminates the need farging
the results of the join before they are combined to form theryu
result.

The MRQL optimizer uses a polynomial heuristic algorithm,
which we first introduced in the context of relational querigd],
but adapted to work with nested queries and dependent jvissa
greedy bottom-up algorithm, similar to Kruskal’s minimuipas-
ning tree algorithm. Our approach to optimizing general MRQ
queries is capable of handling deeply nested queries, ofany
and at any nesting level, and of converting them to nearafjoin
plans. It can also optimize dependent joins, which are udeehw
traversing nested collections and XML data. The most ingrt
component missing from our framework is a comprehensivé cos
model based on statistics. In the future, we are planningéady-
namic cost analysis, where the statistics are collectedrandpti-
mization is done at run-time. More specifically, we are piagro
develop a method to incrementally reduce the query grapbnat r
time, and enhance the reduce stage of a map-reduce opeti@tion
generate enough statistics to decide about the next graplhtien
step.

7. CURRENT STATUS OF IMPLEMENTA-
TION AND PERFORMANCE RESULTS

MRQL is implemented in Java on top of Hadoop. The source
code is available @ttt p: / /1 anbda. ut a. edu/ nrql /. Cur-
rently, our system can evaluate any kind of MRQL query, ower t
kinds of text documents: XML documents and record-oriemést
documents that contain basic values separated by useedefa
limiters. We currently provide two different implementais for
our physical algorithms, thus supporting two differentelsvof
program testing. The first one is memory-based, using Java ve
tors to store data sets. This implementation allows progrars to
quickly test their programs on small amounts of data. Thersgc
implementation uses Hadoop, on either single node or cldgte

a workflow of three cascaded jobs: a MapReduce, a MapReduce2,ployment, and is based on the interpretation of physicalplahat
and a MapReduce. The first MapReduce groups DBLP items by is, each physical operator is implemented with a single idpdo

citation. The MapReduce? joins the result with the DBLP Bata
to retrieve the title of each citation. The last MapReduaders

the result by the number of items that reference each aitaBoth

Query 2andQuery 3are evaluated in Sectigh 7.

6. THE MRQL OPTIMIZER

MRQL uses a novel cost-based optimization framework to map
the algebraic forms derived from the MRQL queries to effitien
workflows of physical plan operators. The most important MRQ
algebraic operator is the join operajoin(k., ky, ) (X, Y"), which
is a restricted version eflapReduce2, because it uses the key func-
tionsk, andk, to extract the join keys, instead of the general map
functionsm, andm, that transform the values:

join(kz, ky, 7)(X,Y)
= MapReduce2( Az.{(k=(z), z)}, Ay{(ky(y),y)}, ) (X, V)
MapReduce2 is more general thajoin because it allows cascaded

Map operations to be fused withMapReduce or a MapReduce2
operation at the physical level, thus requiring one mapicedob

map-reduce program, parameterized by the functional peteam
of the physical operator, which are represented as plages{tthat
are evaluated using a plan interpreter. These plans ar#édisd to
the map/reduce tasks through the configuration parametéish
Hadoop sends to each task before each map-reduce job).nthis i
plementation method imposes an execution time overheadadue
the plan interpretation. We are planning to provide a third i
plementation option, which will translate the query planslava
code, will package the code into a Java archive, and will edlcts
archive to the HDFS, thus making it available to the taskikeex:

The platform used for our evaluations was a small cluster of
6 low-end Linux servers, connected through a Gigabit Egtern
switch. Each server has 8 2GHz Xeon cores and 8GB memory.
The first set of experiments was over the DBLP dataset [7]clwhi
was 809MBs. The MRQL query we evaluated v@asgery 3 which
our system compiles into a workflow of two MapReduce and one
MapReduce? jobs. We evaluated the query on 3 differenterust
configurations: 2 servers, 4 servers, and 6 servers. Sieaeutin-
ber of map tasks is proportional by the number of splits, Whie
do not have any control, we performed our evaluations by-vary


http://lambda.uta.edu/mrql/
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Figure 1: Evaluation timefor MRQL queriesover (A) DBLP dataand (B) XMark data

ing only the number of reduce tasks per job: 1, 5, 9, 13, 17, and [5] R. Cattell. The Object Data Standard: ODMG 3.0. Morgan

21. Furthermore, we did not force the results of the quenyidiwh
were produced by multiple reducers) to be merged into one $5iDF
file, but, instead, we left them on multiple files. Figlite 1#ows

(6]

the results. As expected, we got the best performance when we (7]

used all 6 servers, but the difference from the 4-server gordi
tion was not substantial. In addition, we got the fastegpaase
when the number of reducers was set to 9. Apparently, andsere

in the number of reductions causes an increase in the nunfiber o
splits, which need to be processed by more mappers in the sub-[10]

sequent job. The second dataset used for our evaluationtheas
synthetic dataset XMark [26]. We generated 10 data setagiesi

files, ranging from 1.1GBs up to 11GBs. We evaluaf@aery 2

which MRQL translates into a workflow of two MapReduce jobs.
Here we used all 6 servers and tried six values for the nunidfers
map and reduce tasks per job: 1, 5, 9, 13, 17, and 21. Higure 1.B

shows the results. As expected, the evaluation time is ptiopal

(8]
9

[11]
[12]

[13]
[14]

to the data size. What was unexpected was that the perfoemanc ;5

worsen only when number of reducers was set to 1, while adiroth

settings for the number of reducers produced similar result

8. CONCLUSION

[16]

[17]

We have presented a powerful query language, MRQL, for map- [18]

reduce computations over XML data that has the familiar S@i- s

tax and is expressive enough to capture many common data anal (19]
ysis tasks. We have also presented a small set of physical pla

operators that are directly implementable on existing memjuce
systems and form a suitable basis for MRQL query evaluatian.
a future work, we are planning to extend our framework withreno
optimizations, more evaluation algorithms, and more dataéats,

including relational databases and key-value indexes.

9. REFERENCES

[1] A. Abouzeid,et al. HadoopDB: An Architectural Hybrid of
MapReduce and DBMS Technologies for Analytical Worklodds.
VLDB'09.

[2] D. Battre,et al. Nephele/PACTs: A Programming Model and
Execution Framework for Web-Scale Analytical Processing.
SOCC'10

[3] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: Eiint
Iterative Data Processing on Large ClustersvLiDB’10.

[4] M. J. Cafarella and C. Ré. Manimal: Relational Optimiaatfor
Data-Intensive Programs. WWebDB’10

[20]

[21]

[22]
(23]
[24]

[25]
[26]

Kaufmann, 2000.

R. Chaikenet al. SCOPE: Easy and Efficient Parallel Processing of
Massive Data Sets. IRVLDB’'08

DBLP XML records, the DBLP Computer Science Bibliogrgph
Available athttp: 7/dbl p. uni -trier.de/xm7/l

J. Dean and S. Ghemawat. MapReduce: Simplified Data Bsoug

on Large Clusters. I©@SDI'04.

] J. Dittrich, et al. Hadoop++: Making a Yellow Elephant Run Like a

Cheetah (Without It Even Noticing). MLDB’10.

L. Fegaras. A New Heuristic for Optimizing Large Quetién
DEXA'98

L. Fegaras. The Joy of SAX. IMIME-P’04.

A. F. Gatesgt al. Building a High-Level Dataflow System on top of
Map-Reduce: the Pig Experience.RvVLDB2(2), 2009.
Hadoop/http:// hadoop. apache. or g/

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Qad:
Distributed data-parallel programs from sequential agdlocks.
In EuroSys’07

M. Isard and Y. Yu. Distributed Data-Parallel Compagtidsing a
High-Level Programming Language. 8iIGMOD’'09

E. Jahani, M. J. Cafarella, and C. Ré. Automatic Optatin for
MapReduce Programs. RPVLDB'11, 4(6).

Jagl: Query Language for JavaScript Object Notati@Q). At
http://code. google.comp/jaql/!

S. P. Jones and P. Wadler. Comprehensive Comprehsnsion
(Comprehensions with ‘Order by’ and ‘Group by’). Haskell'07.

J. Lin and C. Dyer. Data-Intensive Text Processing WidipReduce.
Book pre-production manuscript, April 2010.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. TamekPig
Latin: a not-so-Foreign Language for Data Processing. In
SIGMOD’08

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. pr&ging the
Data: Parallel Analysis with Sawzafcientific Programming3(4),
2005.

A. Thusoo,et al. Hive: a Warehousing Solution over a Map-Reduce
Framework. IlPVLDB2(2), 2009.

A. Thusoo.et al. Hive: A Petabyte Scale Data Warehouse Using
Hadoop. INICDE'10.

T. White. Hadoop: The Definitive Guide. O'Reilly, 2009.
Xadoop. Afhtt p: /7 www. xadoop. or g/}

XMark — An XML Benchmark Project. At

http:// ww. xni - benchmar k. or g/


http://dblp.uni-trier.de/xml/
http://hadoop.apache.org/
http://code.google.com/p/jaql/
http://www.xadoop.org/
http://www.xml-benchmark.org/

	Introduction
	Related Work
	XML Data Fragmentation
	The Map-Reduce Query Language
	The Physical Operators
	The MRQL Optimizer
	Current Status of Implementation and Performance Results
	Conclusion
	References

