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ABSTRACT 

Most rainfall data is stored in formats that are not easy to analyze 

and mine. In these formats, the amount of data is enormous. In 

this paper, we propose techniques to summarize the raw rainfall 

data into a model that facilitates storm analysis and mining, and 

reduces the data size. The result is to convert raw rainfall data into 

meaningful storm-centric data, which is then stored in a relational 

database for easy analysis and mining. The size of the storm data 

is less than 1% of the size of the raw data. We can determine the 

spatio-temporal characteristics of a storm, such as how big a 

storm is, how many sites are covered, and what is its overall depth 

(precipitation) and duration. We present formal definitions for the 

storm-related concepts that are needed in our data conversion. 

Then we describe storm identification algorithms based on these 

concepts. Our storm identification algorithms analyze 

precipitation values of adjacent sites within the period of time that 

covers the whole storm and combines them together to identify 

the overall storm characteristics. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – spatial 

databases and GIS, scientific databases; J.2 [Computer 

Applications]: Physical Sciences and Engineering – earth and 

atmospheric sciences   

General Terms 
Design, Algorithms 

Keywords 

Storm analysis, rainfall, precipitation, CUAHSI, ODM 

1. INTRODUCTION 
Most rainfall data is stored in formats that are not easy to analyze 

and mine. In these formats, the amount of data is enormous. In 

this paper, we propose techniques to summarize the raw rainfall 

data into a model that facilitates storm analysis and mining, and 

reduces the data size. The result is to convert raw rainfall data into 

meaningful storm-centric spatio-temporal data, which is then 

stored in a relational database for easy analysis and mining. The 

size of the storm data is less than 1% of the size of the raw data.  

Previous storm analysis has mainly been location-specific (either 

site-specific or region-specific) [1, 2, 3, 4], meaning that each 

location is considered independently when analyzing a storm. An 

example would be determining how many storms occurred at site 

location 376501 in the year 2011. But in reality, a storm covers 

many locations over a period of time, so location-specific analysis 

is insufficient. In this work, we propose a climatic application 

framework that analyzes rainfall data in a storm-specific way. We 

consider all the locations over time for each storm, so we can 

determine storm-specific characteristics such as how big the storm 

is, how many sites are covered, and what is its overall depth and 

duration. Analyzing the whole storm can give more insight and 

information since it reflects how a storm actually behaves in 

nature. In particular, a storm can start at one location and end at 

another, and the storm typically covers multiple locations at each 

time point. 

It is very difficult to analyze storms directly from the raw data for 

several reasons. First, the quantity of data is very large that it 

qualifies as big geospatial data [19, 20]. Second, the data is stored 

in a manner that makes it difficult to identify the storms. The data 

has been gathered as frequently as every five minutes and covers a 

huge area of observation fields. Traditionally, the data is recorded 

and stored in either printed or file/folder format. As a result, 

attempting to do storm analysis with such a large amount of data 

and the traditional way of storing the data will require manually 

combining all data across an enormous number of folders and 

processing them together. This makes it nearly impossible to do 

storm analysis. It was also documented that converting 

precipitation data from printed format into digital format (in 

file/folder), can take up to three years according to a TxDOT 

project [5].  

Our framework allows big precipitation data to be analyzed using 

relational database by preprocessing, filtering, and discarding 

unimportant rainfall data and preserving only meaningful storm 

data that we are interested in. The framework provides a storm-

specific approach for analyzing rainfall data by first formalizing 

storm-related concepts. We then incorporate hydrology concepts 

and design a customized database schema for storing storm data. 

This maximizes the ease for hydrologists to perform storm-
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specific analysis and at the same time, follows the global standard 

of hydrological data model called CUAHSI ODM [10, 12, 23]. 

Algorithms are developed to identify the different types of storms 

as described in the formalization and store them using the 

proposed database schema. Scientists can perform custom storm 

analysis as needed by using (1) a standard SQL for non-visual 

(scalar) data analysis such as total rainfall of a storm or (2) our 

Storm Visualization component for visual (vector) data analysis, 

which cannot be determined by numerical results in the tables 

such as storm movement. In addition, data mining techniques such 

as clustering and classification can be used in storm analysis. 

Figure 1 is an overview of our framework. 
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Figure 1. An overview of our framework 

The reduction in number of records allows faster querying and 

mining of the storm data. In our experiments, the number of storm 

records is less than 1% of the number of raw data records. In 

addition, each storm record summarizes the hydrological 

characteristics of one overall storm. Additional characteristics are 

available through the related sub storm records. 

Since our framework is designed by keeping CUAHSI ODM in 

mind, it can then be adjusted to apply to other kinds of 

hydrological observation types as long as they are using the same 

CUAHSI ODM model, such as soil moisture or river gauge data 

[9, 10, 12, 23]. In addition, our framework is also backward-

compatible with the original location-specific analysis of storms. 

It can still be used for location-specific storm analysis. That 

means, our framework can capture the complete spatio-temporal 

dimensions of storm characteristics: both location-specific and 

storm-specific. We are hoping that our framework can be a useful 

tool for hydrologists by helping them to analyze and visualize big 

precipitation data easier and more efficiently. 

The organization of the paper is as follows. In section 2, we 

describe the raw data used for the system. In section 3, we 

formalize the concepts of local, hourly, and overall storms, design 

a database schema for storing them, and describe the algorithms 

for identifying these storms from the raw rainfall data. In section 

4, we discuss some examples of the analysis that can be 

performed. Finally, we discuss related work in section 5. 

2. DESCRIPTION OF RAW DATA 
Our raw data comes from National Weather Service – West Gulf 

River Forecast Center (NWS – WGRFC) (NOAA) and contains 

16-year (1996 - 2011) historical hourly precipitation data in Texas 

and some surrounding areas: Colorado, New Mexico, Louisiana, 

and part of Mexico, as highlighted in Figure 2 [7, 8]. There is a 

total of 69,830 site locations observed. The data is received hourly 

and consists of precipitation data for that particular hour for all 

69,830 site locations. This means that the number of records 

inserted per hour, day, month, and year is 69,830, 1,675,920, 

50,277,600, and 603,331,200, respectively. Site points are four 

kilometers apart to north, south, east, and west. The raw data is 

stored in the database using CUAHSI ODM [10, 23] and has 

8.004123763 billion records. However, only 1.25 years of data 

(October, 2010 – December, 2011) was used in our initial analysis 

and only Texas was covered. This data has 405,450,691 records of 

historical hourly precipitation data covering 38,450 sites in Texas. 

We are now extending the analysis to cover all 16 years of data.  

 

Figure 2. The coverage of WGRFC observations [7, 8] 

CUAHSI (Consortium of Universities for the Advancement of 

Hydrologic Science, Inc.) [12] is a well-known research 

organization conducting research in the water science-related area 

since 2001, supported by National Science Foundation (NSF). 

Hydrologic observation data is gathered from various 

organizations and kept in various formats. To eliminate the 

ambiguities in sharing and interpreting hydrological information, 

CUAHSI ODM [10] was proposed in 2008 [23]. CUAHSI ODM 

provides a standard schema to store hydrological data in a 

relational database. In this paper, only the five main tables of 

CUAHSI ODM will be briefly discussed: Sources, Sites, 

Methods, Variables and DataValues tables. Figure 3 shows the 

star-schema [6, Chapter 29] of the five main tables. Appendix A 

describes these five tables as they were used in our analysis. For 

more details, please refer to [10, 23].  

3. LOCAL, HOURLY, AND OVERALL 

STORMS: FORMALIZATION, DATABASE 

SCHEMA, AND IDENTIFICATION 

ALGORITHMS 

3.1  Formalization of Storms 

Before defining our storm-related concepts, we specify some 

predicates (relationships) and terminology that will be used in the 

definitions. 
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Figure 3. Star-schema of 5 main tables of CUAHSI ODM 



 

 

- neighbor(Sa, Sb, d): means that sites Sa and Sb are 

adjacent. Referring to Figure 7, if Sa is the central site, 

Sb can be any of the other sites. d is the direction from 

Sa to Sb, and is one of (N, S, E, W, NE, NW, SE, SW). 

- area(S): the area of site S.  

- storm duration: the time length over which precipitation 

occurs (hours) [16]. 

- storm coverage: the number of sites covered by a storm. 

- storm area: the total areas of a storm. 

Next, we define the concepts of local storm, hourly storm, and 

overall storm. 

3.1.1 Local Storm 
Local storm is a set of time points and associated rainfall data at a 

particular spatial site. Two distinct local storms are separated by 

at least h consecutive time points with zero precipitation, where h 

is called the inter-event time [1, 2, 17]. In our case, inter-event 

time (h) is set to 6 hours. There may be some consecutive time 

points with zero precipitation within a local storm, as long as it is 

less than h time points. For any local storm, there will not be a 

subsequence of h or more consecutive zeroes in the series. A local 

storm is a site-specific storm, as we see in most hydrology papers 

[1, 2, 3, 4] that considers each site independently, e.g. determining 

how many storms occurred at site location 376501 in 2011.  

Additional terminology specifically for the local storm definition 

is as follows:   

- storm depth: the amount of precipitation occurring 

throughout the storm duration at a particular site [16]. 

- storm intensity: the storm depth divided by the storm 

duration (inches per hour) [16].  

Definition 1. A local storm is represented by Lj(s, Tj) where  

- s = site id (We assume that the (x, y) HRAP coordinates 

[14, 10] of each site are available from a table and we 

refer to them as s.x and s.y.) 

- Tj is the set of (time point, precipitation) that constitutes 

a local storm j at site s, and formalizes the concept that 

two different local storms at site s must be apart by at 

least inter-event time. That is:  

Tj = { (tj,i, pj,i) | tj,i is time i (hourly); pj,i or p(tj,i) is 

precipitation from tj,i-1 to tj,i (inches), i = 1, 2, ... , n; tj,i - 

tj,i-1 = 1; tj,0 is start time and tj,n is end time; pj,k = pj,k+1 = 

… = pj,k+(h-1) = 0 is false, k = 1, 2, ... , (n-h)+1 and h = 

inter-event time; p(tj,1-h) = p(tj,1-h+1) = p(tj,1-h+2) = … 

= p(tj,1-1) = 0 and p(tj,n+1) = p(tj,n+2) = … = p(tj,n+h) 

= 0; storm duration = n; storm depth = ∑     
 
   ; storm 

intensity = 
           

              
 } 

- Lj(s, Tj), j = 1, 2, … , m are local storms at site s where 

L1(s, T1) is the first local storm and Lm(s, Tm) is the last 

local storm. (This formalizes the set of local storms at a 

particular site.) 

3.1.2 Hourly Storm 
Hourly storm is a set of adjacent sites of local storms at a 

particular hour. It is built upon and has an orthogonal concept to 

local storm: instead of considering a site location independently 

we consider a time point (an hour) independently. Local storm 

fixes one site and covers its data over many time points, whereas 

hourly storm fixes a time point and covers its data over many 

sites.  

Additional terminology specifically for the hourly storm 

definition is as follows:   

- storm sites total: the total amount of precipitation 

occuring at a particular hour for the sites of an hourly 

storm. 

- storm average: the average precipitation (per site) for an 

hourly storm. 

Definition 2. An hourly storm is represented by Hj(t, Sj) where  

- t = time point (hourly) 

- Sj = { (sj,i, pj,i) | sj,i is site id i; pj,i or p(sj,i) is precipitation 

(inches) at site sj,i, i = 1, 2, ... , n; if |s| = 1, then it 

contains a single site with no neighbors. Otherwise, 

every site in the set must have at least one neighbor that 

is also in the set. That is, if |s| > 1, then a site sj,i of 

locations in Sj must satisfy: for all sj,i   Sj, if 

neighbor(sj,i, sj,k, d), then sj,k   Sj; storm coverage = |s|; 

storm area = ∑           
 
   ; storm sites total = 

∑     
 
   ; storm average = 

                 

              
 } 

3.1.3 Overall Storm 
Overall storm is a storm-specific concept, considering each storm 

individually as a union of hourly storms. Two neighboring hourly 

storms must be within a maximum time period g, called the 

grouping-window, and must share at least n common sites, called 

the spatial-window. Grouping-window is the time interval within 

which storms will be considered to be part of the same storm. 

Spatial-window is the number of common site(s) shared between 

two hourly storms. The concept of overall storm covers both 

spatial and temporal characteristics of the storm.  

Additional terminology specifically for the overall storm 

definition is as follows:   

- storm overall depth: the total amount of precipitation 

occurring throughout the storm duration across the 

hourly storms. 

- storm overall intensity: the storm overall depth divided 

by the storm duration (inches per hour). 

- storm overall average: the average precipitation (per 

site) for an overall storm. 

Definition 3. An overall storm is represented by Oj where  

- Oj = { Hj,i | Hj,i is an hourly storm, i = 1, 2, ... , n; Hj,1 is 

the first hourly storm and Hj,n is the last hourly storm; 

               grouping-window where      is the time 

of hourly storm Hj,k and |Sj,k+1   Sj,k|   spatial-window 

where Sj,k is sites of Hj,k, k = 1, 2, … , n-1; storm 

duration = n; storm coverage = |⋃     
 
   |; storm overall 

depth = ∑                        
 
   ; storm overall 

intensity =  
                   

              
; storm overall average =  

                   

              
; storm area = ∑           , Z = 

⋃     
 
   , Sj,i is sites of Hj,i } 

The following terms are interchangeable in this paper: 

- Event = Storm 

- Sub = Hourly  

- Main = Overall 
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3.2  Database Schema for Storms 

Our database schema for storms was designed in such a way that 

the expressivity and usability features of SQL can be fully utilized 

in the analysis tasks. SQL and relational databases are proven 

tools in performing analysis [21, 22]. By designing database 

schema this way, we can preserve the advantages of SQL and at 

the same time, the big precipitation data can be analyzed in a 

relational database.  

We store our output, which consists of the identified local, hourly, 

and overall storms, in relational database tables: LocalEvents, 

SubStorm, MainStorm, respectively. LocalEvents table stores 

local storms information for all sites. The information includes 

date, time, and precipitation depth (in inches) of the storm for a 

particular site. SubStorm table stores all hourly storms 

information. The information includes storm sites total, storm 

average, and storm coverage of an hourly storm. MainStorm table 

stores information of all overall storms consisting of all sites that 

were covered during each storm, storm overall depth, storm 

overall average, and storm overall intensity.  

Additional tables were also created: LocationProximity and 

RA_Sites (Rainfall Analysis Sites table). These will allows us to 

use SQL during hourly storm and overall storm calculation and 

utilizes the fact that the raw data that we use resides in a relational 

database [8, 10, 23]. LocationProximity table stores neighboring 

site information for each site, which will be used along with 

LocalEvents table to calculate sub storms. Original CUAHSI 

ODM does not provide neighboring information in any tables. 

RA_Sites table stores all site information that we are interested in.  

There is a total of five tables created, whose schema diagram is 

shown in Figure 4 [6, Chapter 3]. 

 

 

 

 

 

 

 

 

 

Figure 4. Schema diagram of the output tables 

3.3  Algorithm Development 

The algorithms for storm identification are designed by taking 

hydrology concepts into account and can be divided into 4 

modules:  

1. Event Separator 

2. Location Proximity Creator 

3. Sub Storm Identification 

4. Main Storm Identification 

The data flow among these modules is shown in Figure 5. 

3.3.1 Event Separator  
This module separates rainfall events (local storms) using 6-hour 

inter-event time as storm separators. The inter-event time (h) of 6 

hours is suggested by Huff [1, 2]. The input for this module is the  
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Figure 5. Data flow diagram of storm identification modules 

historical hourly precipitation raw data in Texas from the ODM 

DataValues table (405,450,691 records). The output will be stored 

in LocalEvents table. An example of LocalEvents table is shown 

in Table 2. Since the area of Texas is very large, there is a 

significant climatic difference in its various regions. As a result, 

USGS (U.S. Geological Survey) divides Texas into 10 regions 

based on their climatic and geographic characteristics and 

proposed a map, called Texas Climatic Regions [4], as seen in 

Figure 6. 

 

Figure 6. Texas Climatic Regions [4] 

To be consistent with USGS, we analyze each region separately. 

The experimental result (Table 1) indicates that East Texas has the 

most storm data whereas Trans-Pecos has the least storm data 

even though Trans-Pecos has more raw data compared to East 

Texas. This is consistent with the fact that Trans-Pecos is the 

driest region and East Texas is one of the wettest regions in Texas 

[24, 25].  

Table 1. An experimental result of our analysis 

 

 

 

 

 

 



 

 

We used threads [26] to improve algorithm performance. For each 

region, sites are equally partitioned into p different disjoint 

subsets. Each subset is then assigned to one thread. The threads 

run concurrently and then the results are merged to form 

LocalEvents table. In our case, p is set to 4, assuming that each 

thread occupies each of 4 cores of our computer configuration.  

To separate rainfall events for a particular site, a parameter, called 

inter-event-count, is maintained to keep track of the number of 

consecutive zero precipitation (sorted by date and time). We use 6 

hours inter-event time, as suggested in [1, 2]. In some situations or 

applications, a different inter-event time is needed and this can be 

achieved by changing the parameter in our algorithm to other 

values such as 24 hours. 

Table 2. An example of LocalEvents table 

 

3.3.2 Location Proximity Creator  
This module creates the LocationProximity table containing 

neighboring sites information for each site. The input of this 

module is site information from ODM Sites table [8, 10]. The 

output will be stored in LocationProximity table. An example is 

shown in Figure 7. 

We calculate neighboring sites information for each site using the 

HRAP coordinate information [14] labeled as LocalX and LocalY 

in the ODM Sites table [8, 10, 23]. A site s(x, y) will have the 

following neighboring sites: sN(x, y+1), sS(x, y-1), sE(x+1, y),  

sW(x-1, y), sNE(x+1, y+1), sNW(x-1, y+1), sSE(x+1, y-1), and  

sSW(x-1, y-1) where (x, y) is a HRAP coordinate of site s.  
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Figure 7. Neighboring sites of site location 654321 

3.3.3 Sub Storm Identification  
This module identifies hourly storms by finding neighboring sites 

that have precipitation during the same hour. The input of this 

module is LocalEvents and LocationProximity tables. The output 

will be stored in the SubStorm table. An example of SubStorm 

table is shown in Figure 9 and Table 3.  

Based on the definition in section 3.1.2, hourly storm is a set of 

adjacent sites that contain non-zero rainfall in the same time point 

(hour). The naïve approach is to include all non-zero precipitation 

values of local storms at a particular hour to be the same hourly 

storm. However, practically, this could be too rigid. Unanticipated 

incidents can happen such as equipment malfunctions (not 

reporting data) or data misreading (reporting incorrect data) since 

the equipment (physical gauges) can be degraded over time. To 

keep accuracy of the system intact with small amounts of errors, 

we introduce a more “relaxed” approach, which incorporates the 

following two concepts: 

3.3.3.1  Space-Tolerance  
Informally, space tolerance is to allow non-zero precipitation sites 

to still be categorized as part of an hourly storm even if they are 

not in adjacent neighboring sites but are indirect neighboring sites 

within a certain number of intermediate sites. 

Definition 4. We say that site b is an i-indirect neighbor of site a 

if: 
  

                                                 
 

That is, when space-tolerance is set to n, the neighbors of site a 

will include direct neighbors, as well as all i-indirect neighbors of 

a for i = 1, 2, … , n. Figure 8 compares the naïve approach and 

space-tolerance approach with n = 1. With the same set of non-

zero precipitation values, represented by dots at a particular hour, 

the naïve approach identifies 2 hourly storms whereas space-

tolerance approach identifies 1 hourly storm, which is more 

practical in reality. 

 

 

 

 

 
             a) Naïve approach                 b) Space-tolerance, n = 1 

 

Figure 8. Comparison between naïve approach and 

space-tolerance approach 

3.3.3.2  Outlier Detection  
The space-tolerance mentioned previously only considers if there 

is a precipitation value at a particular site regardless of whether or 

not the value is consistent with its neighbors. The space-tolerance 

concept is good at handling gauge malfunction problems (not 

reporting data). However, it does not take into account the data 

values. This outlier detection concept compares the value of 

precipitation of the current site with its neighbors to detect a 

potential outlier. This concept will help coping with the data 

misreading problem. Any outlier detection technique can be 

implemented. In our example, we only consider eight adjacent 

neighboring sites when detecting outliers. However, indirect 

neighboring sites can also be used.  

The algorithm is based on recursion and depth-first-search. It 

checks for each hour to identify how many hourly storms there 

are, and the sites they cover. To be identified as part of an hourly 

storm, the sites’ location and precipitation value must statisfy the 

space-tolerance and outlier detection criteria.  

3.3.4 Main Storm Identification  
This module identifies all overall storms (which consist of hourly 

storms that are sharing some common site(s) (spatial-window s) 

within the specified grouping-window g hour(s)) and their storm 

characteristics. The input of this module is the SubStorm table and 
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Table 3. An example of SubStorm table 

corresponding to Figure 9 
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Figure 9. Examples of hourly storms at 9:00, 10:00, and 11:00 

on 4/1/2012 

the output will be stored in the MainStorm table. An example of 

MainStorm table is shown in Figure 10 and Table 4. 

The algorithm has a similar concept as Sub Storm Identification 

algorithm mentioned previously. However, instead of checking 

neighboring sites, it checks if sub storms are sharing some 

common site(s) (spatial-window s) within the grouping-window g 

(in hours). In our analysis, grouping-window is 1 hour and spatial-

window is 1 site. That is, if sub storms are within 1 hour 

difference and sharing at least 1 common site, they will be 

considered as part of the same overall storm.  

Some of our algorithms are outlined in Appendix B. 

4.  EXAMPLES OF ANALYSIS 

PERFORMED ON THE STORM TABLES 
The output of the storm identification algorithms is now stored in 

three tables: LocalEvents, SubStorm, and MainStorm. We can 

then perform SQL to do further analysis on these tables such as 

storm statistical analysis and storm classification. The following is 

an example of storm statistical analysis, which is to find the 

statistics of each type of the storms based on storm characteristics 

(SQL 1 - 3), e.g., storm duration, storm depth, storm intensity, 

storm sites total, storm average, storm coverage, storm overall 

depth, storm overall intensity, and storm overall average, 

whichever is applicable to each type of such storm as described in 

section 3.1. 

SQL 1. Find local storms statistics 

1: SELECT  LocalEventID, 

2:    SiteID, 

3:    DATEADD(hh, -1, MIN(DateTimeUTC)) AS StartTime, 

4:    MAX(DateTimeUTC) AS EndTime, 

5:    COUNT(*) AS StormDuration, 

6:    SUM(DataValue) AS StormDepth, 

7:    StormDepth/StormDuration AS StromIntensity 

8: INTO  LocalStormStatistics table 

9: FROM  LocalEvents table 

10: GROUP BY  LocalEventID, SiteID 

 

 

SQL 2. Find hourly storms statistics 

1: SELECT  SubStormID, 

2:     DATEADD(hh, -1, DateTimeUTC) AS StartTime, 

3:     DateTimeUTC AS EndTime, 

4:     COUNT(*) AS StormCoverage, 

5:     SUM(DataValue) AS StormSitesTotal, 

6:     StormSitesTotal/StormCoverage AS StormAverage 

7: INTO  HourlyStormStatistics table 

8: FROM   SubStorm table 

9: GROUP BY  SubStormID, DateTimeUTC 

 

SQL 3. Find overall storms statistics 

1: SELECT  M.MainStormID, 

2:    DATEADD(hh, -1, MIN(T.DateTimeUTC)) AS StartTime, 

3:    MAX(T.DateTimeUTC) AS EndTime, 

4:    DATEDIFF(hh, StartTime, EndTime) AS StormDuration, 

5:    COUNT(DISTINCT(T.SiteID)) AS StormCoverage, 

6:   SUM(T.DataValue) AS StormOverallDepth, 

7:    StormOverallDepth/StormDuration AS StormOverallIntensity, 

8:    StormOverallDepth/StormCoverage AS StormOverallAverage 

9: INTO  OverallStormStatistics table 

10: FROM  MainStorm table M   JOIN  SubStorm table T  

11:    ON  M.SubStormID = T.SubStormID 

12: GROUP BY  M.MainStormID 

These three queries act as a starting point and can be adapted or 

customized to many other different kinds of statistical queries 

such as (1) for local storms, finding the highest local storm in 

term of storm intensity at site location 376501 during the month 

of June, 2010; (2) for hourly storms, finding the number of hourly 

storms with 300 sites or more of storm coverage or 3 inches or 

more of storm sites total; and (3) for overall storms, finding the 

five highest overall storms in term of storm overall intensity that 

are passing site locations 939217 and 686575; by incorporating 

other types of SQL queries depending on users’ application 

scenarios. 

Table 4. An example of MainStorm table 

corresponding to Figure 10 

 

 
spatial-window(s) = 1 

 

 

 

 

Figure 10. Examples of 2 overall storms on 4/1/2012 

Because these three queries are statistical summaries of all three 

storm types, we pre-compute these three queries and store their 

results as three additional tables: LocalStormStatistics,  

 



 

 

HourlyStormStatistics, and OverallStormStatistics, with the  

columns as specified in the query for more convenient analysis. 

Other storms’ characteristics can be also added later as attributes 

to these tables. Figure 11 shows a small sample analysis 

performed on the pre-computed OverallStormStatistics table, 

which is to find the fifty highest overall storms in term of storm 

duration.  

 

Figure 11. Sample analysis performed on 

OverallStormStatistics table 

For convenience, we also implemented a visualization component, 

called Storm Visualization, which processes our output storm data 

to project the resulted overall storms onto a map. Unlike the raster 

radar images, which are estimated rainfall values that might or 

might not actually occur, our storm visualization reconstructed the 

storm from the actual rainfall values. So, it gives more accurate 

information when doing analysis. The Storm Visualization allows 

us to capture different aspects of storm characteristics that could 

not be seen in the table (scalar) results such as storm formation, 

storm distribution, and storm movement. Figure 13 shows an 

example of how overall storm ID 863 in North Central region is 

formed and moves toward the southeast direction. The Storm 

Visualization component is implemented in C#, Javascript, 

HTML5, Google API [13] and ASP.NET.  

Figure 12 shows the very first screenshot of the Storm 

Visualization, which projects the overall storm, 863, onto the 

map. After triggering by a user, the animation of overall storm 

(863) is shown as seen in Figure 13. The projection of each hourly 

storm of the overall storm (863) is shown hour by hour starting at 

4/26/2011, 20:00 (Figure 13 (a)). The number in parentheses 

indicates the number of sub storms involved in that hour.  

5.  RELATED WORK 
Several studies suggest that storm characteristics analysis can be 

done in various ways, such as through its statistical properties, 

depth-duration frequency (DDF [15]), or focusing on its extreme 

precipitation values.  

Asquith [1] studies storm statistical characteristics including the 

mean (average) of storm inter-event time, storm depth, and storm 

duration by analyzing hourly precipitation data retrieved from 

National Weather Service (NWS) [7]. The data contains 155 

million values covering 774 sites in Eastern New Mexico, Texas, 

and Oklahoma. The storm characteristics results are used to help  

  

 
 

Figure 12. A screenshot of overall storm ID 863 

      

in designing and creating a new runoff control structure. The 

outputs are in two formats: maps and tables.  

[1]’s raw data is stored in file and folder format which raises the 

difficulty in combining all data across an enormous number of 

folders and processing them together. Consequently, a huge 

manual effort is needed to do the analysis. In addition, its analysis 

has been location-specific (site-specific and regional-specific). So, 

the storm-specific information is lacking from the work.  

For our work, on the other hand, the raw data is stored in the 

standard CUAHSI ODM database schema, which reflects to the 

future trend of using hydrological data in this standard format. 

Our framework can do the analysis in an automated way and 

process a much larger number of sites. Our algorithm is also 

customizable through parameters such as inter-event time so it 

does not need to be fixed to any set of inter-event times, in 

particular as seen in [1]’s work. Not only can our approach 

support location-specific analysis but it supports storm-specific 

analysis as well. So, the complete dimensions of storm 

characteristics can be analyzed. The following is a small example 

of how our approach can also be used in location-specific 

analysis. Suppose we want to find the mean storm depth for 

Tarrant County, Texas (region-specific storm analysis), we can 

then perform the following query (SQL 4) on one of our output 

tables, which store storm information (LocalStormStatistics), to 

get the answer.  

SQL 4. Find mean storm depth for Tarrant County, Texas 

1: SELECT  AVG(StormDepth)  

2: FROM  LocalStormStatistics table 

3: WHERE  SiteID IN  ( SELECT  SiteID 

4:     FROM RA_Sites table 

5:     WHERE State = ‘Texas’ AND County = ‘Tarrant’ ) 

In [2, 3], Asquith and Roussel study storm characteristics through 

its Depth-Duration Frequency (DDF [15]) property. [2] presents a 

procedure to develop a DDF at any location in Texas for the 

following 14 storm durations: 15, 30, and 60 minutes; 1, 2, 3, 6, 

12, and 24 hours; and 1, 2, 3, 5, and 7 days with recurrence 

intervals ranging from 2 to 500 years. DDF is an estimated depth 

of the storm given its duration and frequency (recurrence time). It 

is very important when creating an efficient control structure such 



 

 

 
 

a) 4/26/2011, 20:00 (1) 
  

   
 

     b) 4/26/2011, 22:00 (3)        c) 4/26/2011, 23:00 (3)        d) 4/27/2011, 01:00 (1)           
 

    
 

     e) 4/27/2011, 02:00 (1)         f) 4/27/2011, 03:00 (1)        g) 4/27/2011, 04:00 (1) 
 

Figure 13. An animation of overall storm (ID: 863) by its sub 

storms and the arrows show the direction of the storm 

as storm drains or parking lots. It is also used to design efficient 

river flow and flood prediction models. As a result, it has to be 

very accurate. To calculate DDF for a storm duration and 

frequency at any location, we need three storm depths (in inches) 

retrieved from three maps (location, scale, shape parameter maps) 

for that storm duration and a storm intensity (in inches per hour) 

retrieved from precipitation intensity-duration curve of that storm 

frequency. Then, plug all values into the equation given in the 

paper [2] and the result is an estimated storm depth for that 

particular storm.    

[3] is an extension of [2]. However, it does not require users to do 

the calculation themselves. It provides pre-computed DDF maps, 

which are ready to use. The set of storm durations and storm 

frequencies, however, are different from [2]. The storm durations 

only include 15, and 30 minutes; 1, 2, 3, 6, and 12 hours; and 1, 2, 

3, 5, and 7 days and the storm frequencies only include 2, 5, 10, 

25, 50, 100, 250, and 500 years.  

One of the key tasks of [2, 3] is to create location, scale, and 

shape parameter maps used in the approach. To create such maps, 

this work uses storm data from National Climatic Data Center 

(NCDC) [11]. However, only location-specific storm data (by 

county) is provided by NCDC. So, generating these required maps 

will be limited to location-specific storm data. In addition, even 

though NCDC stores storm data in a database, CUASHI ODM 

was not mentioned as its database schema. As a result, 

incorporating our storm data (storm-specific) into these two works 

may enhance their analytic capabilities. 

Lanning-Rush [4] studies storm characteristics by focusing on its 

extreme precipitation (EP) values. The extreme precipitation 

depth refers to one that exceeds 100-year or greater storm depth. 

Unlike [1] that considers all storms, only extreme storms were 

taken into account in this work. Unlike [2, 3] that the inputs are 

storm duration, frequency and location, it only takes storm 

duration and area as inputs. The goal of this work is to create the 

extreme precipitation curve which can be used to estimate 

extreme precipitation depth for a particular storm duration and 

area. The EP curves are developed from 24 extreme storms out of 

213 notable storms. They select storm durations to include 1, 2, 3, 

4, 5, and 6 days and the areas include High Plains, Low Rolling 

Plains, North Central, Edwards Plateau, South Central, South 

Texas, East Texas, Upper Coast, and Lower Valley in Texas. 

Trans-Pecos area, however, was excluded due to the lack of its 

storm data.  

6. CONCLUSION AND FUTURE WORK 

6.1  Conclusion 

In this paper, we presented a framework for converting the large 

amounts of rainfall data into storm-specific summaries. The 

resulting storm data is 1% of the original raw data, and can be 

easily analyzed and mined using SQL queries and other methods. 

We first formalized various types of storms that can be identified 

from standard raw rainfall data. We then developed a customized 

database schema and algorithms to automate the storm 

identification process, and to store the identified storms and their 

characteristics in relational database tables. Analysis tasks can be 

done in two ways: via SQL for scalar analysis or via our initial 

Storm Visualization for vector analysis.  

6.2  Future Work 

For future work, we will develop data mining techniques such as 

classification, clustering, time series mining, and association rules 

mining in order to find other interesting characteristics of storms 

as well as work on calculating other significant measurements 

such as storm area, storm center, and within storm variations [18]. 
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8. APPENDIX A 
This appendix section briefly summarizes the five main tables of 

CUAHSI ODM tables: Sources, Methods, Sites, Variables, and 

DataValues tables. 

The Sources table stores information about where the observation 

data comes from. Table 5 shows our Sources table in the database.  

Table 5. Sources table in the database 

 

ID 

 

Organization 

 

SourceDescription 

 

SourceLink 

1 

 

NOAA’s National Weather Service 

West Gulf River Forecast Center 

 

Files containing MPE data 

from NWS-WGRFC 

 

http://www.srh.no

aa.gov/wgrfc/ 

The Methods table describes how the observation is collected. A 

brief explanation of the method along with its external link is also 

provided in this table. Table 6 shows our Methods table in the 

database. 

Table 6. Methods table in the database 

 

ID 

 

MethodDescription 

 

MethodLink 

1 

 

The precipitation data are multi-sensor 

(radar, satellite, and rain gauge). 

 

http://www.srh.noaa.gov/rfcshare/precip_

about_hourly.php 

The Sites table stores site information. The site information 

includes SiteID, Longitude, Latitude, LocalX, LocalY, County, 

State, etc. We have a total of 38,450 sites. Table 7 shows selected 

columns of our Sites table in the database. 

Table 7. Selected columns of Sites table 

 
ID 

 
Latitude 

 
Longitude 

 
LocalX 

 
LocalY 

 
County 

 
State 

 
339072 

 
31.0444 

 
-97.9782 

 
573 

 
200 

 
Tarrant 

 
Texas 

 
339073 

 
31.0402 

 
-97.9379 

 
574 

 
200 

 
Tarrant 

 
Texas 

 
339074 

 
31.0359 

 
-97.8976 

 
575 

 
200 

 
Tarrant 

 
Texas 

The next table is Variables table. The information about 

observation is stored in this table. Each variable represents 

different observation types and properties. The property 

information includes how frequent the observation is recorded 

(instantaneous or consistent) and what unit is used for the 

observation values. 

That is, for example, hourly precipitation observation and 15-

minute interval precipitation observation are considered different 

variables due to their properties even though they both are the 

same precipitation observation types.  

We have one variable as demonstrated in Table 8, which is hourly 

precipitation data.  

 



 

 

Table 8. Selected columns of Variables table 

 
ID 

 
Code 

 
Name 

 
UnitsID 

 
IsRegular 

 
TimeSupport 

 
TimeUnitsID 

 
1 

 
MPE 

 
Precipitation 

 
49 

 
1 

 
1 

 
103 

The last main table is DataValues table. This table stores 

numerical observation values for each site and variable as well as 

the method used and the source where they are from. Table 9 

shows some samples of what DataValues table entries look like. 

The first row of the table states that we have no rain (precipitation 

value = 0) at site location 88814 from noon to 1 pm on October 1, 

2011. As we can see that regardless of whether or not we have 

rain, the precipitation value is inserted into the table. As a result, 

the database grows rapidly and sparse. 

Table 9. Some examples of DataValues table entries 

with selected columns 

 
ID 

 
DataValue 

 
DateTimeUTC 

 
SiteID 

 
VariableID 

 
MethodID 

 
SourceID 

 
1 

 
0 

 
2011-10-01 13:00 

 
88814 

 
1 

 
1 

 
1 

 
2 

 
0 

 
2011-10-01 13:00 

 
88815 

 
1 

 
1 

 
1 

 
3 

 
0 

 
2011-10-01 13:00 

 
88816 

 
1 

 
1 

 
1 

9. APPENDIX B 
This appendix section briefly describes some of our algorithms. 

Algorithm 1. Event Separator 

Input:  
- Rainfall data of a region (D)  
- Inter-event time (v) 
- Number of threads (t) 

Output:  
- Local storms stored in LocalEvents table 

1: partition sites of region (D) into t subsets (S) 

2: assign each subset to a thread  

3: concurrently,    

4:   threads process their own subsets of sites Si, i = 1, 2, … ,t 

5:   for each site x in Si do 

6:      r <-- extract and sort (by time) records of site x 

7:     for each record rj in r do 

8:       if inter-event-count < v then 

9:       include rj.precipitation and 

10:       identified as part of local storm k 

11:      else 

12:       start new local storm k++ 

13:       reset inter-event-count 

14:      end if 

15:     end for 

16:    end for 

17: merge results from each thread into LocalEvents table 

 

 

 

 

 

 

Algorithm 2. Sub Storm Identification 

Input:  
- Local storm data (L) 
- Location proximity data (P)  
- Space-tolerance (n) 
- Outlier detection technique (d) 

Output:  
- Hourly storms stored in SubStorm table 

1: for each hour h in L do 

2:    b <-- extract all records of hour h 

3:    for each site s in b do 

4:     if  s.precipitation <> 0 then 

5:      identified as hourly storm i 

6:      depthFirstSearch(s, i, b) 

7:      start new sub storm i++ 

8:     end if 

9:    end for 

10: end for 

 

11: depthFirstSearch(s, i, b) 

12:   candidates set c <-- expandNode(s, b) 

13:    if c <>  then 

14:     for each candidate cj in c do 

15:      if  cj  indirectNeighbors(n, s, P) and  

16:                cj.depth is not an outlier(d) then  

17:       identified as part of hourly storm i 

18:       depthFirstSearch(cj, i , b) 

19:      end if 

20:     end for 

21:   end if 


