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Wikipedia is the largest user-generated knowledge base. We propose a structured query mechanism, entity-
relationship query, for searching entities in the Wikipedia corpus by their properties and interrelationships.
An entity-relationship query consists of multiple predicates on desired entities. The semantics of each pred-
icate is specified with keywords. Entity-relationship query searches entities directly over text instead of
preextracted structured data stores. This characteristic brings two benefits: (1) Query semantics can be in-
tuitively expressed by keywords; (2) It only requires rudimentary entity annotation, which is simpler than
explicitly extracting and reasoning about complex semantic information before query-time. We present a
ranking framework for general entity-relationship queries and a position-based Bounded Cumulative Model
(BCM) for accurate ranking of query answers. We also explore various weighting schemes for further im-
proving the accuracy of BCM. We test our ideas on a 2008 version of Wikipedia using a collection of 45
queries pooled from INEX entity ranking track and our own crafted queries. Experiments show that the
ranking and weighting schemes are both effective, particularly on multipredicate queries.
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1. INTRODUCTION

Since its inception in January 2001, Wikipedia has become the largest encyclopedia
ever created, containing more than 3 million articles in English alone as of 2010. In
the meantime, Wikipedia articles have amazingly evolved, from mostly plain texts at
an earlier stage to current ones with substantial structural annotations. It is now
the primary knowledge source for many users on a wide variety of entities, including
people, institutions, geographical locations, events, etc. For discovering and exploring
the entities that fascinate them, users are in need of structured querying facilities,
coupled with text retrieval capabilities, that explicitly deal with the entities, their
properties, and relationships.
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The prevalent manner in which users access Wikipedia is still keyword-based doc-
ument search. Although keyword search has been quite effective in finding specific
pages matching the keywords, there clearly exists a mismatch between its document-
centric view and the aforementioned entity-centric user information needs. Users’
tasks often cannot be clearly expressed with simple keyword queries and processing
the query results may require substantial user efforts.

Example 1 (Motivating Example). Consider a business analyst investigating the de-
velopment of Silicon Valley. Particularly, she is interested in this task: Find the list
of companies and their founders, where the companies are in Silicon Valley and the
founders are Stanford graduates.

There are two major mismatches that make keyword search unsuitable for resolving
this task. First, the task focuses on typed entities, PERSON and COMPANY, and, in
database terminology, their “join” relationships. Second, the task involves synthesiz-
ing information scattered across different places, therefore a simple list of pages is not
sufficient. For instance, one page may tell the analyst that JERRY YANG is a founder
of YAHOO!, but whether YAHOO! is a Silicon Valley company and whether JERRY
YANG is a Stanford graduate may have to be found in other pages.

While conceptually simple, with only keyword search, tasks like the given one re-
quire substantial user efforts to perform multiple searches and assemble information
from a potentially large number of articles. Our analyst may start with a search on
“Silicon Valley company” and scan through the potentially long list of result articles to,
hopefully, fetch a list of companies that are likely to be in Silicon Valley. She then sim-
ilarly issues another search on “Stanford graduate” to find a list of people graduated
from Stanford University. She then manually combine entities in these two lists and,
by multiple additional searches, check if a company was founded by a person, for each
pair of person and company. Alternatively, she can also go through the list of compa-
nies and, for each company, find its founders and check if Stanford is their alma mater
by multiple search queries. Both are painful options and require the user to break
down the task into a time-consuming, error-prone iterative procedure of searching,
reading, and re-searching.

Wikipedia (and the Web) contains various tables and lists, which can be extracted
into databases for powerful queries [Cafarella et al. 2008]. For example, a page listing
all Silicon Valley companies may exist. However, it is unrealistic to expect such pages
exist for arbitrary user tasks. Moreover, it is less common to find such tables/lists for
relationships between entities, for instance, who founded which company.

We propose entity-relationship query,1 a declarative query mechanism for the afore-
mentioned task. The results of such queries are tuples of entities that are likely to
meet the semantic requirements of the query, instead of articles containing such enti-
ties. For Example 1, our analyst can write the following SQL-like query.

Query 1 (Entity-Relationship Query for Example 1).

SELECT x, y
FROM PERSON x, COMPANY y
WHERE x:["Stanford", "graduate"] // Predicate p1
AND y:["Silicon Valley"] // Predicate p2
AND x,y:["found"] // Predicate p3

We take a DB-IR integration approach in proposing this direction. On the one hand,
entity-relationship queries have explicit structured components: typed entity variables

1It should not be confused with the well-known ER model.
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(e.g., x, bound to entities of type PERSON, and y, for entities of type COMPANY),
selection predicates for selecting entities by their properties (e.g., predicate p1), and
relation predicates for specifying relations between entities (e.g., predicate p3 for “x
founded y”). On the other hand, the individual predicates are specified by keyword-
based constraints. The query semantics dictates that entities satisfy a predicate by
a simple and intuitive requirement: the entities cooccur with the keywords in some
contexts. Such contexts can be sentences, windows of texts, etc. For simplicity, we use
sentence as context in this article. For example, predicate p1 requires every PERSON
in the query answer to cooccur with “Stanford” and “graduate” in at least one sentence.
In short, we aim to capture entity properties and relationships through shallow syntax
requirements implied by users at query-time,2 while previous works [Agichtein and
Gravano 2000; Brin 1998; Cafarella et al. 2007; Chu et al. 2007; DeRose et al. 2007;
Etzioni et al. 2008; Kandogan et al. 2006] explicitly extract and reason about semantic
information before query-time. Although such syntax clue is by no means rigorous or
error-proof, it becomes robust when we take into account the redundancy in a corpus:
true facts are more likely repetitively stated in multiple places. This intuition has been
widely used in Web search and mining, for instance, information extraction [Agichtein
and Gravano 2000; Brin 1998] and entity search and ranking [Cheng et al. 2007].

Entity-relationship queries can yield many false answers due to abundant acciden-
tal cooccurrences (e.g., false evidence such as “X’s partner is a Stanford graduate” for
predicate p1). Therefore, how to rank query answers presents a critical challenge.
First, the presence of multiple predicates in a query requires us to aggregate the rank-
ings of entities for multiple predicates. Second, many true answers have small num-
bers of cooccurrence contexts (i.e., low redundancy) in Wikipedia. Using redundancy
solely is not sufficient to tell such entities apart from false answers.

We present a ranking framework for general entity-relationship queries. It first
evaluates how well an answer satisfies individual predicates and then aggregates mul-
tiple predicate scores into an answer score. A Bounded Cumulative Model (BCM) is
proposed for scoring predicates. BCM relies on redundant cooccurrence contexts for
robust evaluation. To improve ranking accuracy for answers with small numbers of
supporting contexts, BCM performs refined assessment on each cooccurrence context
based on three positional features: proximity, ordering pattern, and mutual exclusion.
Contexts that are likely true evidence are given higher importance. Existing systems
only exploit proximity feature [Chakrabarti et al. 2006; Cheng et al. 2007] and may not
leverage redundancy [Chakrabarti et al. 2006]. In certain sensitive cases, BCM tends
to yield sketically high scores. To address this issue, we further study two weighting
schemes for BCM. The basic idea is to detect and penalize susceptible answers based
on the number of supporting contexts.

In summary, we make the following contributions in this article.

— We propose the concept of entity-relationship queries for structured querying of en-
tities directly over Wikipedia text with multiple predicates.

— We design a ranking framework and a position-based Bounded Cumulative Model
for ranking the answers to entity-relationship queries.

— We develop two weighting schemes, maximal-support weighting and document-
frequency weighting, for improving the accuracy of BCM.

— We conduct comprehensive experiments, and demonstrate the effectiveness of the
ranking and weighting methods.

2The effectiveness of such entity-relationship queries partially relies on the user’s capability in forming
proper keyword constraints, like in IR queries.
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The article is organized as follows. Section 2 reviews related work. Section 3.1 de-
fines entity-relationship query and its ranking problem. In Section 3.2, we discuss the
three position-based features in our Cumulative Model (Section 3.3) and Bounded Cu-
mulative Model (Section 3.4). Section 4 explores the weighting schemes for improving
BCM’s performance. Section 5 reports empirical results. Section 6 discusses limita-
tions and future work. Section 7 concludes the article.

2. RELATED WORK

Previous studies on structured querying of the Web focus on DB-based approach
that explicitly extracts structured information into databases [Agichtein and Gravano
2000; Brin 1998; Cafarella et al. 2007; Chu et al. 2007; DeRose et al. 2007; Etzioni
et al. 2008; Kandogan et al. 2006]. This approach lends itself to the rich techniques
of database querying. It is constrained by the capability of the information extraction
(IE) and natural language processing (NLP) techniques. Particularly, it requires ex-
plicit identification of the “names” of entity relationships. For example, if a “found”
relation between JERRY YANG and YAHOO! was not detected during the extraction
phase, such information is lost and could not be queried.

Some systems [Auer et al. 2007; Dill et al. 2003; Kasneci et al. 2008; Suchanek
et al. 2007] explicitly encode entities and their relations in RDF, the W3C recommen-
dation of data model for Semantic Web. They can thus leverage the expressiveness of
query languages like SPARQL.3 Some of them [Auer et al. 2007; Kasneci et al. 2008;
Suchanek et al. 2007] only capture structured and semistructured information, for in-
stance, infoboxes in Wikipedia, leaving out implicit information in unstructured text.
For example, YAGO only supports around 100 relations unified from WordNet and
Wikipedia [Suchanek 2009]. Other systems apply IE techniques over Web pages to
bootstrap RDF extraction [Dill et al. 2003], thus bearing the same limitation as the
aforementioned DB-based approach.

Question answering has been an important task in TREC conferences.4 The ba-
sic factoid QA task expects systems to provide a short answer (typically less than 250
characters) to a factoid question such as Who invented the paper clip? [Voorhees 2003].
The list QA task instead asks for a list of answers to a question. Evolved from the QA
tasks, entity ranking tasks of both INEX 5 and TREC have gained significant interest
[Demartini et al. 2008; Petkova and Croft 2007; Vercoustre et al. 2008; Zaragoza et al.
2007]. These tasks are highly relevant to our single-predicate queries. However, they
do not have the concept of “predicates” and do not deal with multiple predicates. An-
swering complex and multipredicate queries is what distinguishes our work from pre-
vious studies. Moreover, an important focus in question answering and entity ranking
is to accurately understand the narrative question descriptions, which we do not study.

The studies most related to ours are [Chakrabarti et al. 2006; Cheng et al. 2007;
Zhou et al. 2010]. Chakrabarti et al. [2006] learns an optimal scoring function on
proximity feature. It only scores entities by single context, without integrating
information found in multiple documents. EntityRank [Cheng et al. 2007] aggregates
scores of locally evaluated cooccurrence contexts into global scores to improve ranking.
[Zhou et al. 2010] extends EntityRank with more context matching patterns. All three
systems only focus on queries comparable to our single-predicate queries and thus do
not study multipredicate queries.

The concept of entity-relationship query and its query result ranking problem were
initially studied in Li et al. [2010a]. In this extension, we propose two weighting

3http://www.w3.org/TR/rdf-sparql-query
4http://ilps.science.uva.nl/trec-entity/guidelines/
5http://www.inex.otago.ac.nz/tracks/entity-ranking/entity-ranking.asp
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Table I. Notations

q=〈V, P〉 an entity-relationship query
V a set of entity variables
P a set of predicates

p=〈Vp, Cp〉 a predicate
Vp a subset of V (the entity variables relevant to p)
Cp a set of phrases

t=〈e1, ..., e|V|〉 a tuple, where each ei is an entity instantiated from entity variable Vi

tp the sub-tuple of t with regard to p
s a context (sentence)

〈doc, sent, V̂p, Ĉp〉 a cooccurrence context of some answer tuple t for predicate p
V̂p the positions of entities in tp, in the context.
Ĉp the positions of phrases in Cp, in the context.

φp(t) the set of all contexts of tp

φp the set of all contexts of answer tuples to predicate p
φ the set of all contexts of all predicates

proxp(t, s) the proximity of tp in s
o an ordering pattern

O p all possible ordering patterns for predicate p
φp(o) the set of contexts following pattern o for predicate p
fp(o) the weight of pattern o with regard to predicate p
O p(s) colliding patterns in s

creditp(o, s) the credit of o in s with regard to predicate p
Fp(t) single-predicate score of an answer tuple t
FA (t) overall score of t

φp(t, o) all contexts of t for predicate p that follow pattern o

schemes for improving the BCM-based ranking model (Section 4). We also experimen-
tally evaluate the effectiveness of the weighting schemes in Section 5.5. In addition,
we have reprocessed our Wikipedia dataset with an updated version of preprocessing
module, which fixed some parsing errors in previous version. As a result, Section 5
now reports our findings on the updated data.

3. POSITION-BASED RANKING

3.1. Preliminaries

To facilitate our discussion, Table I summarizes the major notations that we use. We
formalize an entity-relationship query as q=〈V, P〉. V is a set of entity variables. Each
v ∈ V is bound to entities of certain type, for instance, PERSON. P is a set of predi-
cates. Each p ∈ P is a pair 〈Vp, Cp〉, where Vp ⊆ V and Cp is a set of phrases6. Query 1
is thus q1=〈V, P〉, V=〈x:PERSON, y:COMPANY〉, and P={p1, p2, p3}. The predicates
p1=〈Vp1={x},Cp1={“Stanford”,“graduate”}〉 and p2=〈Vp2={y},Cp2={“Silicon Valley”}〉 are
selection predicates, and p3=〈Vp3={x, y}, Cp3={“found”}〉 is a relation predicate. Note
that although Query 1 only involves binary relationship between two entities, a query
in general can have multientity relationships. For instance, a query SELECT p,c,l

FROM PERSON p, COMPANY c, PROGRAMMING LANGUAGE l WHERE p,c,l:["design"] can be used
to find programming languages designed by scientists at some companies.

6A single keyword is treated as a phrase of length 1.
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An answer to a query q is a tuple of entities, denoted by t. For each v ∈ V, there
is a corresponding entity e ∈ t instantiated from v, for instance, t=〈JERRY YANG,
YAHOO!〉 for Query 1. Given a predicate p=〈Vp, Cp〉, we use tp to represent the sub-
tuple of t such that each entity e ∈ tp is instantiated from a corresponding v ∈ Vp. Take
p1 in Query 1, for example. tp1=〈JERRY YANG〉 because Vp1 has only one variable x
and JERRY YANG is instantiated from x. Similarly, tp3=t.

Given a predicate p, if a sentence contains all the phrases in Cp and one entity for
each variable in Vp, it is a (cooccurrence) context for p. These entities in whole are
said to satisfy p. Suppose these three sentences are found in the corpus.

s1: Stanford University graduates JERRY YANG and ...
s2: ...a senior manager at YAHOO! in Silicon Valley.
s3: JERRY YANG cofounded YAHOO!.

JERRY YANG satisfies p1 by sentence s1; YAHOO! satisfies p2 by sentence s2; and
they together satisfy p3 by s3. Assembling the information together, the entity tuple
〈JERRY YANG, YAHOO!〉 is an answer to the query since it satisfies all the query
predicates. Note that in s1, “Stanford University” is treated as plain text since it is
neither a PERSON nor a COMPANY.

A cooccurrence context of answer t for predicate p=〈Vp, Cp〉 is a quadruple
〈doc, sent, V̂p, Ĉp〉. doc and sent refer to the document ID and the sentence number
that together identify a unique sentence in the corpus. V̂p are the positions of entities
in the aforementioned subtuple tp and Ĉp are the positions of phrases in Cp. Sup-
pose the aforementioned s1 is the 8th sentence of document 9. In this context, JERRY
YANG spans from position 3 to 4. “Stanford” and “graduate” are at positions 0 and 2,
respectively. Hence, the context is represented as 〈9, 8, {〈3, 4〉}, {0, 2}〉.

Note that there can be multiple contexts of tp1 , each being a sentence containing
JERRY YANG, “Stanford,” and “graduate.” We denote all contexts of tp by φp(t). With-
out loss of generality, we use sentence and context interchangeably. Note that in reality
contexts with coarser granularity, such as paragraphs and sections, can be applied.

Problem Statement. Denote all answers to query q=〈V, P〉 by A. Our goal is to
rank the answers in A according to φ={φp|p ∈ P}, where φp=

⋃
t∈A φp(t).

Since the information that is used for ranking, φ, is primarily position information
(i.e., documents IDs, sentence numbers, entity spans and phrase positions), the prob-
lem is called the position-based ranking problem.

Given a query q=〈V, P〉, our ranking framework consists of three scoring functions
FS, FR and FA , such that for each answer t: (1) its score on a selection predicate p ∈ P
is given by FS

p(t); (2) its score on a relation predicate p ∈ P is given by FR
p (t); and (3)

its final score FA (t) aggregates all predicate scores obtained via FS and FR. In this
framework, the scores of different predicates are computed independently from each
other. The intuition can be explained as follows. In Query 1, whether a PERSON
is a Stanford graduate (p1) is assumed independent from whether she founded any
COMPANY (p3) and irrelevant to whether a COMPANY is in Silicon Valley (p2).

3.2. Position-Based Features

This section studies three position-based features that are derivable from co-
occurrence contexts. These features are the key components in our ranking models.

3.2.1. Proximity. Intuitively, if the entities in tp and the keywords in Cp are close to
each other in a context s ∈ φp(t), they likely belong to the same grammatical unit of the
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corresponding sentence (e.g., a phrase like “Stanford University graduate JERRY
YANG”) and thus form a piece of true evidence. Given predicate p, we define the
proximity of tp in s as

proxp(t, s) = proxp(tp, s) =

∑
e∈tp

|token(e, s)| +
∑

c∈Cp
|c|

|scopep(tp, s)| ,

where |token(e, s)| is the number of tokens in s representing entity e; |c| is the number
of tokens in phrase c; scopep(tp, s) is the shortest token sequence in s that covers all the
entities in tp and all the phrases in Cp; and |scopep(tp, s)| is the number of tokens in
the sequence. Note that proxp(t, s) is in [0,1] by this definition.

Different representations may be used in various places to refer to the same en-
tity and may have different numbers of tokens. For example, the entity IBM may
be represented by “IBM,” “Big Blue,” or “International Business Machine.” Hence,
|token(IBM, s)| may be 1, 2, or 3 in different context s.

Example 2. The following two sentences are both contexts of the highlighted (all
capitalized) entities for predicate p1 in Query 1. Context s1 is true, supporting a true
positive, while s4 is false, supporting a false positive.

s1: Stanford University graduates JERRY YANG and ...
s4: A professor at Stanford University, COLIN MARLOW had a relationship with

Cristina Yang before she graduated ...

Predicate p1 has two phrases, “Stanford” and “graduate,” each of which has one
token. Hence

∑
c∈Cp1

|c|=2. In s1, the PERSON JERRY YANG is represented by two
tokens, “Jerry” and “Yang”, hence

∑
e∈tp1

|token(e, s1)|=2. The scope covering the entity
and the two phrases spans 5 tokens, from “Stanford” to “Yang”, thus |scopep1 (tp1 , s1)|=5.
Therefore, the proximity of JERRY YANG in sentence s1 is proxp1 (tp1 , s1)= 2+2

5 =0.8. Sim-
ilarly, the proximity of COLIN MARLOW in s4 is 2+2

13 =0.31. Based on proximity alone,
we say that s1 is more likely a piece of true evidence. Therefore JERRY YANG is more
likely to satisfy p1 than COLIN MARLOW, given no other context.

3.2.2. Ordering Pattern. An ordering pattern refers to the order of entities and phrases
in a cooccurrence context. Consider again predicate p1=〈{x}, {“Stanford”, “graduate.”}〉
Let c1=“Stanford” and c2=“graduate.” This predicate has six different ordering pat-
terns (xc1c2, xc2c1, c1xc2, c2xc1, c1c2x and c2c1x). Generally, if we denote all possible
patterns of a predicate p by O p, we have |O p|=(|Vp| + |Cp|)!. Note that, extra tokens
and punctuations between entities and phrases are irrelevant to the patterns. Hence,
“Stanford University graduate, JERRY YANG” and “Stanford graduate JERRY YANG”
follow the same pattern, c1c2x.

We observe that some ordering patterns are better indicators of true evidence than
others. For example, to express that somebody is a graduate of Stanford University,
true evidence usually follows the pattern c1c2x (e.g., s1). Contexts following another
pattern, c1xc2, are likely to be false evidence (e.g., s4). To distinguish good patterns
(those that tend to indicate true evidence) from others, we may assign a different
weight to each pattern, so that entities supported by contexts following good patterns
are scored higher. However, it is impossible to predetermine the weights since the
goodness of ordering patterns are predicate-dependent. To illustrate, c1c2x is a good
pattern for predicate p1 in Query 1, but may not be equally good for another predicate
p=〈{x:NOVEL}, {“by”, “Jane Austen”}〉, because it is less common to see true evidence
such as

... written by Jane Austen, PRIDE AND PREJUDICE...
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In our approach, the weights of ordering patterns for a predicate p are dynamically
derived from φp, the set of all cooccurrence contexts for p. Denoting φp(o) as the sub-
set of contexts following pattern o, we define the weight of o for predicate p as its
frequency in φp,

fp(o) = |φp(o)|/|φp|.
This definition captures the intuition that good patterns appear more often than
bad ones. Although in theory there might be a pattern frequently appearing in false
evidence, making a bad pattern more common, we do not observe such case in our
experiments.

3.2.3. Mutual Exclusion. Given a predicate p, multiple contexts in φp may have the
same 〈doc, sent〉 value, that is, coming from the same sentence. They are contexts of
different entities and may follow different ordering patterns in that sentence. The co-
existence of different patterns in one sentence is called a collision and the patterns are
colliding patterns. The mutual exclusion rule dictates that, when collision happens,
at most one colliding pattern is effective and the sentence is only considered evidence
following that pattern.

Example 3. The following sentence appears as three contexts for p1, one for each
highlighted (all capitalized) entity. Ric Weiland follows the pattern o1=xc2c1. PAUL
ALLAN and BILL GATES follow o2=c2c1x. Semantically, the former pattern is the
effective pattern and the sentence is only a piece of evidence for RIC WEILAND.

s5: After RIC WEILAND graduated from Stanford University, PAUL ALLEN and
BILL GATES hired him in 1975 ...

Without understanding the semantics, it is difficult to decide which colliding pattern
is absolutely effective. Therefore, we relax the rule with a credit mechanism, where ev-
ery colliding pattern is considered partially effective, and patterns with higher credits
are more likely to be effective than those with lower credits. We assume each sentence
s (that is a context of at least one subtuple tp for predicate p) has a total credit of 1,
meaning that there is only one effective pattern. Given a predicate p, we denote the
colliding patterns in s by O p(s) ⊆ O p. Each o ∈ O p(s) gets a credit creditp(o, s), and∑

o∈O p(s) creditp(o, s)=1.
To allocate credits to the colliding patterns O p(s), we adopt the intuition that pat-

terns followed by more prominent entities are more likely to be effective. Specifically,
let Tp(o, s) be all subtuples on p following pattern o in s. For each o ∈ O p(s), we choose
a representative from Tp(o, s), denoted by T∗

p(o, s), which is the one with the highest
proximity value, that is, T∗

p(o, s)=arg maxtp∈Tp(o,s) proxp(tp, s). We compare the repre-
sentatives (and thus the patterns that they follow) by how prominent they are, that is,
by their overall numbers of contexts in φp. The credit of o in s is

creditp(o, s) =
|φp(T∗

p(o, s))|∑
o′∈O p(s) |φp(T∗

p(o′, s))| ,

where φp(T∗
p(o, s)) is the set of contexts of T∗

p(o, s) for predicate p. Note that we choose
the most proximate sub-tuple as the representative of a colliding pattern and allocate
credits based on representatives only. The intuition is that the most proximate sub-
tuple is most likely to form a grammatical unit with phrases in Cp, and hence the most
reliable one for allocating credits.

In Example 3, t1=T∗
p1

(o1, s)=RIC WEILAND (i.e., the representative of pattern o1

is RIC WEILAND) since he is the only PERSON in s following pattern o1; and
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t2=T∗
p1

(o2, s)=PAUL ALLEN because he has higher proximity (0.67) than BILL GATES
(0.44), though both follow o2. Suppose RIC WEILAND is found in 4 contexts
(|φp1 (t

1)|=4) and PAUL ALLEN in 2 (|φp1 (t
2)|=2). Then, the credits of their correspond-

ing patterns in s would be 4
4+2 =0.67 (for o1) and 0.33 (for o2).

Note that the pattern credit here is different from the pattern weight in Sec-
tion 3.2.2. The weight of pattern o is a global measure (aggregated over φp) of how
frequent o is. The credit of o, on the contrary, is a local measure particular to each
sentence s, indicating how likely o is the effective pattern in s.

3.3. Single-Predicate Scoring

So far, we have introduced all the position-based features for assessing individual con-
texts. Integrating these features together, this section presents the Cumulative Model
(CM) for scoring answers for a single predicate. We assume that FS is the same as
FR (i.e., the same function is used for scoring all predicates), hence for brevity, we use
Fp(t) instead of FS

p(t) and FR
p (t).

Let φp(t, o) ⊆ φp(t) be all contexts of t for predicate p that follow pattern o ∈ O p. Our
Cumulative Model (CM) is

Fp(t) =
∑

o∈O p

⎛
⎝ fp(o)

∑
s∈φp(t,o)

proxp(t, s)creditp(o, s)

⎞
⎠ ,

where fp(o) is the weight of pattern o, proxp(t, s) is tp’s proximity in context s, and
creditp(o, s) is the credit of o in s.

The model divides φp(t), t’s contexts for p, into |O p| groups, {φp(t, o)|o ∈ O p}, so that
contexts in each group follow the same pattern. For each group φp(t, o), the model
computes a group score (the inner summation). The group scores are linearly com-
bined using weights fp(o) (the outer summation), such that the group scores of better
patterns account more in Fp(t). The kernel of the function, proxp(t, s) creditp(o, s),
assesses how likely s is a piece of true evidence of t for predicate p. It is monotonic to
both the proximity of tp and the credit of tp’s pattern o. Answers supported by contexts
having higher proximities and pattern credits will accumulate higher scores and thus
be ranked higher.

It is interesting to note that CM can be customized easily by switching its component
features on and off, so that we can evaluate the effectiveness of individual features.
While detailed evaluations are presented in Section 5, below we list three important
customizations.

COUNT: Fp(t) =
∑

o∈O p

(1
∑

s∈φp(t,o)

1) =
∑

o∈O p

|φp(t, o)| = |φp(t)|

PROX: Fp(t) =
∑

o∈O p

∑
s∈φp(t,o)

proxp(t, s) =
∑

s∈φp(t)

proxp(t, s)

MEX: Fp(t) =
∑

o∈O p

∑
s∈φp(t,o)

creditp(o, s) =
∑

s∈φp(t)

creditp(o, s).

COUNT is a straightforward method that scores t by the count of its supporting
evidence. It can be reduced from CM by turning off all the features, that is, setting
proxp(t, s) ≡ 1, creditp(o, s) ≡ 1 and fp(o) ≡ 1. PROX only applies the proximity feature
and is reduced from CM by setting creditp(o, s) ≡ 1 and fp(o) ≡ 1. MEX only applies
the mutual exclusion feature. It is derived from CM by setting proxp(t, s) ≡ 1 and
fp(o) ≡ 1.
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Table II. Example Answers

x y p1 p2 p3 � �

t1 Jerry Yang Yahoo! 0.8 0.7 0.8 0.448 2.3
t2 Larry Page Google 0.6 0.5 0.6 0.18 1.7
t3 Scott McNealy Cisco 0.9 0.8 0.2 0.144 1.9
t4 Bill Gates IKEA 0.3 0.1 0.2 0.006 0.6

3.4. Multipredicate Scoring

We extend our single-predicate scoring model to handle multipredicate queries. Given
a query answer, CM computes a score on each predicate. However, it remains a task to
derive the final score, FA (t), from multiple predicate scores.

With CM, predicate scores are unbounded, that is, the more contexts the higher
scores. When multiple predicate scores are aggregated, some could be so high that
they dominate the aggregate score. To alleviate this predicate dominance problem,
we propose the Bounded Cumulative Model (BCM) for better scoring of individual
predicates:

Fp(t) =
∑

o∈O p

⎛
⎝ fp(o)

⎡
⎣1 −

∏
s∈φp(t,o)

(
1 − proxp(t, s)creditp(o, s)

)
⎤
⎦

⎞
⎠ . (1)

BCM uses the same three features as CM does, but differs from CM in computing
group scores, each of which is computed from a set of contexts φp(t, o). Basically, BCM
bounds all group scores in the range [0,1], and consequently it bounds the predicate
scores within [0,1], since

∑
o∈O p

fp(o)=1 according to Section 3.2.2.
Given an answer t to query q=〈V, P〉, t’s final score, FA (t), is computed as the product

of its scores on all predicates,

FA (t) =
∏
p∈P

Fp(t), (2)

where Fp(t) can use either BCM or CM. For our problem, product is a more reasonable
aggregate function than summation, another common aggregate function, because it
favors answers with balanced predicate scores over those with polarized ones. To il-
lustrate why balanced scores should be favored, consider Table II. The table shows
four answers to Query 1. For each answer, it lists all three predicate scores (by BCM),
as well as the final scores using product and summation, respectively. The two aggre-
gates agree on the ranking of t1 and t4, which get unanimously (i.e., balanced) high
and low predicate scores, but disagree on t2 and t3. The true positive, t2, gets modest
and balanced scores on all the predicates. It is correctly ranked higher than t3, a false
positive, by using product as the aggregate function, but loses the competition when
summation is used. Answer t3 gains high scores on p1 and p2 (both indeed satisfied by
t3), but low score on p3 (It does not satisfy p3 in the real world.) When summation is
the aggregate function, the final score of t3 is dominated by the high scoring predicates
and t3 is mistakenly ranked above t2.

4. WEIGHTING

We have introduced our multipredicate ranking method based on Bounded Cumulative
Model. In this section, we will look further into BCM and explore several weighting
schemes to improve its accuracy.

As discussed earlier, BCM is proposed to alleviate the problem of predicate domi-
nance. But its multiplicative nature (the product in Formula 1) also makes predicate
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scoring sensitive to a few good contexts. As an extreme example, if only one ordering
pattern is involved (thus, fp(o)=1), the predicate score Fp(t) will become 1 (the maxi-
mum) as long as any context is scored 1 (proxp(t, s)creditp(o, s)=1), regardless of other
supporting contexts. In multipredicate queries, such sensitivity of predicate scores will
be further magnified by Formula 2. For instance, a small change in one predicate score
from 0.1 to 0.2 will double the answer score. Apparently, ranking judgment made in
such sensitive situations is susceptible and should be downplayed.

Our idea for solving the sensitivity problem is to penalize susceptible answers by
weighting. The new weighted scoring model for general entity-relationship queries is
Formula 3. Compared to Formula 2, an exponential weight Wp(t) is applied over each
Fp(t), the BCM score of answer t for predicate p. In the ideal case, the weight should
adjust itself according to the degree of susceptibility of each answer. Intuitively, if Fp(t)
is computed according to a small number of contexts, it is susceptible (even though the
score may be high) and should receive a penalty for that. Briefly speaking, the weight
Wp(t) needs to be larger for more susceptible answers (i.e., answers supported by less
contexts). Note that Fp(t) is bounded between [0, 1] by BCM, hence larger weight will
lower the predicate score.

FA (t) =
∏
p∈P

Fp(t)Wp(t)
. (3)

The rest of this section discusses two weighting schemes that match our intention:
higher weights Wp(t) for answers with less contexts. With regard to a predicate, let
us define the support of a candidate answer t to be the number of supporting contexts
for tp, which is denoted by |φp(t)|. We measure the significance of tp by comparing its
support with some “best-possible” support. In the first weighting scheme, maximal-
support weighting, we compare the support of tp with the largest support among all
the answers. The larger the difference is, the higher the weight will be. In the second
scheme, corpus-frequency weighting, the support of tp is compared with its “corpus
frequency,” which refers to the number of contexts in the corpus that contain tp.

4.1. Maximal-Support Weighting

The maximal-support weight is defined as

Wp(t) = αp(t) =
maxt′ log(|φp(t′)| + 1)

log(|φp(t)| + 1)
.

The denominator is the logarithm of answer t’s support (plus 1) for predicate p and
the numerator is the maximum of such logarithm values among all the answers. The
smoothing constant 1 is used to avoid zero-denominator when |φp(t)| = 1. By this
weighting scheme, answers with less support (i.e., smaller denominators) will receive
higher penalties. Suppose there are two answers for predicate p, where t1 has 3 con-
texts (log(3 + 1) = 2) and t2 has much more contexts, say 127 (log(127 + 1) = 7). Their
maximal-support weights are αp(t1) = max{2,7}

2 = 3.5 and αp(t2) = 7
7 = 1, respectively.

Thus, t1 is penalized more with weight 3.5. Note that, although we use base 2 loga-
rithm in the calculation for illustration purpose, the weight is actually independent of
the choice of base.

For an individual predicate, if two answers have the same support (hence, the
same denominator), their maximal-support weights will be the same, and their rel-
ative ranking is preserved in spite of the weighting, according to the monotonicity that
x < y ⇔ xw < yw for w > 0.

The numerator of αp(t) corresponds to the maximum of observed support for a pred-
icate. It is a hint on how much support a true answer could get from the corpus. Here,
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we implicitly assume that the maximally supported answer is true, which is usually
the case. We utilize this hint to evaluate the significance of the supports of candi-
date answers and weight them accordingly. To illustrate, let us consider an answer t
with 3 contexts. We observed two situations in our corpus: (1) the maximal support is
much higher than 3 (e.g., 127), and (2) the maximal support is also low (e.g., 7). The
former indicates that true answers tend to have many contexts, while the latter indi-
cates that it is unlikely to find many contexts for this predicate. Intuitively, answer
t should be penalized more in the former situation since it does not look like a true
answer in terms of support. In this regard, the definition of αp(t) tends to penalize
poorly-supported answers more severely.

It is important to note that the maximal support (i.e., the numerator), has no effect
on ranking single-predicate queries because it is the same for all answers. For multi-
predicate queries, each predicate may have a different maximal support. Predicates
with higher maximal support tend to yield higher weights, and penalize the answer
more severely given the same support value, and thus impact the ranking of candidate
answers. In sum, maximal-support weighting applies different treatment of predicates
according to their maximal supports, relying on predicates with high maximal support
to penalize their poorly-supported answers.

The maximal-support weighting has its own concern, as the maximal support itself
is sensitive to outliers. In an undesirable scenario, it is possible that most true answers
of a predicate have less than 10 contexts, except for one outlier with 100 contexts.
In this case, the maximum support is 100, resulting in high penalty to other true
answers. A more robust solution could use the average of the largest k supports as the
numerator in αp(t). We leave this issue for future study.

4.2. Corpus-Frequency Weighting

The corpus-frequency weighting takes into consideration the corpus background of an
answer for evaluating the significance of its support. Given the same support, the more
an answer appears in the corpus, the less significant the support is. This intuition is
reflected in our corpus-frequency weighting as

Wp(t) = βp(t) =
log(N(tp) + 1)
log(|φp(t)| + 1)

,

where tp is the projection of t onto the variables in p. N(tp) is tp’s corpus frequency, that
is, the number of sentences in the whole corpus that contain tp. Note that |φp(t)| ≤ N(tp)
because φp(t) is the set of supporting contexts of t with regard to p, that is, those
sentences that not only contain tp but also Cp, the phrases in p.

For example, for predicate p2=〈{y}, “Silicon Valley”〉 on COMPANY, NASDAQ is sup-
ported by 3 contexts out of its 845 occurrences in the corpus while MAYFIELD FUND
has 3 out of 11. Given its high corpus frequency, NASDAQ is quite susceptible be-
cause its cooccurrence with “Silicon Valley” likely happens just by coincidence. In this
sense, we consider the support of MAYFIELD FUND more significant than that of
NASDAQ. By applying corpus-frequency weighting, the weight for NASDAQ is log(846)

log(4) ,

while the weight for MAYFIELD FUND is log(12)
log(4) . This meets our goal of giving higher

weights (penalties), thus lower scores, to more susceptible answers. In contrast, given
this example, maximal-support weighting will weight the two answers equally since
they have the same support. Hence by looking at the corpus frequency, βp(t) is able to
capture the difference in case of tied support.

Corpus-frequency weighting shares the same intuition as IDF (inverse document
frequency) weighting in document retrieval. Both weighting schemes favor specificity
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over generality. The difference is that IDF weight depends on query terms only and is
the same for all hit answers, while our corpus-frequency weight is dependent on both
query predicates and the returned answers.

A concern is how to weight between two answers of the same specificity, for in-
stance, (1) |φp(t1)| = 1 with N(t1p) = 5 versus (2) |φp(t2)| = 20 and N(t2p) = 100. Here,
t1 and t2 have equal specificity if we measure specificity by the ratio between support
and corpus frequency, N(tp)/|φp(t)|. While the conclusion is unclear in general, for our
problem and corpus, the latter case should be favored. The intuition is that, since t2
already has large support, its BCM score is not as susceptible as t1 and hence the cor-
pus frequency becomes less important in determining its significance. Our definition
of corpus-frequency weight is capable of capturing this intuition by using logarithm in
both numerator and denominator. As a real example from the predicate on Silicon Val-
ley companies, APPLE (a true answer) has 19 contexts out of its 2639 occurrences with
specificity 19

2639 = 0.72%, while SAP (a false answer) has 2 out of 211 with specificity
0.94%. Even though Apple has lower specificity, its weight is log(2639+1)

log(19+1) = 2.6, compared
to SAP’s 4.9.

5. EXPERIMENTS

This section provides empirical evaluation of our prototype system implemented in
Apache Lucene.7 A demo of the system is maintained at http://idir.uta.edu/erq [Li
et al. 2010b]. The system consists of several components. An Indexer constructs an
entity-centric index over our corpus. It associates each term w with a list of entities
(ordered by entity IDs) that cooccur with w somewhere in the corpus. For each entity
e in the list, it further records where w and e cooccur. Leveraging this design, the
Retriever efficiently retrieves entities and cooccurrence contexts. The results are fed to
Ranker for ranking, which is based on the ideas in previous sections.

5.1. Data and Query Sets

We used the 2008-07-24 snapshot of Wikipedia.8 After we removed all the irrelevant
pages (such as category and administrative pages), there were about 1.8 million arti-
cles. This article set is used as the entity catalog. Each article is the description of an
entity, by Wikipedia’s nature of being an encyclopedia, and the article title corresponds
to the entity name. We predefined 10 entity types (Table III) and assigned about 0.63
million entities to these types based on simple handcrafted rules, mainly using their
categories in Wikipedia. For example, if an article belongs to a category whose name
ends with “novels” (e.g., British novels) it is treated as an entity of type NOVEL. This
simple method turns out sufficiently accurate for our experiments. These 10 types
represent some of the major types of entities available in Wikipedia, for instance,
PERSON. They also include the main types (people, places, and organizations) used
in the study of named entity recognition (NER). Although a more comprehensive, fine-
grained, and accurate categorization of entities can improve the system’s query capa-
bility, it is not the focus of this study.

The same article set is used as the query corpus. For each article, we removed its
section titles, tables, infoboxes, references, etc., retaining only the main content. The
main text is segmented into sentences. We removed punctuation marks and stemmed
all words using the Porter stemmer.9 We consider the hyperlinks between Wikipedia

7http://lucene.apache.org/
8http://download.wikimedia.org
9http://tartarus.org/ martin/PorterStemmer/
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Table III. Ten Types from Wikipedia

Type (E)ntities (O)ccurrences O/E
AWARD 979 83,001 85
CITY 54,296 2,269,771 42
CLUB 13,365 701,042 52
COMPANY 20,966 842,849 40
FILM 37,455 595,774 16
NOVEL 15,385 181,156 12
PERSON 368,833 5,985,231 16
PLAYER 74,171 750,708 10
SONG 27,805 251,186 9
UNIVERSITY 17,491 677,140 39
TOTAL 630,746 11,742,084 19

articles as occurrences of the link targets (entities). In this way, we collected nearly 12
million occurrences of the 0.63 million typed entities.

Named entity recognition (NER) [Nadeau et al. 2007] and entity disambigua-
tion [Dill et al. 2003] are intensively studied problems. Our hyperlink-based anno-
tation can be viewed as a rudimentary entity disambiguation method. Recently we
have seen advanced entity recognition and disambiguation methods using Wikipedia
as entity catalog [Kulkarni et al. 2009; Mihalcea and Csomai 2007; Milne and Witten
2008] to automatically link entities mentioned in plain text to their corresponding
Wikipedia articles. One of our ongoing efforts is to use Wikify [Milne and Witten 2008]
to annotate entities occurrences that are not hyperlink anchortexts. This method will
give us more comprehensive entity occurrences. Furthermore, it can be applied on
generic Web pages, enabling entity-relationship queries on Web corpus.

We have previously collected two query sets, INEX17 and OWN28. INEX17 is
adapted from the topics in the Entity Ranking track of INEX 2009. From the 60
available topics, we adapted the ones that are on our predefined 10 entity types. We
obtained 11 single-predicate queries and 6 multipredicate queries. OWN28 contains
our own crafted 28 queries, including 16 single-predicate queries and 12 multipredi-
cate queries. Since both query sets are relatively small, we merged them into one set
for more robust evaluation. It contains 27 single-predicates (Single-27) and 18 multi-
predicate queries (Multi-18).

Ground Truth. We manually checked query answers returned by our system to
collect the ground truth. However, some of the queries return hundreds of answers.
Exhaustive checking is prohibitively time consuming. Therefore, for such queries, we
adopted the depth-N pooling approach used by INEX. Basically for each query, we only
check the top N answers returned by each ranking method. Since different methods
overlap greatly in their top N answers, a lot of time is saved. This pooling approach
allows us to evaluate ranking accuracy up to rank N. As a typical choice, N is set to
100 in our experiments.

5.2. Answers to Sample Queries

In this section we use several sample queries to demonstrate the accuracy of our query
evaluation system, based on BCM scoring model. The top-10 answers to each query
are displayed. The true answers are marked by bullets.

Case 1. Find the list of big ten universities.
Case 2. Our Query 1– Silicon Valley companies founded by Stanford graduates.
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Case 3. Find Academy Award winning films starring Australian actors.
Case 4. A basketball fan looking for team leaders of NBA champions. Particularly, she

is interested in those NBA Finals MVPs.

Case 1 Case 2

SELECT x FROM UNIVERSITY x SELECT x, y FROM PERSON x, COMPANY y

WHERE x:["Big Ten"] WHERE x:["Stanford", "graduate"]

AND y:["Silicon Valley"] AND x,y:["found"]

• 〈Indiana University (Bloomington)〉 • 〈Jerry Yang, Yahoo!〉
• 〈Ohio State University〉 • 〈David Packard, Hewlett-Packard Company〉
• 〈University of Michigan〉 • 〈Scott McNealy, Sun Microsystems〉
• 〈Pennsylvania State University〉 • 〈Vinod Khosla, Sun Microsystems〉
• 〈University of Iowa〉 〈Bill Gates, Microsoft〉
• 〈Purdue University〉 • 〈William Hewlett, Hewlett-Packard Company〉
• 〈Michigan State University〉 〈Vinod Khosla, Kleiner Perkins Caufield & Byers〉
• 〈University of Wisconsin-Madison〉 • 〈Larry Page, Google〉
• 〈University of Illinois at • 〈Andy Bechtolsheim, Sun Microsystems〉

Urbana-Champaign〉 • 〈Sergey Brin, Google〉
• 〈Northwestern University〉

Case 3 Case 4

SELECT x, y FROM FILM x, PERSON y SELECT x, y FROM CLUB x, PERSON y

WHERE x:[win "Academy Award"] WHERE x:["NBA" "champion"]

AND y:["Australian" "actor"] AND y:["Finals MVP"]

AND x,y:["star"] AND x,y:["led"]

• 〈Braveheart, Mel Gibson〉 • 〈Chicago Bulls, Michael Jordan〉
• 〈Brokeback Mountain, Heath Ledger〉 • 〈Los Angeles Lakers, Magic Johnson〉
• 〈The Adventures of Priscilla, Guy Pearce〉 • 〈San Antonio Spurs, Tim Duncan〉
• 〈L.A. Confidential, Guy Pearce〉 • 〈Los Angeles Lakers,

〈Mad Max, Mel Gibson〉 Kareem Abdul-Jabbar〉
• 〈The Year of Living Dangerously, Mel Gibson〉 • 〈Boston Celtics, Larry Bird〉
• 〈Elizabeth, Geoffrey Rush〉 • 〈Los Angeles Lakers, Shaquille O’Neal〉
• 〈A Beautiful Mind, Russell Crowe〉 • 〈Houston Rockets, Moses Malone〉
• 〈The Adventures of Priscilla, Hugo Weaving〉 • 〈Los Angeles Lakers, James Worthy〉
• 〈Gladiator, Russell Crowe〉 〈Philadelphia 76ers,

Kareem Abdul-Jabbar〉
• 〈Detroit Pistons, Isiah Thomas〉

5.3. Comparing Ranking Methods

In this section, we compare and analyze the multiple ranking methods discussed in
Section 3, namely COUNT, MEX, PROX, CM, and BCM. All the methods differ in how
they compute predicate scores, that is, Fp(t). For multipredicate queries, the same
Formula (2) is used to aggregate predicate scores into answer score. We compare these
ranking methods using three popular measures: MAP, nDCG, and Precision-at-k (P@k
for short). Since it is extremely time-consuming to obtain the complete ground truth in
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Table IV. Comparing Different Ranking Methods

Query COUNT MEX PROX CM BCM ER
MAP

Single-27 0.826 0.858 0.901 0.909 0.911 0.829
Multi-18 0.573 0.603 0.682 0.708 0.763 0.703

nDCG
Single-27 0.888 0.908 0.932 0.937 0.940 0.901
Multi-18 0.729 0.753 0.806 0.826 0.855 0.812

Wikipedia (which exactly motivates this study), we do not evaluate the absolute recall
or F-measure.

The MAP (Mean Average Precision) is the arithmetic mean of average precisions
for a set of queries. It is a good indicator of both precision and recall. The top part
of Table IV shows MAP for Single-27 and Multi-18. Both MEX and PROX improve
over COUNT, by 0.032 and 0.075 on Single-27, respectively, and by 0.03 and 0.109 on
Multi-18. PROX is shown to be more effective than MEX. CM and BCM have simi-
lar performance on Single-27, but BCM excels over CM by 0.055 on Multi-18. This
demonstrates that BCM is a better model for ranking multipredicate queries.

The nDCG (Normalized Discounted Cumulative Gain) discounts the gain of a true
answer by its rank in the result list and normalizes the cumulated gain with that of
a perfect ranking. The bottom part of Table IV shows the average nDCG on Single-27
and Multi-18. The observation is similar to the case of MAP.

Overall, our conclusion is that, CM and BCM are comparable for ranking single-
predicates and BCM has clear advantage on multipredicate queries. We refer inter-
ested readers to Li et al. [2010a] for separate evaluation of INEX17 and OWN28 query
sets in earlier experiments.

To further analyze how various methods perform at different ranks, we plot
precision-at-k curves. Figure 1(a) shows the results for Single-27 with k up to 10 (de-
noted as P@10). COUNT has the worst performance. PROX is consistently better than
MEX across all ranks, but worse than CM and BCM, agreeing with the conclusion
drawn from MAP and nDCG analysis. BCM is the best among all, especially for top
5. We further collected a subset of queries in Single-27, which returned more than
100 answers, and plot the P@100 curve in Figure 1(b). While COUNT and MEX are
still the worst, the other methods are fairly close to each other. Our observation on
Single-27 indicates that, for single-predicate queries, BCM is good at ranking top an-
swers, but does not have advantage over the long range. Figure 1(c) and (d) reports the
same experiment on Multi-18. It can be easily observed that BCM has clear advan-
tage in ranking multipredicate queries for top answers and beyond. This reinforces
our conclusion drawn from Table IV.

Note that, if all true answers are ranked before position K, the precision after K
will not change. This is reflected by the flat tails in Figure 1(b) and (d).

In summary, the individual features are effective for ranking entity-relationship
queries and they work best in concert when integrated in BCM. BCM rivals CM on
single-predicate queries, and excels on multipredicate queries. This is because BCM
alleviates the predicate dominance problem as discussed in Section 3.4.

5.4. BCM vs. Other Entity Ranking Methods

As a first study on multipredicate entity-relationship query, we did not find directly
comparable systems. By our best effort, we have chosen three state-of-the-art systems
proposed for related problems: EntityRank, INEX and INRIA. All the three systems
work on the entity ranking problem, though under different task settings. Besides,
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Fig. 1. Precision-at-k for Single-27 and Multi-18.

they are all evaluated using Wikipedia as corpus and entity catalog, though INEX and
INRIA worked on different snapshots from ours.

EntityRank (ER) [Cheng et al. 2007] outperforms another closely related sys-
tem [Chakrabarti et al. 2006] by a large margin in terms of MRR (Mean Reciprocal
Rank), since Chakrabarti et al. [2006] do not focus on aggregating supporting evidence
from multiple articles. We reimplemented ER in our system for scoring individual
predicates. As ER focuses on single-predicate queries, performance on such queries
can be fairly compared. For multipredicate queries, we can also use ER to compute
predicate scores and aggregate them by the same Formula 2.

We tested ER with our data set. In Table IV, ER is worse than BCM on Single-
27, by 0.082 in MAP and 0.039 in nDCG. It is only marginally better than the base-
line COUNT. For multipredicate queries (Multi-18), ER shows relatively better perfor-
mance than PROX, however, it is still worse than BCM by a large margin (0.06 in MAP
and 0.043 in nDCG).

From Figure 1, it can be seen that ER is good at ranking top 2 answers (with the
exception of (a)), rivaling CM and BCM. However, it deteriorates very fast when k > 2.
In (c), ER drops below 0.7 around k = 6, while BCM remains above 0.7 at k = 10. It
indicates that BCM is more robust for queries with multiple true answers. This is
because BCM exploits more features than ER and is thus able to promote the ranking
of some hard true answers indistinguishable by ER.

The INEX Entity Ranking track targets on a different problem setting. INEX
queries are specified as narrative descriptions on the desired entities. Participating
systems can use any techniques to answer the queries, but need to understand the
query descriptions, which itself is challenging. Hence their MAPs tend to be low. The
MAP achieved by the best system participating in the 2009 track is 0.517. To avoid
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Table V. Compare Effectiveness of Different
Weighting Schemes

Query BCM BCM-α BCM-β BCM-γ
MAP

Single-27 0.911 0.910 0.913 0.915
Multi-18 0.763 0.771 0.785 0.788

nDCG
Single-27 0.940 0.938 0.942 0.944
Multi-18 0.855 0.863 0.866 0.871

the overhead of assessing participating systems, INEX used a sampling strategy to
estimate their MAPs.

INRIA [Vercoustre et al. 2008] works on the same problem as INEX. Unlike INEX
participants, it is not based on cooccurrence of entities and query inputs. Rather, it
finds the Wikipedia articles that best match query descriptions, through link analysis
and TF-IDF weighting. It achieves MAP of 0.390 on 18 topics adapted from INEX 2006
ad hoc track.

In comparison with INEX and INRIA, the MAP achieved by BCM is 0.852 (averaged
over all 45 queries). We acknowledge that this comparison is not strictly fair. First,
the results are based on different query sets and snapshots of Wikipedia. Second, they
focus on different query styles (structured query vs. narrative description). However,
our argument is that the high MAP of BCM at least indicates that the structured
entity-relationship queries can be highly effective in reality.

5.5. Effectiveness of Weighting

In this section we evaluate different weighting schemes introduced in Section 4. We
compare plain BCM with BCM-α (applying maximal-support weight only) and BCM-β
(applying corpus-frequency weight only). We also consider the case of combining the
two weights as γp(t) = αp(t) + βp(t). Table V compares the results using both MAP and
nDCG.

The benefits of the two weighting schemes are not clearly observed on Single-27.
One reason is that the accuracy of BCM on single-predicate queries is already quite
high, therefore any significant improvement would be challenging. Recall that both
weighting schemes are designed to penalize susceptible answers instead of promoting
promising ones. Their effects tend to diminish when there are few susceptible answers
ranked at top positions, which is the case of Single-27. Nevertheless, the combined
weighting, BCM-γ , does show marginal improvement over BCM.

The result on Multi-18 is different. Both BCM-α and BCM-β achieve better MAP
than BCM, by 0.008 and 0.022, respectively. The corpus-frequency weighting (BCM-β)
appears to be more effective than maximal-support weighting (BCM-α). BCM-γ
benefits from both weighting components, achieving the highest MAP (0.788) and
nDCG (0.871). There are two main reasons for the improvement. First, the sensitivity
of Formula 2 bring more susceptible answers into top ranks in case of multipredicate
queries. Second, as discussed in Section 4.1, the maximal support (the numerator) in
BCM-α becomes effective for multipredicate queries.

6. FUTURE WORK

The distinguishing characteristic of our approach is to combine IR-style keyword con-
straints with SQL-style structured query constructs. As the initial exploratory study
along this line, our work has mainly focused on designing an accurate ranking frame-
work and building a prototype system, to demonstrates the effectiveness and promises
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of the approach. We have thus only supported basic keyword constraints in the queries.
To deploy a production query system with good usability in practice, we need to support
more advanced query features. Here we briefly enumerate several such features.

Our current definition of entity-relationship query does not support querying en-
tities by name (e.g., find entities whose names contain “Michael”) or querying re-
lationships between entities (e.g., find the relationship between BILL GATES and
MICROSOFT). It does not distinguish the subject and the object in a binary relation-
ship between two entities of the same type. It does not allow disjunctive conditions
such as x:["Stanford", "graduate"] OR x:["Berkeley", "graduate"].

Although the predicates in entity-relationship query are keyword-based, it can be
a burden for users to choose the right keywords. We are exploring two directions to
address this concern. First, query suggestion can directly help users find the proper
keywords. For example, after the user types “Stanford” for p1 of Query 1, the system
could suggest a list of keywords that commonly cooccur with “Stanford” in the corpus
or in the query log, such as “graduate,” “professor,” etc. Second, the strict keyword
matching can be relaxed by query expansion, for instance, allowing a context for p1 to
contain “alumni,” if not “graduate.” Synonym thesaurus and paraphrases mined from
the corpus may be used for this purpose. New challenges on ranking shall arise with
query expansion.

In addition to position-based features, the assessment of cooccurrence contexts can
be improved with more features such as syntactic information (e.g., part-of-speech
tags) and lexicographic information. The BCM model may be extended with new fac-
tors for these features.

7. CONCLUSION

Entity-relationship query is a structured facility to query entities over Wikipedia. It
distinguishes itself by (1) allowing multiple keyword-based predicates in a query and
(2) searching directly in corpus instead of preextracted data stores. We presented a
ranking framework for entity-relationship queries and a Bounded Cumulative Model
under this framework. Our ranking method exploits three intuitive positional features,
which are shown to be effective in the experiments. To address the sensitivity prob-
lem in our ranking model, we further studied how to detect and weight susceptible
answers. We explored two weighting schemes, both leveraging the intuition that pred-
icate scores supported with less contexts are more susceptible and should be penalized
accordingly.
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