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ABSTRACT
We present a novel query language for large-scale analysis of XML
data on a map-reduce environment, called MRQL, that is expres-
sive enough to capture most common data analysis tasks and atthe
same time is amenable to optimization. Our evaluation plansare
constructed using a small number of higher-order physical opera-
tors that are directly implementable on existing map-reduce sys-
tems, such as Hadoop. We report on a prototype system implemen-
tation and we show some preliminary results on evaluating MRQL
queries on a small cluster of PCs running Hadoop.

1. INTRODUCTION
Many web service providers are facing the challenge of collect-

ing and analyzing massive amounts of data, such as data collected
by web crawlers, search logs, web logs, and streams of ad-click
data. Often, these data come in the form of XML, such as the
mediawiki dumps of Wikipedia articles. By analyzing these data,
these companies gain a competitive edge by improving their web
services, providing better ad selection, detecting fraudulent activ-
ities, and enabling data mining on large scale. The map-reduce
programming model [8] is an emerging framework for cloud com-
puting that enables this data analysis. It facilitates the parallel exe-
cution of ad-hoc, long-running large-scale data analysis tasks on a
shared-nothing cluster of commodity computers connected through
a high-speed network. In contrast to parallel databases, which re-
quire the programmer to first model and load the data before pro-
cessing, the map-reduce model is better suited to one-time ad-hoc
queries over write-once raw data. More importantly, compared to
traditional DBMSs, map-reduce implementations offer better fault
tolerance and the ability to operate in heterogeneous environments,
which are critical for large scale data analysis on commodity hard-
ware.

When defining a map-reduce job, one has to specify a map and
a reduce task, which may be arbitrary computations written in a
general-purpose language [8]. The map task specifies how to pro-
cess a single key/value pair to generate a set of intermediate key/-
value pairs. The reduce task specifies how to merge all intermediate
values associated with the same intermediate key. A map-reduce
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computation uses the map task to process all input key/valuepairs
in parallel by distributing the data among a number of nodes in the
cluster (called the map workers), which execute the map taskin
parallel without communicating with each other. Then, the map re-
sults are repartitioned across a number of nodes (called thereduce
workers) so that values associated with the same key are grouped
and processed by the same node. Finally, each reduce worker ap-
plies the reduce task to its assigned partition.

Our goal was to design and implement an effective cost-based
optimization framework for the map-reduce programming environ-
ment that improves large-scale data analysis programs overraw
data, especially XML documents. We believe that it would be
very hard to optimize general map-reduce programs expressed in
a general-purpose programming language. Instead, as it is evident
from the success of the relational database technology, program
optimization would be more effective if the programs were written
in a higher-level query language that hides the implementation de-
tails and is amenable to optimization. Therefore, one of ourgoals
was to design a declarative query language that is powerful enough
to capture most commonly used map-reduce computations, is easy
to learn, has uniform syntax, is extensible, has simple semantics,
and is easy to compile to efficient map-reduce programs. On one
hand, we would like to have a declarative query language, power-
ful enough to avert the programmer from using ad-hoc map-reduce
programs, which may result to suboptimal, error-prone, andhard
to maintain code. On the other hand, we want to be able to opti-
mize this query language, leveraging the relational query optimiza-
tion technology. Unfortunately, relational query optimization tech-
niques are not directly applicable to the map-reduce environment.
Consider, for example, the following nested SQL query:

select ∗ from X x
where x.D > (select sum(y.C) from Y y where x.A=y.B)

A typical method for evaluating this query in current DBMSs is to
do a left-outer join betweenX andY on x.A=y.B (it is a left-outer
join because the query must also return thex tuples that are not
joined with anyy tuple), to group the result by thex key, and, for
each group, to calculate the sum of ally.C and compare this sum
with x.D. Unfortunately, this method is suboptimal in a map-reduce
environment because it requires two map-reduce jobs, one for the
join and one for the group-by. Instead, this query can be evaluated
with one reduce-side join [24] (a partitioned join), which requires
only one map-reduce job. Consequently, optimizing nested queries
requires special techniques that take advantage of the special algo-
rithms available in a map-reduce environment. Nested queries are
very important because any arbitrary map-reduce computation can
be expressed declaratively using nested queries, as we willshow
in Section 5. Capturing all map-reduce computations as simple
queries was a very important design goal for our framework, since



it obviates the need for introducing a special map-reduce operation.
Another important goal was to develop an optimizer that is able to
recognize most syntactic forms in the query syntax that are equiva-
lent to a map-reduce operation and derive a single map-reduce job
for each such form. If neither of these two goals is achieved,a
programmer may be forced to use explicit map-reduce computa-
tions, rather than declarative queries, which may result tosubopti-
mal code.

We are presenting a novel framework for optimizing and evalu-
ating map-reduce computations over XML data that are expressed
in an SQL-like query language, called MRQL (the Map-Reduce
Query Language). This language is powerful enough to express
most common data analysis tasks over XML text documents, as
well as over other forms of raw data, such as line-oriented text doc-
uments with comma-separated values. Although we have extensive
experience in building XQuery optimizers, we decided to design
our own query language because we are planning to extend MRQL
to handle many other forms of raw data, such as JSON data, as well
as structured data, such as relational databases and key-value maps,
in the same query language. To evaluate MRQL queries, we pro-
vide a set of physical plan operators, such as the reduce-side join,
that are directly implementable on existing map-reduce systems.
Leveraging the research work in relational databases, our system
compiles MRQL queries to an algebra, which is translated to phys-
ical plans using cost-based optimizations. Due to space limitations,
this paper describes the XML fragmentation techniques usedby our
framework to break XML data into manageable fragments that are
ready for map-reduce evaluation (Section 3), some of the MRQL
syntax to query XML data (Section 4), and the physical operators
used by our framework to evaluate queries (Section 5). The query
algebra and optimizer are briefly sketched in Section 6. Theywill
be described in detail in a forthcoming paper.

2. RELATED WORK
The map-reduce model was introduced by Google in 2004 [8].

Several large organizations have implemented the map-reduce
paradigm, including Apache Hadoop [24] and Pig [20], Apache/-
Facebook Hive [22], Google Sawzall [21], and Microsoft Dryad [14].
The most popular map-reduce implementation is Hadoop [13],an
open-source project developed by Apache, which is used today
by Yahoo! and many other companies to perform data analysis.
There are also a number of higher-level languages that make map-
reduce programming easier, such as HiveQL [22], PigLatin [20],
Scope [6], and Dryad/Linq [15]. Hive [22, 23] is an open-source
project by Facebook that provides a logical RDBMS environment
on top of the map-reduce engine, well-suited for data warehous-
ing. Using its high-level query language, HiveQL, users canwrite
declarative queries, which are optimized and translated into map-
reduce jobs that are executed using Hadoop. HiveQL does not
handle nested collections uniformly: it uses SQL-like syntax for
querying data sets but uses vector indexing for nested collections.
Unlike MRQL, HiveQL has many limitations (it is a small sub-
set of SQL) and neither does support nor optimize nested queries.
Because of these limitations, HiveQL enables users to plug-in cus-
tom map-reduce scripts into queries. Although Hive uses simple
rule-based optimizations to translate queries, it has yet to provide a
comprehensive framework for cost-based optimizations. Yahoo!’s
Pig [12] resembles Hive as it provides a user-friendly query-like
language, called PigLatin [20], on top of map-reduce, whichallows
explicit filtering, map, join, and group-by operations. Like Hive,
PigLatin performs very few optimizations based on simple rule
transformations. HadoopDB [1] adapts a hybrid scheme between
map-reduce and parallel databases to gain the benefit of bothsys-

tems. Although, HadoopDB uses Hive as the user interface layer,
instead of storing table tuples in DFS, it stores them in independent
DBMSs in each physical node in the cluster. That way, it increases
the speed of overall processing as it pushes many database opera-
tions into the DBMS directly, and, on the other hand, it inherits the
benefits of high scalability and high fault-tolerance from the map-
reduce framework. Hadoop++ [9] takes a different approach from
HadoopDB: each map-reduce computation is decomposed into an
execution plan, which is then transformed to take advantageof pos-
sible indexes attached to data splits. This work though doesnot
provide a framework for recognizing joins and filtering in general
map-reduce programs, in order to take advantage of the indexes.
Manimal [4, 16] analyzes the actual map-reduce code to find oppor-
tunities for using B+-tree indexes, projections, and data compres-
sion. It assumes that an index is generated before query execution
and is used frequently enough to justify the time overhead required
to build the index. This assumption may not be valid for one-time
queries against raw data. Finally, even though Hadoop provides a
simple XML input format for XML fragmentation, to the best of
our knowledge, there is no other system or language reportedfor
XML query processing on a map-reduce environment. (Although
there are plans for implementing XQuery on top of Hadoop, called
Xadoop, by D. Kossmann’s group at ETH [25].)

3. XML DATA FRAGMENTATION
A data parallel computation expects its input data to be frag-

mented into small manageable pieces, which determine the granu-
larity of the computation. In a map-reduce environment, each map
worker is assigned a data split that consists of data fragments. A
map worker processes these data one fragment at a time. For rela-
tional data, a fragment is clearly a relational tuple. For text files, a
fragment can be a single line in the file. But for hierarchicaldata
and nested collections, such as XML data, the choice for a suitable
fragment size and structure may depend on the actual application
that processes these data. For example, the XML data may con-
sist of a number of XML documents, each one containing a single
XML element, whose size may exceed the memory capacity of a
map worker. Consequently, when processing XML data, it would
be desirable to allow custom fragmentations to suit a wide range of
application needs. Hadoop provides a simple XML input format for
XML fragmentation based on a single tagname. Given a data split
of an XML document (which may start and end at arbitrary points
in the document, even in the middle of tagnames), this input format
allows us to read the document as a stream of string fragments, so
that each string will contain a single complete element thathas the
requested tagname. Then, the programmer may use an XML parser
to parse these strings and convert them to objects. The fragmenta-
tion process is complicated by the fact that the requested elements
may cross data split boundaries and these data splits may reside in
different data nodes in the DFS. Fortunately, this problem is im-
plicitly solved by the Hadoop DFS by permitting to scan beyond a
data split to the next, subject to some overhead for transferring data
between nodes.

Our XML fragmentation technique, which was built on top of
the existing Hadoop XML input format, provides a higher-level of
abstraction and better customization. It is a higher-levelbecause,
instead of deriving a string for each XML element, it constructs
XML data in the MRQL data model, ready to be processed by
MRQL queries. In MRQL, the XML data type is actually a user-
defined type based on data constructors (very similar to the data
constructors in Haskell):

data XML = Node: ( String, list (( String ,String )), list (XML) )
| CData: String



That is, XML data can be constructed as nodes (which are tuples
that contain a tagname, a list of attribute bindings, and a list of
children) or text leaves (CData). For example,<a x=“1”>b</a>
is constructed usingNode(“a”,[(“x”,“1”)],[CData(“b”)]). The MRQL
expression used for parsing an XML document is:

source( tags, xpath, file )

where tags is a bag of synchronization tags,xpath is the XPath
expression used for fragmentation, andfile is the document path.
Given a data split from the document, this operation skips all text
until it finds the opening of a synchronization tag and then stores
the text upto the matching closing tag into a buffer. During the
storing of an element, it may cross split boundaries, but during the
skipping of text, it will stop at the end of the split. The buffer
then becomes the current context forxpath, which is evaluated in
stream-like fashion using SAX (based on our earlier work [11]),
returning XML objects constructed in our MRQL data model.

For example, the following expression:

XMark = source( {"person"}, xpath (.), "xmark.xml" );

binds the variableXMark to the result of parsing the document
xmark.xml (generated by the XMark benchmark [26]) and returns a
list of person elements. The xpath expression here is the ‘dot’ that
returns the current context. A more complex example is:

DBLP = source( {"article" , " incollection " , "book","inproceedings"},
xpath (.[ year=2009]/ title ), "dblp.xml" )

which retrieves the titles of certain bibliography entriespublished
in 2009 from DBLP [7]. Here, we are using multiple synchro-
nization tags since we are interested in elements of multiple tag-
names. Note that, although the document order is important for
XML data, this order is ignored across fragments but is preserved
within each fragment, as expected, since data splits are processed
by worker nodes in parallel. MRQL also provides syntax to nav-
igate through XML data. The projection operatione.A has been
overloaded to work on XML data. Given an expressione of type
XML or list(XML), e.A returns a list(XML) that contains the subele-
ments ofe with tagnameA (much likee/A in XPath). Similarly,
the syntaxe.∗, e.@A, ande.@∗ corresponds to the XPathse/∗,
e/@A, ande/@∗, respectively.

4. THE MAP-REDUCE QUERY LANGUAGE
The MRQL query syntax is influenced by ODMG OQL [5], the

OODB query language developed in the 90’s, while its semantics
has been inspired by the work in the functional programming com-
munity on list comprehensions with group-by and order-by [18].
The select-query syntax in MRQL takes the form:

select [ distinct ] e
from p1 in e1, . . . , pn in en
[ where ec ]
[ group by p′: e′ [ having eh ] ]
[ order by eo ]

wheree, e1, . . . , en, ec, e′, eh, ande0 are arbitrary MRQL expres-
sions, which may contain other nested select-queries. MRQLhan-
dles a number of collection types, such as lists (sequences), bags
(multisets), and key-value maps. The difference between a list and
a bag is that a list supports order-based operations, such asindex-
ing. An MRQL query works on collections of values, which are
treated as bags by the query, and returns a new collection of values.
If it is an order-by query, the result is a list, otherwise, itis a bag.
Treating collections as bags is crucial to our framework, since it
allows the queries to be compiled to map-reduce programs, which
need to shuffle and sort the data before reduction, and enables the

use of joins for query evaluation. Thefrom part of an MRQL syn-
tax contains query bindings of the form ‘p in e’, wherep is a pattern
ande is an MRQL expression that returns a collection. The pattern
p matches each element in the collectione, binding its pattern vari-
ables to the corresponding values in the element. In other words,
this query binding specifies an iteration over the collection e, one
element at a time, causing the patternp to be matched with the
current collection element. In general, a pattern can be a pattern
variable that matches any data, or a tuple(p1, . . . , pn) or a record
<A1 : p1, . . . , An : pn> that contain patternsp1, . . . , pn. Pat-
terns are compiled away from queries before query optimization.

The group-by syntax of an MRQL query takes the formgroup by
p′: e′. It partitions the query results into groups so that the members
of each group have the samee′ value. The patternp′ is bound to
the group-by value, which is unique for each group and is common
across the group members. As a result, the group-by operation lifts
all the other pattern variables defined in the from-part of the query
from some typeT to a bag ofT , indicating that each such vari-
able must contain multiple values, one for each group member. For
example, the following query on XMark data:
Query 1:

select ( cat, os, count(p) )
from p in XMark,

i in p. profile . interest
group by ( cat, os ): ( i .@category,

count(p.watches.@open_auctions) )

groups all persons according to their interests and the number of
open auctions they watch. For each such group, it returns thenum-
ber of persons in the group. The XMark data source returns the
person elements, so thatp is one person, andi is one ofp’s in-
terests. The variablescat andos in the query header are directly
accessible since they are group-by variables. The variablep, on the
other hand, is lifted to a bag of XML elements. Thus,count(p)
counts all persons whose interests includecat and watchos open
auctions.

Finally, the ‘order by’ syntax orders the result of a query (after
the optional group-by) by thee0 values. It is assumed that there is a
default total order≤ defined for all data types (including tuples and
bags). The special parametric typeInv(T ), which has a single data
constructorinv(v) for a valuev of typeT , inverts the total order of
T from ≤ to≥. For example, as a part of a select-query

order by ( inv(count(p.watches.@open_auctions)), p.name )

orders people by major ordercount(p.watches.@open_auctions)
(descending) and minor orderp.name (ascending).

A more complex query, which is similar to the query Q10 of the
XMark benchmark [26], is
Query 2:

select ( cat, count(p), select text (x.name) from x in p )
from p in XMark,

i in p. profile . interest ,
c in XMark

where c.@id = i.@category
group by cat: text (c.name);

which uses an XML source that retrieves both persons and cate-
gories:

XMark = source({"person","category"},xpath(.), "xmark.xml");

It groups persons by their interests, and for each group, it returns
the category name, the number of people whose interests include
this category, and the set of names of these people. Thetext func-
tion returns the textual content of element(s).

As yet another example over the DBLP bibliography:



DBLP = source( {"article" , " incollection " , "book","inproceedings"},
xpath (.), "dblp.xml" )

the following query
Query 3:

select ( select text (a. title ) from a in DBLP where a.@key = x,
count(a) )

from a in DBLP,
c in a. cite

where text(c) <> " ... "
group by x: text(c)
order by inv(count(a))

inverts the citation graph in DBLP by grouping the items by their
citations and by ordering these groups by the number of citations
they received. The conditiontext(c) <> “...” removes bogus cita-
tions. Note that, the DBLP source is also used in the query header
to retrieve the citation title.

5. THE PHYSICAL OPERATORS
The MRQL physical operators form an algebra over the domain

DataSet(T), which is equivalent to the typebag(T). This domain is
associated with a source list, where each source consists ofa file
or directory name in DFS, along with an input format that allows
to retrieveT elements from the data source in a stream-like fash-
ion. The input format used for storing the intermediate results in
DFS is a sequence file that contains the data in serialized form.
The MRQL expressionsource, described in Section 3, returns a
single source of typebag(XML) whose input format is an XML in-
put format that uses synchronization tags and an XPath to extract
XML fragments from XML documents. The rest of the physical
operators have nothing to do with XML because they process frag-
ments using map-reduce jobs, regardless of the fragment format.
Each map-reduce operation though is parameterized by functions
that are particular to the data format being processed. The code
of these functional parameters is evaluated in memory (at each task
worker), and therefore can be expressed in some XML algebra suit-
able for in-memory evaluation. Our focus here is in the map-reduce
operations, which are novel, rather than in an XML algebra, which
has been addressed by earlier work. In addition to thesource ex-
pression, MRQL uses the following physical operators:

• Union(X,Y ), returns the union of the DataSetsX andY . It
simply concatenates the source lists ofX andY (the list of file
names), forming a new DataSet.

• MapReduce(m, r)S, transforms a DataSetS of type bag(α)
into a DataSet of typebag(β) using a map functionm of type
α→ bag((κ,γ)) and a reduce functionr of type(κ,bag(γ))→ bag(β),
for the arbitrary typesα, β, γ, andκ. The map functionm trans-
forms values of typeα from the input dataset into a bag of inter-
mediate key-value pairs of typebag((κ,γ)). The reduce functionr
merges all intermediate pairs associated with the same key of type
κ and produces a bag of values of typeβ, which are incorporated
into the MapReduce result. More specifically,MapReduce(m,r)S
is equivalent to the following MRQL query:

select w
from z in (select r(key,y)

from x in S ,
(k,y) in m(x)

group by key: k),
w in z

that is, we applym to each valuex in S to retrieve a bag of(k,y)
pairs. This bag is grouped by the keyk, which lifts the variable
y to a bag of values. Since each call tor generates a bag of val-
ues, the inner select creates a bag of bags, which is flattenedout
by the outer select query. A straightforward implementation of

MapReduce(m, r)S in a map-reduce platform, such as Hadoop,
is the following Java pseudo-code:

class Mapper
method map ( key, value )

for each (k, v) ∈ m(value) do emit(k, v);

class Reducer
method reduce ( key, values )

B ← ∅;
for each w ∈ values do B ← B ∪ {w};
for each v ∈ r(key,B) do emit(key,v);

where theemit method appends pairs of key-values to the output
stream. The actual implementation of MapReduce in MRQL is of-
ten stream-based, which does not materialize the intermediate bag
B in the reduce code (the cases where streaming is enabled are
detected statically by analyzing the reduce function). A variation
of the MapReduce operation isMap(m)S, which is equivalent to
MapReduce without the reduce phase. That is, given a map func-
tion m of typeα→ bag(β), the operationMap(m)S transforms a
bag(α) into abag(β). (It is equivalent to the concat-map or flatten-
map in functional programming languages.)

• MapReduce2(mx,my, r)(X,Y ), joins the DataSetX of type
bag(α) with the DataSetY of typebag(β) to form a DataSet of type
bag(γ). The map functionmx is of typeα→ bag((κ, α′)), whereκ
is the join key type, the map functionmy is of typeβ→ bag((κ, β′)),
and the reduce functionr is of type( bag(α′), bag(β′) )→ bag(γ).
This join can be expressed as follows in MRQL:

select w
from z in (select r(x’,y’)

from x in X , y in Y ,
(kx,x’) in mx (x ),
(ky,y’) in my (y)

where kx = ky
group by k: kx),

w in z

It applies the map functionsmx andmy to the elementsx ∈ Y
andy ∈ Y , respectively, which perform two tasks: transform the
elements intox’ andy’ and extract the join keys,kx andky. Then,
the transformedX andY elements are joined together based on
their join keys. Finally, the group-by lifts the transformed ele-
mentsx’ andy’ to bags of values with the same join keykx=ky and
passes these bags tor. MapReduce2 captures the well-known equi-
join technique used in map-reduce environments, called a reduce-
side join [24] or COGROUP in Pig [12]. An implementation of
MapReduce2(mx,my, r)(X,Y ) in a map-reduce platform, such
as Hadoop, is shown by the following Java pseudo-code:

class Mapper1
method map(key,value)

for each (k, v) ∈ mx(value) do emit(k, (0, v));

class Mapper2
method map(key,value)

for each (k, v) ∈ my(value) do emit(k, (1, v));

class Reducer
method reduce(key,values)

xs← { v | (n, v) ∈ values, n = 0 } ;
ys← { v | (n, v) ∈ values, n = 1 } ;
for each v ∈ r(xs, ys) do emit(key, v);

That is, we need to specify two mappers, each one operating ona
different data set,X or Y . The two mappers apply the join map
functionsmx andmy to theX andY values, respectively, and tag
each resulting value with a unique source id (0 and 1, respectively).
Then, the reducer, which receives the values from bothX andY
grouped by their join keys, separates theX from theY values based
on their source id, and applies the functionr to the two resulting
value bags. The actual implementation of MapReduce2 in MRQL



is asymmetric, requiring onlyys to be cached in memory, whilexs
is often processed in a stream-like fashion. (Such cases aredetected
statically, as is done for MapReduce.) Hence theY should always
be the smallest data source or the 1-side of the 1:N relationship.

• Finally, Collect(S), allows us to exit the DataSet algebra by
returning abag(T) value from theDataSet(T), S. That is, it extracts
the data from the data set files inS and collects them into a bag.
This operation is the only way to incorporate a map-reduce compu-
tation inside the functional parameters of another map-reduce com-
putation. It is used for specifying afragment-replicate join(also
known as memory-backed join [19]), where the entire data setY is
cached in memory and each map worker performs the join between
each value ofX and the entire cached bag,Y . This join is effective
if Y is small enough to fit in the mapper’s memory.

For example, forQuery 1, MRQL generates a plan that consists
of a single MapReduce job:

MapReduce(λp.select ( ( i.@category,
count(p.watches.@open_auctions) ),

p )
from i in p. profile . interest ,

λ((cat,os),ps). { ( cat, os, count(ps) ) } )
( source({"person"},xpath (.), "xmark.xml") )

where an anonymous functionλx.e specifies a unary function (a
lambda abstraction)f such thatf(x) = e, while an anonymous
functionλ(x, y).e specifies a binary functionf such thatf(x, y) =
e. Here, for convenience, we have used the MRQL syntax to de-
scribe in-memory bag manipulations. In the actual implementation,
we use a bag algebra based on the concat-map operator (also known
as flatten-map in functional programming languages) to manipulate
bags in memory. We have used two kinds of implementations for
in-memory bags: stream-based (as Java iterators) and vector-based.
The MRQL compiler uses the former only when it statically asserts
that the bag is traversed once.

MRQL translatesQuery 2 into a workflow of two cascaded
MapReduce jobs: The inner MapReduce performs a self-join over
the XMark DataSet, while the outer one groups the result by cate-
gory name. Self-joins do not require a MapReduce2 (an equi-join)
operation. Instead, they can be evaluated using a regular MapRe-
duce where the map function repeats each input element twice:
once under a key equal to the left join key, and a second time under
a key equal to the right join key. MRQL translatesQuery 3into
a workflow of three cascaded jobs: a MapReduce, a MapReduce2,
and a MapReduce. The first MapReduce groups DBLP items by
citation. The MapReduce2 joins the result with the DBLP DataSet
to retrieve the title of each citation. The last MapReduce orders
the result by the number of items that reference each citation. Both
Query 2andQuery 3are evaluated in Section 7.

6. THE MRQL OPTIMIZER
MRQL uses a novel cost-based optimization framework to map

the algebraic forms derived from the MRQL queries to efficient
workflows of physical plan operators. The most important MRQL
algebraic operator is the join operatorjoin(kx, ky, r)(X,Y ), which
is a restricted version ofMapReduce2, because it uses the key func-
tionskx andky to extract the join keys, instead of the general map
functionsmx andmy that transform the values:

join(kx, ky, r)(X,Y )
= MapReduce2(λx.{(kx(x), x)}, λy.{(ky(y), y)}, r ) (X, Y )

MapReduce2 is more general thanjoin because it allows cascaded
Map operations to be fused with aMapReduce or a MapReduce2
operation at the physical level, thus requiring one map-reduce job

only. Recall that the reduce functionr can be any function that gets
two bags as input and returns a bag as output, so that, for eachjoin
key value, the input bags hold the elements fromX andY that have
this key value. Functionr can combine these two input bags in such
a way that the nesting of elements in the resulting bag would reflect
the desirable nesting of the elements in the MRQL query. Thisis a
powerful idea that, in most cases, eliminates the need for grouping
the results of the join before they are combined to form the query
result.

The MRQL optimizer uses a polynomial heuristic algorithm,
which we first introduced in the context of relational queries [10],
but adapted to work with nested queries and dependent joins.It is a
greedy bottom-up algorithm, similar to Kruskal’s minimum span-
ning tree algorithm. Our approach to optimizing general MRQL
queries is capable of handling deeply nested queries, of anyform
and at any nesting level, and of converting them to near-optimal join
plans. It can also optimize dependent joins, which are used when
traversing nested collections and XML data. The most important
component missing from our framework is a comprehensive cost
model based on statistics. In the future, we are planning to use dy-
namic cost analysis, where the statistics are collected andthe opti-
mization is done at run-time. More specifically, we are planning to
develop a method to incrementally reduce the query graph at run-
time, and enhance the reduce stage of a map-reduce operationto
generate enough statistics to decide about the next graph reduction
step.

7. CURRENT STATUS OF IMPLEMENTA-
TION AND PERFORMANCE RESULTS

MRQL is implemented in Java on top of Hadoop. The source
code is available athttp://lambda.uta.edu/mrql/. Cur-
rently, our system can evaluate any kind of MRQL query, over two
kinds of text documents: XML documents and record-orientedtext
documents that contain basic values separated by user-defined de-
limiters. We currently provide two different implementations for
our physical algorithms, thus supporting two different levels of
program testing. The first one is memory-based, using Java vec-
tors to store data sets. This implementation allows programmers to
quickly test their programs on small amounts of data. The second
implementation uses Hadoop, on either single node or cluster de-
ployment, and is based on the interpretation of physical plans. That
is, each physical operator is implemented with a single Hadoop
map-reduce program, parameterized by the functional parameters
of the physical operator, which are represented as plans (trees) that
are evaluated using a plan interpreter. These plans are distributed to
the map/reduce tasks through the configuration parameters (which
Hadoop sends to each task before each map-reduce job). This im-
plementation method imposes an execution time overhead dueto
the plan interpretation. We are planning to provide a third im-
plementation option, which will translate the query plans to Java
code, will package the code into a Java archive, and will cache this
archive to the HDFS, thus making it available to the task trackers.

The platform used for our evaluations was a small cluster of
6 low-end Linux servers, connected through a Gigabit Ethernet
switch. Each server has 8 2GHz Xeon cores and 8GB memory.
The first set of experiments was over the DBLP dataset [7], which
was 809MBs. The MRQL query we evaluated wasQuery 3, which
our system compiles into a workflow of two MapReduce and one
MapReduce2 jobs. We evaluated the query on 3 different cluster
configurations: 2 servers, 4 servers, and 6 servers. Since the num-
ber of map tasks is proportional by the number of splits, which we
do not have any control, we performed our evaluations by vary-

http://lambda.uta.edu/mrql/
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Figure 1: Evaluation time for MRQL queries over (A) DBLP data and (B) XMark data

ing only the number of reduce tasks per job: 1, 5, 9, 13, 17, and
21. Furthermore, we did not force the results of the query (which
were produced by multiple reducers) to be merged into one HDFS
file, but, instead, we left them on multiple files. Figure 1.A shows
the results. As expected, we got the best performance when we
used all 6 servers, but the difference from the 4-server configura-
tion was not substantial. In addition, we got the fastest response
when the number of reducers was set to 9. Apparently, an increase
in the number of reductions causes an increase in the number of
splits, which need to be processed by more mappers in the sub-
sequent job. The second dataset used for our evaluations wasthe
synthetic dataset XMark [26]. We generated 10 data sets in single
files, ranging from 1.1GBs up to 11GBs. We evaluatedQuery 2,
which MRQL translates into a workflow of two MapReduce jobs.
Here we used all 6 servers and tried six values for the numbersof
map and reduce tasks per job: 1, 5, 9, 13, 17, and 21. Figure 1.B
shows the results. As expected, the evaluation time is proportional
to the data size. What was unexpected was that the performance
worsen only when number of reducers was set to 1, while all other
settings for the number of reducers produced similar results.

8. CONCLUSION
We have presented a powerful query language, MRQL, for map-

reduce computations over XML data that has the familiar SQL syn-
tax and is expressive enough to capture many common data anal-
ysis tasks. We have also presented a small set of physical plan
operators that are directly implementable on existing map-reduce
systems and form a suitable basis for MRQL query evaluation.As
a future work, we are planning to extend our framework with more
optimizations, more evaluation algorithms, and more data formats,
including relational databases and key-value indexes.
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