
An Optimization Framework
for Map-Reduce Queries

Leonidas Fegaras, Chengkai Li, Upa Gupta

University of Texas at Arlington, CSE
Arlington, TX 76019

{fegaras,cli,upa.gupta}@uta.edu

ABSTRACT

We present an effective optimization framework for general SQL-
like map-reduce queries, which is based on a novel query algebra
and uses a small number of higher-order physical operators that
are directly implementable on existing map-reduce systems, such
as Hadoop. Although our framework is applicable to any SQL-like
map-reduce query language, we focus on a powerful query lan-
guage, called MRQL. Current map-reduce query languages, such
as HiveQL and PigLatin, enable users to plug-in custom map-reduce
scripts into queries for those jobs that cannot be declaratively coded
in the query language, which may result to suboptimal, error-prone,
and hard-to-maintain code. In contrast to these languages, MRQL
is expressive enough to capture most of these computations in declar-
ative form and at the same time is amenable to optimization. We
describe an optimization framework that maps the algebraic forms
derived from the MRQL queries to efficient workflows of map-
reduce operations that consist of our physical plan operators. We
also describe many algebraic optimizations, such as fusing cascad-
ing map-reduce jobs into one job and synthesizing a combine func-
tion from the reduce function of a map-reduce job. Finally, we
report on a prototype system implementation and we show some
performance results of evaluating MRQL queries on a small cluster
of computers.

1. INTRODUCTION

The map-reduce (MR) programming model [10] is a popular
framework for cloud computing that enables large-scale data analy-
sis on the cloud. It facilitates the parallel execution of ad-hoc, long-
running, large-scale data analysis tasks on a shared-nothing cluster
of commodity computers connected through a high-speed network.
Although the MR framework is used extensively by companies on
a very large scale, it is still a controversial topic within the database
community, especially when compared to parallel databases [24].
While current databases require the programmer to first model and
load the data before processing, the MR model is better suited to
one-time ad-hoc queries over write-once raw data (in situ data).
In addition, MR platforms offer better fault tolerance and the abil-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

ity to operate in heterogeneous environments, which is crucial for
cloud computing. Finally, while data indexing is very important
in attaining high performance in relational databases, it may not
be applicable to an MR environment due to the transience of data.
Many data analysis tasks need to process most of the data, in which
case indexes are not very useful, or, when parts of the data are
needed, the amortized cost of index creation/population may ex-
ceed the cost benefit of using the index. Nevertheless, there are
some recent systems that try to bridge the gap between the MR and
RDB frameworks by providing some higher-level declarative lan-
guage that makes MR programming easier (such as HiveQL [25]
and PigLatin [22]) or by extending the MR framework with index-
ing and optimizations (such as HadoopDB [1] and Manimal [18]).

The basic idea behind an MR framework is simple. For each
MR job, one needs to provide a map and a reduce task. The map
task specifies how to process a single key/value pair to generate a
set of intermediate key/value pairs while the reduce task specifies
how to merge all intermediate values associated with the same in-
termediate key. MR tasks can be arbitrary computations coded in a
general-purpose programming language. The MR framework uses
the map task to process all input key/value pairs in parallel by dis-
tributing the data among a number of nodes in a cluster (the map
workers), which execute the map task in parallel without commu-
nicating with each other. Then, the map results are repartitioned
across a number of nodes (the reduce workers) so that values asso-
ciated with the same key are grouped and processed by the same
node. Finally, each reduce worker applies the reduce task to every
group in its assigned partition. MR engines use a distributed file
system (DFS), spread across the worker nodes, to store and repli-
cate data. The entire MR computation is controlled by a designated
coordinator (the job tracker) and each node uses a task tracker to
control its own tasks.

It is well-known that standard SQL queries (simple queries that
use joins, selections, projections, group-by, having, and order-by)
can be directly coded into simple MR workflows [10], although
the choices for join implementations in MR can be quite limited
compared to relational databases. For example, the SQL query:

select v.A, sum(v.B) from R as v group by v.A

can be coded in MR using the following Java pseudo-code:

class Mapper
method map (key, v)

emit(v.A,v);

class Reducer
method reduce (key, values)

int c = 0;
for each v ∈ values do c += v.B;
emit(key,c);

where the emit method appends key/value pairs to the output stream.

That is, for each tuple v from R, the mapper emits the pair (v.A,v),
so that these pairs are grouped by the key v.A and each group is
passed to the reducer as a collection of values associated with the
same key. Then, for each group, the reducer sums up all the v.B

values and emits the final result. Although standard SQL can be
coded in MR, not all MR jobs can be coded in SQL. In fact, MR
programs over a relation R are computationally complete, since the
reducer can be a computationally complete function and we can use
a mapper that emits the same key for all tuples in R, sending all R

tuples into the same group for reduction.
Even though, in principle, the MR model is very simple to under-

stand, it is hard to develop, optimize, and maintain non-trivial MR
applications coded in a general-purpose programming language. In
addition, there are many configuration parameters to adjust for bet-
ter performance that overwhelm non-expert users. As is evident
from the success of the relational database technology, program
optimization would be more effective if data processing programs
were written in a declarative query language that hides the imple-
mentation details and is amenable to optimization. Existing MR
query languages, such as HiveQL [25] and PigLatin [22], provide a
limited syntax for operating on data collections, in the form of rela-
tional joins and group-bys. Because of these limitations, these lan-
guages enable users to plug-in custom MR scripts into their queries
for those jobs that cannot be declaratively coded in their query
language. This nullifies the benefits of using a declarative query
language and may result to suboptimal, error-prone, and hard-to-
maintain code. To appreciate what is required to capture all MR
computations declaratively in SQL-like syntax, consider a general
MR job over a single relation R that groups the tuples of R using
the map function m and then applies the reduce function r to each
group. It can be represented by the following SQL-like code:

select k, r(values)
from R as v
group by k: m(v)

This query groups the tuples v of R using the group-by key k = m(v).
After the group-by, the variable values will contain a group, that is,
all tuples associated with the same m(v) key. This query, of course,
cannot be directly coded in standard SQL but describes what ex-
actly needs to be achieved to reach MR completeness. SQL does
not allow m and r to be nested queries and does not support access
to the entire group, values, other than performing simple aggre-
gations over the group elements. Consequently, nested queries are
essential for achieving MR completeness in an MR query language.
They are also very important as they appear in many common data
analysis queries. Consider, for example, the following SQL-like
query that calculates one step of the k-means clustering algorithm
(Lloyd’s algorithm), by deriving k new centroids from the old:

select avg(s.X) as X, avg(s.Y) as Y, avg(s.Z) as Z
from Points as s

group by (select ∗ from Centroids as c order by distance(c,s))[0]

where Points is the input data set (3D points), Centroids is the cur-
rent set of centroids (k cluster centers), and distance calculates the
distance between two points. The inner query assigns the closest
centroid to a point s (where [0] returns the first tuple of an ordered
list). This query clusters the data points by their closest centroid,
and, for each cluster, a new centroid is calculated from the mean
values of its points. Most SQL implementations do not allow sub-
queries in group-by nor they allow arbitrary operations over groups
and, therefore, have insufficient expressive power to achieve MR
completeness. There are other query languages though, such as
ODMG OQL, that allow both. Finally, the query language must
support hierarchical data and nested collections uniformly, allow-

ing us to query JSON and XML data, such as the content dumps
in XML format provided by Wikipedia. This capability is far more
important for MR queries than for SQL, because, although data can
be normalized before they are stored in a relational database, raw
data must be processed as is, even if they are nested. Finally, the
query language must support recursion or transitive closure declar-
atively, to capture graph algorithms, such as PageRank.

Our framework uses a novel query language for map-reduce com-
putations, called MRQL (the Map-Reduce Query Language) [13],
that is more powerful than existing query languages, such as Hive
and PigLatin, since it can operate on more complex data, such as
nested collections and trees, and it supports more powerful query
constructs, thus eliminating the need for using explicit MR proce-
dural code. It is powerful enough to capture most commonly used
MR computations declaratively, is easy to learn, has uniform syn-
tax, is extensible, has simple semantics, and can be compiled to
efficient MR programs. It is important to note that the main contri-
bution of this paper is not in the language itself. In fact, we could
have used some other suitable language that satisfies the require-
ments listed above, such as OQL or XQuery. Instead, the contribu-
tion of our work is in the design and implementation of an effective
optimization framework for MR queries. We believe that our opti-
mizations can apply to other suitable MR query languages too.

When building an MR query optimizer, we can certainly lever-
age on the existing relational query optimization technology, espe-
cially on the techniques used in distributed databases. There are
some important differences though that make MR query optimiza-
tion challenging. First, the MR physical operators are different
from those used by RDBMSs since they have to be expressed as
MR jobs. Second, MRQL queries are far harder to optimize than
SQL queries, since they allow arbitrary query nesting and nested
collections. Third, there are some specific optimizations that apply
to MR jobs only, such as synthesizing the combine function from
a reduce function. A combine function is an optional MR task that
applies to the data generated at each map task to partially reduce
the data at the map-side before they are shuffled and shipped to the
reducers. The combine step is very effective if the reducer performs
aggregations only, because it lessens the amount of shipped data.

The first challenge faced when designing a query algebra for MR
queries is evaluating nested queries efficiently. Nested queries are
essential for achieving MR completeness in an MR query language
and they deserve special optimization techniques. We would like
to generalize relational joins to cope with arbitrary nested queries
in a way that is more suitable to an MR framework. Consider, for
example, the nested SQL query:

select ∗ from X as x
where x.D > (select sum(y.C) from Y as y where x.A=y.B)

A typical method for evaluating this query in a RDBMS is to first
group Y by y.B, yielding pairs of y.B and sum(y.C), and then to join
the result with X on y.B=x.A using a right-outer join, removing all
those matches whose x.D is below the sum. Unfortunately, this
method can be suboptimal in an MR environment because it re-
quires two MR jobs, one for the group-by and one for the join. In-
stead, this query can also be evaluated with one reduce-side join [27],
which requires only one MR job. Furthermore, although the group-
ing and aggregation are done during the reduce phase of the reduce-
side join, one can use in-mapper combining [27] to partially aggre-
gate data before reduction. This reduce-side join plan is in many
cases more efficient than the RDBMS group-by/join plan and a
good optimizer should be able to select the best based on cost. The
fundamental reason that makes it hard for a traditional RDBMS
optimizer to recognize opportunities for fusing a group-by with a
join into a reduce-side join is that relational joins were designed to

produce flat data (by concatenating the joined tuples), since this is
the only kind of data supported by the relational model. This re-
quires that a group-by must always be combined with aggregations
to produce flat data. But there is no reason for doing so for a data
model that supports nested collections. In fact, instead of concate-
nating the x and y tuples, we can nest them in a way that reflects the
query nesting. For our example, the join between X and Y can de-
liver pairs of (x,ys), such that ys is the collection of all y in Y that are
joined with an x from X. That way, the predicate can be executed di-
rectly in memory using x.D > (select sum(y.C) from ys as y), with-
out using an explicit group-by. Our work generalizes this idea to
handle arbitrary nested queries, at any place, number, and nesting
level (described in Section 6).

For an MR query language to be useful, in addition to its expres-
sive power, it must run efficiently on a given MR platform and it
should consume resources at a rate comparable to procedural code
written by experts. Failure to do so would divert programmers from
using this query language, who will choose to sacrifice declarative-
ness for efficiency. Consider for example the popular PageRank al-
gorithm that measures the relative importance of nodes in a graph.
Efficient implementations of PageRank on an MR platform have
been extensively investigated in the literature [20]. These methods
use various tricks to improve performance, such as propagating the
entire graph at each iteration step to avoid recovering the graph
using a join. In general, these methods require a single MR job
at each iteration step. PageRank can be expressed in SQL as fol-
lows. The graph is represented as a set of links, where each link has
a source and a destination dest, but also repeats some information
about the source: the total number of its outgoing links count and its
PageRank rank (which is improved at each iteration). A simplified
version of the PageRank algorithm can be expressed as a repetition
of the following SQL query that derives a new set of edges from
the old set, changing only their rank (the complete query expressed
in MRQL is given in Figure 4 in Section 7):

select m.source, m.dest, m.count, c.rank
from (select n.dest, sum(n.rank/n.count) as rank

from Graph as n
group by n.dest) as c,

Graph as m
where m.source = c.dest

That is, the inner query reverses the graph by grouping the links
by their link destination and it equally distributes the rank of the
link sources to their destination. The outer select-query recovers
the graph by joining the new rank contributions with the original
graph so that it can be used in the next iteration step. This query, if
evaluated naively, requires two MR jobs: one MR job to group the
nodes by their destination (inner query), and one MR job to join
the rank contributions with the nodes (outer query). Our system
translates this query to one MR job by using the following two
algebraic laws (these rules are described in detail in Section 6.4):

1. A group-by before a join can be fused with the join if the
group-by attribute is the same as the corresponding join at-
tribute. The resulting reduce-side join nests the data during
the join, thus incorporating the group-by effects.

2. A reduce-side self-join (which joins a dataset with itself) can
be simplified to an MR job that traverses the dataset once. In
essence, the map function of this MR job sends each input
element to the reducers twice under different keys: under the
left and under the right join keys.

That is, the group-by operation in this query can be fused with the
join, based on the first rule, deriving a self-join, which, in turn,

can be simplified to a single MR job, based on the second rule.
These algebraic optimizations capture the essence of the ad-hoc
techniques used by programmers to improve their PageRank MR
jobs. These and other algebraic laws can only be expressed and
validated if MR jobs, reduce-side joins, and other MR operations,
are expressed in a suitable formal algebra with precise semantics.

In summary, the key contribution of this work is in the design
and implementation of an effective optimization framework for MR
query languages that has the following characteristics:

• It provides a small but powerful set of physical plan opera-
tors that are directly implementable on existing map-reduce
systems, such as Hadoop. It also gives the precise seman-
tics of these physical operators and their implementation in
Hadoop.

• It defines an MR algebra with precise semantics, which con-
sists of a small number of higher-order operators that are
powerful enough to capture all MRQL language constructs.
The most important algebraic operator is the join operation
that generalizes the relational join by incorporating data group-
ing into the join. This join can nest the join results in such a
way that nested queries can be evaluated without the need of
additional group-by operations.

• It uses novel optimization techniques to translate MRQL
queries to algebraic forms and to map these algebraic forms
to efficient workflows of physical plan operations. It pro-
vides many algebraic optimizations, such as fusing cascad-
ing MR jobs into a single job and synthesizing a combine
function from the reduce function of an MR job.

• It uses a cost-based heuristic optimizer to derive an efficient
physical plan from a query graph. Currently, our cost model
is incomplete as it takes into account the input dataset sizes
and the available resources but, due to lack of statistics, it
assumes constant predicate selectivities.

• Finally, it is implemented on top of Hadoop, without requir-
ing any change to the system. It can process complex MRQL
queries over XML, JSON, binary, and record-oriented text
documents.

The rest of this paper is organized as follows. Section 2 compares
our approach with related work. Section 3 describes the syntax of
MRQL and gives some examples of queries. Section 4 describes
our physical plan operators and Section 5 describes our algebra.
Section 6 describes our methods for translating MRQL to physical
plans and for optimizing these plans. Finally, Section 7 reports on
a prototype implementation of MRQL using Hadoop and evaluates
the performance of PageRank queries on a small cluster.

2. RELATED WORK
The map-reduce (MR) model was first introduced by Google

in 2004 [10]. Several large organizations have implemented this
model, including Apache Hadoop [27] and Pig [22], Apache/Face-
book Hive [25], Google Sawzall [23], and Microsoft Dryad [16].
The most popular MR implementation is Hadoop [15], an open-
source project developed by Apache, which is used today by Ya-
hoo! and many other companies to perform data analysis. There
are also a number of higher-level languages that make MR pro-
gramming easier, such as HiveQL [25], PigLatin [22], SCOPE [8],
and Dryad/Linq [17]. There are several join algorithms for the MR
framework, such as reduce- and map-side joins [20, 27].

Hive [25, 26] is an open-source project by Facebook that pro-
vides a logical RDBMS environment on top of the MR engine,
well-suited for data warehousing. Using its high-level query lan-
guage, HiveQL, users can write declarative queries, which are opti-
mized and translated into MR jobs that are executed using Hadoop.
HiveQL does not handle nested collections uniformly: it uses SQL-
like syntax for querying data sets but uses vector indexing for nested
collections. Unlike MRQL, HiveQL has many limitations (it is
a small subset of SQL). It does not allow query nesting in pred-
icates and select expressions, but allows a table reference in the
from-part of a query to be the result of a select-query. Because
of these limitations, HiveQL enables users to plug-in custom MR
scripts into queries. Although Hive uses simple rule-based opti-
mizations to translate queries, it has yet to provide a comprehen-
sive framework for cost-based optimizations. Yahoo!’s Pig [14]
resembles Hive as it provides a user-friendly query-like language,
called PigLatin [22], on top of MR, which allows explicit filter-
ing, map, join, and group-by operations. Like Hive, PigLatin per-
forms very few optimizations based on simple rule transformations.
PACT/Nephele [3] is an MR programming framework based on
workflows, where each workflow component can be a map or re-
duce. These workflows are converted to logical execution plans
for Nephele, a general distributed program execution engine. Even
though PACT/Nephele workflow programs are very flexible and
are not limited to rigid map/reduce pairs, they are hard to pro-
gram, since programmers have to construct low-level workflows.
SCOPE [8], an SQL-like scripting language for large-scale analy-
sis, does not support sub-queries but provides syntax to simulate
sub-queries using outer-joins. Like Hive, because of its limitations,
SCOPE provides syntax for user-defined process/reduce/combine
operations to capture explicit MR computations.

HadoopDB [1] adopts a hybrid scheme between MR and parallel
databases to gain the benefit of both systems. Although, HadoopDB
uses Hive as the user interface layer, instead of storing table tuples
in DFS, it stores them in independent DBMSs in each physical node
in the cluster. That way, it increases the speed of overall process-
ing as it pushes many database operations into the DBMS directly,
and, on the other hand, it inherits the benefits of high scalability
and high fault-tolerance from the MR framework. Hadoop++ [11]
decomposes each MR computation into an execution plan and then
transforms it to take advantage of possible indexes attached to data
splits. It does not provide a framework for recognizing joins and
filtering in general MR programs, to take advantage of the indexes.
Manimal [7, 18] analyzes the MR code to find opportunities for
using B+-tree indexes, projections, and data compression.

Finally, the Asterix project [4] shares some of our goals but it
has a broader scope and has far more ambitious plans. It proposes
a scalable platform to store, manage, and analyze large volumes of
semistructured data. Unlike our approach, instead of using an ex-
isting distributed file system combined with a parallel processing
framework, such as Hadoop, Asterix uses its own distributed data
store, called Hyracks [5]. Hyracks was designed from the ground-
up to directly support the parallel algorithms needed for evaluating
complex declarative queries and at the same time to offer scalabil-
ity, reliability, and availability. There are plans to develop a cost-
based optimizer for the Asterix query language, which is influenced
by XQuery, but, as far as we know, there is no comprehensive query
optimization framework developed yet.

3. THE MRQL MODEL AND LANGUAGE
In this section, we briefly overview the MRQL data model and

query language. Due to lack of space, we left this description in-
complete since the focus of this paper is not on the language it-

self, but on a comprehensive query optimization framework that
can optimize map-reduce query languages like this. The complete
description of MRQL can be found at the project web page [21].

We assume that the input data sources are raw text or binary
files. The MRQL expression that makes a directory of raw files
accessible to a query is:

source(parser, uri, ...)

where uri is the URI of the directory that contains the files, parser

is the name of a function that parses enough bytes from a file to
construct a single fragment, and ‘...’ are parser-specific parameters.
The parser must be stateful so that consecutive calls to the parser
return consecutive fragments from the files. We have experimented
with three different parsers: an XML parser, a JSON parser, and
a line-based parser that generates one relational record from each
input line containing values separated by a user-defined delimiter.
For brevity, from now on, we will use names for data sources, in-
stead of source calls.

The MRQL query syntax has been influenced by ODMG OQL,
the OODB query language developed in the 90’s, while its se-
mantics has been inspired by the work in the functional program-
ming community on list comprehensions with group-bys and order-
bys [19]. In its simplest form, the select-query syntax in MRQL is
as follows:

select [distinct] e
from p1 in e1, . . . , pn in en
[where ec]
[group by p′: e′ [having eh]]
[order by eo [limit n]]

where all these e’s are arbitrary MRQL expressions, which may
contain other nested select-queries. MRQL handles a number of
collection types, such as lists (sequences), bags (multisets), and
key/value maps. The difference between a list and a bag is that a
list supports order-based operations, such as indexing. An MRQL
query works on collections of values, which are treated as bags by
the query, and returns a new collection of values. If it as an order-by
query, the result is a list, otherwise, it is a bag. Treating collections
as bags is crucial to our framework because it allows the queries
to be compiled to MR programs, which need to shuffle and sort the
data before reduction, and enables the use of joins for query evalua-
tion. The from part of an MRQL syntax contains query bindings of
the form ‘p in e’, where p is a pattern and e is an MRQL expression
that returns a collection. The pattern p matches each element in the
collection e, binding its pattern variables to the corresponding val-
ues in the element. In other words, this query binding specifies
an iteration over the collection e, one element at a time, causing
the pattern p to be matched with the current collection element. In
general, a pattern can be a pattern variable that matches any data,
a tuple (p1, . . . , pn) or a record <A1 : p1, . . . , An : pn> that
contains patterns pi.

For example, the following query:

select (n,cn)
from < name: n, children: cs > in Employees,

< name: cn > in cs

iterates over Employees, and for each employee record, it matches
the record with the pattern <name: n, children: cs>, which binds the
variables n and cs to the record components name and children,
respectively, and ignores the rest. Without patterns, this query is
equivalent to:

select (e.name,c.name)
from e in Employees, c in e.children

This is a dependent join because the domain of the query variable
c depends on e.

The group-by syntax of an MRQL query takes the form group by

p′: e′ to partition the query results into groups so that the members
of each group have the same value e′. The pattern p′ is bound to the
group-by value, which is common across each group. As a result,
the group-by operation lifts all non-group-by pattern variables (de-
fined in the from-part of the query) from some type T to a bag of
T , indicating that each such variable must contain multiple values,
one for each member of the group. For example, the query

select (d, c, sum(s))
from <dno:dn,salary:s> in Employees
group by (d,c): (dn, s>=100000)

groups Employees by dno and by whether their salary is greater
than 100K. The variables d and c in the query header are directly ac-
cessible since they are group-by variables. The variable s in sum(s),
on the other hand, is lifted to a bag of integers, which contains the
salaries of employees in a group. In contrast to SQL, the function
sum does not require a special semantics; it is simply a user-defined
function from a bag of integers to an integer. Finally, the ‘order by’
syntax orders the result of a query (after the optional group-by) by
the e0 values. (There is a default total order ≤ defined for all data
types, including tuples and bags.)

Graph algorithms, such as PageRank, require repetitive applica-
tions of MR jobs, that can be expressed as transitive closures or
recursion. In MRQL, a repetition takes the form:

repeat v = e step body [limit n]

where v is the repetition variable. The type of e must be a bag(T),
for some type T , and the type of body must be bag((T ,bool)). This
expression first binds v to the value of e and then it evaluates the
body repeatedly and assigns a new value to v from the previous
value, which is derived from the first components of the pairs re-
turned by body. It stops if either the number of repetitions becomes
n or when all the booleans returned by body are false. Figure 4 in
Section 7 shows a PageRank query that uses repetition.

4. THE MRQL PHYSICAL OPERATORS
The main goal of this paper is to translate MRQL queries to effi-

cient workflows of MR jobs. In addition to the generic MR opera-
tion, which can be parameterized with a map and a reduce function,
we would like to design a number of specialized computations that
can perform some operations needed by MRQL queries, such as
equi-joins. That is, we would like to design a number of physical
evaluation operators that explicitly capture the MRQL functionality
and are directly implementable on any existing MR environment,
such as Hadoop.

The MRQL physical operators form an algebra over the domain
DataSet(T), which is equivalent to the type bag(T). This domain is
associated with a source list, where each source consists of a file
or directory name in DFS, along with an input format that allows
to retrieve T elements (data fragments) from the data source in a
stream-like fashion. The input format used for caching the inter-
mediate results in the DFS is a sequence file (a binary file) that
contains the data in serialized form. The MRQL expression source

returns a single source of type DataSet(T). The rest of the physi-
cal operators process data fragments using MR jobs, regardless of
the fragment format. Each MR operation though is parameterized
by functions that are particular to the data format being processed.
The code of these functional parameters is evaluated in memory (at
each task worker), and therefore can be expressed in some algebra
suitable for in-memory evaluation. Our focus here is on the MR
physical operations, which are novel, rather than on a bag algebra
for nested collections, which has been addressed by earlier work.

The following are the most important physical operators used by
MRQL.

4.1 The MapReduce Operation
The most important physical operation in our framework is

‘MapReduce(m, r)S’, which specifies a map-reduce job. It trans-
forms a DataSet S of type bag(α) into a DataSet of type bag(β)

using a map function m and a reduce function r with types:

m : α → bag((κ, γ))
r : (κ, bag(γ)) → bag(β)

for the arbitrary types α, β, γ, and κ. The map function m trans-
forms values of type α from the input dataset into a bag of inter-
mediate key/value pairs of type bag((κ,γ)). The reduce function r

merges all intermediate pairs associated with the same key of type
κ and produces a bag of values of type β, which are incorporated
into the MapReduce result. More specifically, MapReduce(m, r)S
is equivalent to the following MRQL query:

select w
from z in (select r(key,y)

from x in S ,
(k,y) in m(x)

group by key: k),
w in z

That is, we apply m to each value x in S to retrieve a bag of (k,y)

pairs. This bag is grouped by the key k, which lifts the variable y

to a bag of values. Since each call to r generates a bag of values,
the inner select creates a bag of bags, which is flattened out by
the outer select query. This equivalence proves a very important
point, which was one of our goals: there is no need to include a
special MR operation in MRQL, since any MR computation can
be expressed as a query, as long as the query language supports
dependent joins, nested queries, and user-defined functions.

An example of a MapReduce computation is:

MapReduce(λx. if x.B > 5 then {(x.A,x)} else { },
λ(key,s). {count(s)}) X

where an anonymous function λx.e specifies a unary function (a
lambda abstraction) f such that f(x) = e, while an anonymous
function λ(x, y).e specifies a binary function f such that f(x, y) =
e. This MapReduce computation is equivalent to the MRQL query:

select count(x)
from (k,x) in X

where x.B > 5
group by key: x.A

A straightforward implementation of MapReduce(m, r)S in a
MR platform, such as Hadoop, is the following pseudo-code:

class Mapper
method map (key, value)

for each (k, v) ∈ m(value) do emit(k, v);

class Reducer
method reduce (key, values)

B ← ∅;
for each w ∈ values do B ← B ∪ {w};
for each v ∈ r(key,B) do emit(key,v);

The actual implementation of MapReduce in MRQL is stream-
based, which does not materialize the intermediate bag B in the
reduce code (the cases where streaming is enabled are detected stat-
ically by analyzing the reduce function).

Given that the physical domain DataSet(T) is equivalent to the
type bag(T), the semantics of MapReduce can be given by the fol-
lowing equation:

MapReduce(m,r)S = cmap(r) (groupBy(cmap(m)S)) (1)

where cmap and groupBy are defined as follows: Given two ar-
bitrary types α and β, the cmap(f) s operation (also known as
concat-map or flatten-map in functional programming languages)
applies the function f of type α→ bag(β) to each element of the
input bag s of type bag(α) and collects the results to form a bag of
type bag(β). In a way, cmap generalizes the unnest operator of the
nested relational algebra. Using MRQL, cmap(f) s is equivalent to
the dependent join:

select y from x in s , y in f (x)

Given two types κ and α, for an input bag of pairs s of type bag(
(κ, α)), the groupBy(s) operation groups the elements of s by the
key of type κ to form a bag of type bag((κ, bag(α))). That is,
using MRQL, groupBy(s) is equivalent to:

select (key,v) from (k,v) in s group by key: k

For example, groupBy({ (1,“A”), (2,“B”), (1,“C”) }) returns the
bag { (1,{“A”,“C”}), (2,{“B”}) }.

An important variation of MapReduce is the ‘Map(m)S’ opera-
tion, which is equivalent to MapReduce without the reduce phase.
That is, given a map function m of type α→ bag(β), the opera-
tion Map(m)S transforms a bag(α) into a bag(β). Its semantics is:
Map(m)S = cmap(m)S.

‘MapCombineReduce(m, c, r)S’ is a more efficient variation of
MapReduce that includes the combine function c of type
(κ, bag(γ)) → bag((κ, γ)). The Hadoop implementation of this
operation (optionally) applies the combine function to the data gen-
erated at each map task, thus partially reducing the data at the
map-side before they are shuffled and shipped to the reducers. The
combine step is very effective if the reducer performs aggregations
only. Section 6.5 describes a method to automatically synthesize
the combine function from the reduce function, when the latter uses
aggregations only.

4.2 Reduce-Side Join
To join data from multiple data sources, our framework supports

various physical join operators. The best known join algorithm in
an MR environment is the reduce-side join [27], also known as
partitioned join or COGROUP in Pig [14]. It mixes the tuples of
two input data sets X and Y at the map side, groups the tuples by
the join key, and performs a cross product between the tuples from
X and Y that correspond to the same join key at the reduce side.
In our framework, the reduce-side join takes the form:

MapReduce2(mx,my, r)(X,Y)

It joins the DataSet X of type bag(α) with the DataSet Y of type
bag(β) to form a DataSet of type bag(γ). The functional parameters
to MapReduce2 have the following types:

mx : α → bag((κ, α′))
my : β → bag((κ, β′))
r : (bag(α′), bag(β′)) → bag(γ)

where κ is the join key type. This join can be expressed as follows
in MRQL:

select w
from z in (select r(x’,y’)

from x in X , y in Y ,
(kx,x’) in mx (x),
(ky,y’) in my (y)

where kx = ky
group by k: kx),

w in z

It applies the map functions mx and my to the elements x ∈ Y and
y ∈ Y , respectively, which perform two tasks: they transform the

elements into x’ and y’ and extract the join keys, kx and ky. Then,
the transformed X and Y elements are joined together based on
their join keys. Finally, the group-by lifts the transformed elements
x’ and y’ to bags of values with the same join key kx=ky and passes
these bags to r.

For example, the following MRQL equi-join query:

select (x, y)
from x in X, y in Y

where x.A=y.B

can be expressed as a reduce-side join as follows:

MapReduce2(λx. {(x.A, x)},
λy. {(y.B, y)},
λ(xs,ys). xs×ys) (X, Y)

where xs×ys is the cross product between the xs and ys tuples,
which are the tuples of X and Y that have the same join key values.

An implementation of MapReduce2(mx, my, r)(X,Y) in a map-
reduce platform is shown by the following Java pseudo-code:

class Mapper1
method map(key,value)

for each (k, v) ∈ mx(value) do emit(k, (0, v));

class Mapper2
method map(key,value)

for each (k, v) ∈ my(value) do emit(k, (1, v));

class Reducer
method reduce(key,values)

xs← { v | (n, v) ∈ values, n = 0 } ;
ys← { v | (n, v) ∈ values, n = 1 } ;
for each v ∈ r(xs, ys) do emit(key, v);

That is, we need to specify two mappers, each one operating on a
different data set, X or Y . The two mappers apply the join map
functions mx and my to the X and Y values, respectively, and tag
each resulting value with a unique source id (0 and 1, respectively).
Then, the reducer, which receives the values from both X and Y
grouped by their join keys, separates the X from the Y values based
on their source id, and applies the function r to the two resulting
value bags. The actual implementation of MapReduce2 in MRQL
is asymmetric, requiring only ys to be cached in memory, while xs
is often processed in a stream-like fashion. (Such cases are detected
statically, as is done for MapReduce.)

4.3 Fragment-Replicate Join
An alternative implementation of a join is the fragment-replicate

join (also known as memory-backed join [20]), where the entire
data set Y is cached in the distributed file system and each map
worker performs the join between each value of X and the entire
cached data set Y . This join is effective if Y is small enough to fit
in the mapper’s memory. In our framework, the fragment-replicate
join takes the form:

MJoin(kx, ky, r)(X,Y)

It joins the DataSet X of type bag(α) with the DataSet Y of type
bag(β) to form a DataSet of type bag(γ). Its functional parameters
have the following types:

kx : α → κ ky : β → κ

r : (α, bag(β)) → bag(γ)

where κ is the join key type. This join can be expressed as follows
in MRQL:

select z
from x in X ,

z in r(x, select y from y in Y where ky(y)=kx(x))

Our implementation of MJoin is a single map job (an MR job with-
out a reduce phase). More specifically, at the beginning of an
MJoin job, our system distributes the entire data set Y to every
map worker via the DFS (using the Hadoop distributed cache). The
actual map task is over the data set X . At the beginning of the map
process, each worker reads Y from the distributed cache and builds
a hash table H in memory that maps Y keys to Y values:

for each y ∈ Y do insert y into H[ky(y)]

The map function, which is over the X values, probes the hash
table to retrieve all joining values from Y :

class Mapper
method map(key,value)

for each v ∈ r(value,H[kx(value)]) do emit(key,v);

4.4 Other Physical Operations
Cross-products and θ-joins are evaluated in MRQL using a dis-

tributed block-nested loop ‘Cross(mx, my, r)(X,Y)’, which joins
the DataSet X of type bag(α) with the DataSet Y of type bag(β) to
form a DataSet of type bag(γ). Its functional parameters have the
following types:

mx : α → bag(α′) my : β → bag(β′)
r : (α′, β′) → bag(γ)

Like MJoin, it distributes the entire DataSet Y to all map workers
and performs a block-nested loop at each mapper. That is, the map
task is over X and each mapper reads from its data split enough
tuples to fill a buffer, and, when the buffer is full, it scans Y and
performs the join.

Finally, the physical operation Repeat(f)S, which implements
the MRQL repeat, transforms a DataSet S of type bag(α) to a
bag(α) by applying the function f of type bag(α) → bag((α,bool))

repeatedly, starting from S, until all returned boolean values are
false. In contrast to the functional arguments of the other phys-
ical operators, function f consists of physical operators since it is
applied to a DataSet. Our implementation of Repeat in Hadoop
does not require any additional MR job (other than those embed-
ded in the function f) as it uses a user-defined Java counter to count
the true values resulting from the outermost physical operator in f .
These counts are accumulated across all Hadoop tasks assigned to
this outermost operator. The Repeat operator repeats the f work-
flow until the counter becomes zero.

5. THE QUERY ALGEBRA
The main goal of our work is to translate MRQL queries to an

efficient workflow made out of our physical MR operators. Expe-
rience with the relational database technology has shown that this
translation can be accomplished if we first translate the queries to
an algebraic form that is equivalent to the query and then translate
and optimize the algebraic form to a physical plan consisting of our
physical MR operators.

Our main algebraic operations are cmap and groupBy, whose se-
mantics has been given in Section 4.1. In that section, we also ex-
pressed the MapReduce operation in terms of cmap and groupBy.
MRQL queries too can be translated to cmap and groupBy opera-
tions. For example, the query:

select (d.name, sum(select e.salary
from e in Employees

where e.dno=d.dno))
from d in Departments

can be translated to:

cmap(λd. {(d.name, sum(cmap(λe. if e.dno=d.dno
then {e.salary}
else { })

Employees))})
Departments

This expression resembles a nested-loop evaluation, which may be
inefficient when executed in an MR environment. We are interested
in translating MRQL queries to our physical join operations, such
as the reduce-side join. Consequently, it is important to introduce
an algebraic operator for joins:

join(kx, ky , r)(X,Y)

This join is a restricted version of the reduce-side join, because it
uses the key functions kx and ky to extract the join keys, instead of
the general map functions mx and my that transform the values, in
addition to extracting the keys. Its functional parameters have the
following types:

kx : α → κ ky : β → κ
r : (bag(α), bag(β)) → bag(γ)

The semantics of this join is the following:

cmap(λ(k,s). r(cmap(λ(n,x,y). ifn = 1 then {x} else {})s,
cmap(λ(n,x,y). ifn = 2 then {y} else {})s))U

where U mixes elements from both X and Y :

U = groupBy(cmap(λx.{(kx(x), (1, x, null))})X
∪ cmap(λy.{(ky(y), (2, null, y))})Y)

That is, X elements are tagged with 1 while Y elements are tagged
with 2. Then, U unions together these elements and applies groupBy

to mix elements from both X and Y into groups (under the group-
by functions kx and ky , respectively). Then, the semantics of join
is a cmap that traverses U one-group-at-a-time, splits each group
into two bags: one with the X elements and another with the Y
elements in the group, and applies the function r to these bags.

Using this join operation, we want to translate the previous query
to the algebraic form:

join(λd. d.dno,
λe. e.dno,
λ(ds,es). cmap(λd. {(d.name,

sum(cmap(λe. {e.salary}) es))})
ds)

(Departments, Employees)

where the third function in the join computes an in-memory cross
product between ds, which contains departments (zero or one de-
partments in this case) and es, which contains employees that are
associated to the same join key (dno).

Translating MRQL queries to good plans of physical join and
MapReduce operations is the most challenging task addressed by
this paper. The next section overviews our methodology for query
optimization.

6. THE OPTIMIZATION FRAMEWORK
Given an MRQL query, our goal is to find a good plan to evalu-

ate this query, in terms of our physical operators. Current database
technology has already addressed this problem in the context of re-
lational databases. MRQL though is far more complex than SQL,
requiring more powerful optimization techniques that are better
suited for an MR framework. Our framework derives a plan to
evaluate an MRQL query by performing the following steps:

1. Simplify the query (Section 6.1).

2. Construct the query graph (Section 6.2).

3. Derive an algebraic form from the query graph (Section 6.3).

4. Map the algebraic form to an evaluation plan and improve it
using algebraic optimizations (Section 6.4).

5. Synthesize MR combine functions from the MR reduce func-
tions (Section 6.5).

6.1 Simplifying the Query
This step simplifies an MRQL query by compiling the group-by

parts of the query to groupBy calls, by compiling away the patterns
from the query, by simplifying the query, and by eliminating some
forms of query nesting. The first task is to eliminate group-bys
from MRQL queries. The query

select e from p1 in e1, . . . , pn in en where ec
group by p′: e′ having eh

gives the same result as the query:

select e
from (p′,group) in (groupBy (select (e′, (p1, . . . , pn))

from p1 in e1, . . . , pn in en
where ec)),

· · ·
xi in { select xi from (p1, . . . , pn) in group },
· · ·

where eh

where xi is a pattern variable in one of the p1, . . . , pn patterns.
That is, the inner query constructs a bag of pairs (k, v) where k is
the group-by value e′ and v contains the pattern values from the
from-part of the original query. This bag is fed to the groupBy,
which groups it by the k value. Then, the outer query iterates over
the groups, binding each time the group-by pattern p′ and the spe-
cial variable, group, which holds the grouped elements. The next
bindings in the outer query redefine the pattern variables xi to be
bags of elements. For example, the group-by query:

select (d,c,sum(s))
from < dno: dn, salary: s > in Employees
group by (d,c): (dn, s>=100000)

is equivalent to the query:

select (d,c,sum(s))
from ((d,c),group)

in (groupBy(select ((dn,s>=100000), <dno:dn,salary:s>)
from <dno:dn,salary:s> in Employees)),

dn in { select dn from <dno:dn,salary:s> in group },
s in { select s from <dno:dn,salary:s> in group }

which can be simplified to:

select (d,c,sum(select s from <dno:dn,salary:s> in group))
from ((d,c),group)

in (groupBy(select ((dn,s>=100000), <dno:dn,salary:s>)
from <dno:dn,salary:s> in Employees))

The pattern removal is done by assigning a fresh variable to a
top-level pattern and by expressing the pattern variables in terms
of the new variable. Query simplification is done by rewrite rules,
such as when a field selection is applied to a record construction,
it is normalized to the selected record component. One example
of query unnesting is when the inner query does not depend on the
outer query, in which case it can be pulled out from the outer query.
Another example of query unnesting is the case when the domain
of a binding is a simple MRQL select query. For instance,

select f (x,y)
from x in X, y in (select z+1 from z in Z where x.A=z.A)

can be simplified to

select f (x,y)
from x in X, z in Z, y in {z+1}

where x.A=z.A

That is, we unroll the inner query inside the outer query by embed-
ding the bindings of the inner query inside the outer bindings and
by binding the query variable to the inner query result.

6.2 Constructing the Query Graph
Our approach for optimizing general MRQL queries is capable

of handling deeply nested queries, of any form and at any nesting
level, and of converting them to join plans. It can also handle de-
pendent joins, which are used when traversing nested collections.

Consider, for example, the nested query:

select f (x, select y in Y where x.A=y.B)
from x in X

A typical method for handling this nested query in a RDBMS is to
form the left-outer join between X and Y and then to group the result
by the X key, applying the function f to x and to the corresponding
group. This method may be suboptimal in an MR environment
because it would require two MR jobs: one for the join and one for
the group-by. Instead, it can be expressed in our algebra using just
one MR job:

join(λx. x.A, λy. y.B, λ(xs,ys). cmap(λx. {f(x,ys)}) xs) (X, Y)

Our approach to handling query nesting is to split an MRQL
query into two parts: 1) the query graph, which is translated to
joins and unnests (cmaps) to process the input data and to group
these data so that all the data in a group satisfy the join conditions,
and 2) the query header, which processes the constructed grouped
data and returns the query result. We describe this method using an
example of a triple-nested MRQL query:

select f (select h(z) from z in Z where z.B=x.B)
from x in X, y in x.D
where x.A=y.A
and p(select q(w,n)

from w in W,
n in g(select w.M+k.N from k in K

where k.G=y.G)
where w.C=y.C and c(select m.F from m in w.E))

where the calls to f, h, p, q, g, and c actually indicate some arbitrary
MRQL code (it does not matter what code it is as long as it does
not depend on the query variables in a way other than the arguments
shown). We can see that there are 7 query variables bound in the
5 select-expressions in the query: x, y, z, w, n, m, and k. There is
no reason to construct an evaluation plan that produces a flat tuple
(x,y,z,w,n,m,k) for each combination of the values of these variables
that satisfies the join conditions, as is done in relational databases,
because then we would have to group-by this stream to reflect the
query nesting and to form the query answer, as it was done for the
previous nested query. Instead, we want to construct an evaluation
plan that delivers the data in a stream of tuples already grouped into
the form (x, y, {z}, {(w, n, {m})}), which reflects the query nesting
directly and satisfies all the join conditions in the query. That is,
each combination of x and z from the set {z} in such a tuple satisfies
z.B=x.B, each y is from the set x.D and satisfies x.A=y.A, etc. Note
that we should not include the variable k in the tuple because the
domain of n is an expression that contains a select-query and has to
be evaluated completely before we derive values for n. This special
query domain that contains a select-query is called a nested domain

query, and must be treated specially, as we will show next. The
shape of the grouped variable values is described by a tree, called
the query pattern tree, which is a kind of data type. Our framework
uses one query pattern tree for each nested domain query, plus one

mw

y

x

z
C

C

A

A

B

B

n

k

G

G

B

x y zs ws

z w n ms ks

km

level 2

level 3

level 1

level 0

A

s C

µ µ

W

ZX

my

µ

K

n

Figure 1: The pattern trees (A), the query graph (B), and the query plan (C) of the example query

for each outer query. Thus, for the example query, there are two
query pattern trees, one for the nested domain query of n and an-
other for the entire query itself. These trees, which are depicted in
Figure 1.A, are s(x,y,zs(z),ws(w,n,ms(m))) and ks(k) in prefix form.
Each internal node in the pattern tree is associated with a select-
query. For example, the root s is associated with the outermost
select-query. If internal nodes are taken to be sets of tuples, then
the query pattern tree describes the required nesting of query vari-
ables concisely. If the input data is grouped in a way that reflects
the query pattern tree, resulting to a set s (the root of the pattern
tree), then the query can be evaluated over s using the function:

header(s) = select f (select h(z) from z in zs)
from (x,y,zs,ws) in s

where p(select g(w,n)
from (w,ms) in ws
where c(select m.F from m in ms))

which is called the query header. The query header is derived
from the query by associating a new query variable to each select-
expression in the query, by removing all the join and filter pred-
icates, and by replacing the from-part of each select-expression
with a single binding that uses a tuple pattern to bind the from-part
variables and the query variables of the immediate nested select-
expressions. These bindings correspond to the nodes of the query
pattern tree. They ungroup the grouped values in s, feeding the
variable values to the appropriate nested queries.

For the second pattern tree, which corresponds to the nested do-
main query for the variable n, the query header is:

header2(ks,w) = g(select w.M+k.N from k in ks)

The next task is to generate the grouped values from the input
data. The grouped data fed to the query header are generated by
a join/unnest plan, which is derived from the query graph. The
query graph represents all potential joins and unnests in the query
concisely. We say that a variable v, defined by a binding v in e, de-
pends on a variable w, if e refers to the variable w. The query graph
is a graph whose nodes are query variables, the arrows are the vari-
able dependencies, and the edges between the nodes v and w are
equi-join conditions of the form f(v) = g(w), where f(v)/g(w)
are expressions that depend on v/w. For our example query, the
query graph is shown at Figure 1.B.

6.3 Deriving an Algebraic Form
The next step is to derive an evaluation plan from the query

graph, as the one shown at Figure 1.C for the graph in Figure 1.B,
where ⊲⊳ is our algebraic join operator and µ is our cmap opera-
tor. The evaluation plan must deliver the data to the query header in
groups that satisfy the join conditions and match the query pattern
tree s(x,y,zs(z),ws(w,n,ms(m))) .

To synthesize a good plan from the query graph to evaluate the
query, we use a polynomial heuristic algorithm, which we first in-
troduced in the context of relational queries [12], but adapted here
to work with nested queries and dependent joins. It is a greedy
bottom-up algorithm, similar to Kruskal’s minimum spanning tree
algorithm.

This algorithm assumes that we know all the input sizes and the
predicate selectivities in advance. If the graph reduction is done in-
crementally at run-time, by immediately executing the chosen oper-
ation from the query graph, then the sizes of the input data sources,
as well as the sizes of the intermediate results, can be derived from
the file system. The predicate selectivities though, which allow us
to select the next graph reduction step and choose the best opera-
tion, can only be estimated using statistics. In our current system,
which has an incomplete cost model, we set the selectivities to con-
stants.

Every node in the graph (which corresponds to a query variable)
is assigned an estimated size, which is the size of the variable do-
main, and every edge (an equi-join predicate) is assigned an esti-
mated selectivity. Each graph node may also be associated with
a number of attributes, such as a filtering condition and a sort or-
der. More specifically, each node i in the graph is associated with
a query variable vi and a domain ri. Each node i is labeled with
the size of ri, the physical algorithm used to derive ri, and other
attributes associated with ri. Each edge between i and j is labeled
with the selectivity Sij of the join predicate between i and j. The
graph algorithm constructs the physical operator tree by merging
graph nodes in pairs, as shown in Figure 2.A. At each step of the
algorithm, we select two nodes i and j that do not depend on other
nodes and have a minimum cost, and we merge them into a new
node ij. The estimated cost to consider when we choose a pair of
nodes depends on the join algorithm used, the sizes size(ri) and
size(rj), the selectivity Sij , and the various attributes. The new
size of ij is size(ri) × size(rj) × Sij and its operator is ri ⊲⊳ rj ,
where ⊲⊳ is annotated with the actual physical join algorithm with
the least cost. In addition, for each node k connected to both i and
j, the weight of the edge between k and ij becomes Sik × Sjk.
Another graph simplification step to consider is depicted in Fig-
ure 2.B. It applies when a node j depends on one or more nodes
i, which in turn should not depend on any variables. Then, j is
merged with all these nodes i and the resulting node is associated
with a cmap. We continue this process until we are left with only
one node, which contains the final physical plan.

At each graph reduction step, when a new plan operator (a join or
a cmap) is assigned to the new node, the reduce function of this op-
erator must be derived. The reduce function is composed in such a
way that the plan operator takes a step towards grouping the data in
the way specified by the final query pattern tree, that is, so that it de-
livers the data to the query header in groups that satisfy the join con-

k

m

k

m

µ j

i

j

BA

Sij

Sik Sjk
Sik Sjk

rk

ri rj

rk

ri rj

Sij

i jsize(r)i size(r)j Sij**size(r) size(r)i j

i j
Sij**size(r) size(r)i j

size(r)i

size(r)j

i j

*

k size(r)k size(r)k k

Figure 2: The Query Graph Simplification Steps: A) generate a join or B) generate an unnest

ditions and match the query pattern tree s(x,y,zs(z),ws(w,n,ms(m))) .
For example, the X ⊲⊳ Z in the query plan in Figure 1.C is:

join(λx. x.B,λz. z.B, λ(xs,zs). cmap(λx. {(x,zs)}) xs) (X, Z)

where the X input matches the pattern tree s(x) and the Z input
matches the pattern tree zs(z) and the output is grouped by z that
matches the pattern tree s(x,zs(z)).

6.4 Algebraic Optimization
As it was previously discussed, MRQL group-by queries are

translated to plain MRQL queries that contain calls to the groupBy
operation. Each groupBy call requires the reduce task of a dedi-
cated MR job. Given that Step 3 generates joins and cmaps from
the query graph, the plans derived from that step consist of cmap,
groupBy, and join operations. Before we translate these opera-
tions to our physical algorithms, we can optimize them even fur-
ther by applying algebraic rewriting techniques to fuse cascaded
operations, to minimize the number of required MR jobs, and to
eliminate redundant operations.

The most important optimization is to fuse two cascaded cmaps
into a single cmap:

cmap(f) (cmap(g) S) = cmap (λx. cmap(f) (g(x))) S

that is, instead of two cascaded cmaps, which require two MR jobs,
we derive a nested cmap, which requires only one MR job (the
inner cmap is evaluated in memory). Cmaps can also be fused with
joins:

cmap(m) (join(kx,ky,r) (X,Y))
= join(kx, ky, λ(xs,ys). cmap(m)(r(xs,ys))) (X,Y)

GroupBy operations can be translated to MapReduce operations
using Eq. (1):

cmap(r) (groupBy(cmap(m)S)) = MapReduce(m, r)S

If either or both cmap(m) or cmap(r) are missing, then we can
always set m(x) = {x} or r(x) = {x}. Joins can be directly
mapped to MapReduce2 operations using the rule:

join(kx, ky , r)(X,Y)
= MapReduce2(λx.{(kx(x), x)}, λy.{(ky(y), y)}, r)

(X, Y)

The reason that MapReduce2 is more general than join is to al-
low map operations in the MapReduce2 inputs to be fused with
the MapReduce2 operation at the physical level, thus requiring one
MR job only. For example, we can use the rule:

MapReduce2(mx, my, r)(cmap(f)X, Y)
= MapReduce2(λv.mx(f(v)), my, r)(X, Y)

The fragment-replicate join MJoin, on the other hand, is more re-
stricted than join since it must apply the reduce function at the map-

per one-element-at-a-time:

join(kx, ky , λ(xs, ys).cmap(λx.r(x, ys))xs)(X,Y)
= MJoin(kx, ky, r)(X,Y)

that is, a join is translated to an MJoin plan only when its reduce
function has a certain shape.

As described in Section 1 through the PageRank example, a
MapReduce2 self-join can be rewritten into a simple MapReduce

operation that traverses the input dataset once:

MapReduce2(mx, my, r) (X, X)
= MapReduce(λz. cmap(λ(k,x). {(k,(1,x,null))}) (mx(z))

∪ cmap(λ(k,y). {(k,(2,null,y))}) (my(z)),
λ(k,s). r(cmap(λ(n,x,y). if n=1 then {x} else {}) s,

cmap(λ(n,x,y). if n=2 then {y} else {}) s)) X

This transformation is similar to the semantics of join given in Sec-
tion 5. Another transformation used in the PageRank example, is
fusing a group-by with a join if the group-by key is the same as the
join key:

MapReduce2(λ(k,x). {(k,ex)}, my, r) (groupBy(X), Y)
= MapReduce2(λ(k,z). {(k,(k,z))}, my,

λ(xs,ys). r(cmap(λx. {ex}) (groupBy(xs)),ys))
(X, Y)

It applies when the left MapReduce2 map function returns the group-
by key k as the left join key, that is, when it looks like λ(k,x). {(k,ex)}

for some expression ex.

6.5 Synthesizing the Combine Function
The reduce function r of MapReduce(m,r)S must take the form

r(k, s)= code, where s is a bag that contains all the elements asso-
ciated with this key k and code is the body of the function. If the
only use of variable s inside the code is in calls to either aggr(s) or
aggr(cmap(f) s), for some aggregations aggr and some functions
f , then we can use the MapCombineReduce(m, c, r)S operation
instead of MapReduce. To do so, we let the mapper generate the
values aggr(f(x)) only, the combiner generate the values aggr(s)
only, and all occurrences of aggr(cmap(f) s) in the reducer code
to be replaced with aggr(s). For multiple aggregations, variable s
will be a tuple that contains the partial results of all these aggre-
gations. Note that the avg (average) aggregation must be replaced
with the sum divided by the count before this method is applied.
For example, in the following operation

MapReduce(λ(k,x). {(x.A,x)},
λ(k,s). {(k,sum(cmap(λx. {x.B}) s))}) X

the aggregation sum(cmap(λx. {x.B}) s) is the only operation that
accesses the group values s in the reducer. Based on our algorithm,
this operation can be transformed to:

MapCombineReduce(λ(k,x). {(x.A,x.B)},
λ(k,s). {(k,sum(s))},
λ(k,s). {(k,sum(s))}) X

since sum(f (x)) = sum({x.B})=x.B.

 0

 10

 20

 30

 40

 50

 60

T
o

ta
l
T

im
e

 (
m

in
u

te
s
)

(A) TPCH nested query: MapReduce2 join (MRJ) vs join/group-by (JG)

4 8 12 16 20 4 8 12 16 20 4 8 12 16 20 (GB)

MRJ
JG-MRJ

4 nodes6 nodes8 nodes

 0

 5

 10

 15

 20

T
o

ta
l
T

im
e

 (
m

in
u

te
s
)

(B) PageRank over DBLP data with/without optimization
8 6 4 (nodes)

opt
no-opt

 0

 5

 10

 15

 20

 25

 30

 35

 40

T
o

ta
l
T

im
e

 (
m

in
u

te
s
)

(C) PageRank over the Hungarian Web with/without optimization

8 6 4 (nodes)

opt
no-opt

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

T
o

ta
l
T

im
e

 (
m

in
u

te
s
)

(D1) PageRank over RMAT on 8 nodes with/without optimization

RMAT-i dataset (x10^6 nodes, x10^7 edges)

opt
no-opt

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

T
o

ta
l
T

im
e

 (
m

in
u

te
s
)

(D2) PageRank over RMAT on 6 nodes with/without optimization

RMAT-i dataset (x10^6 nodes, x10^7 edges)

opt
no-opt

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

T
o

ta
l
T

im
e

 (
m

in
u

te
s
)

(D3) PageRank over RMAT on 4 nodes with/without optimization

RMAT-i dataset (x10^6 nodes, x10^7 edges)

opt
no-opt

Figure 3: Query Evaluation over (A) TPCH, (B) DBLP, (C) the Hungarian Web, and (D1-D3) RMAT-i graphs

7. PERFORMANCE EVALUATION
MRQL is implemented on top of Hadoop. The source code

is available at http://lambda.uta.edu/mrql/. Currently,
our system can evaluate any MRQL query over XML, JSON, bi-
nary, and record-oriented text documents (with basic values sepa-
rated by user-defined delimiters).

The platform used for our evaluations was a small cluster of nine
Linux servers (circa 2006), connected through a Gigabit Ethernet
switch. The cluster was managed by Rocks Cluster 5.4 running
CentOS-5 Linux. For our experiments, we used Hadoop 0.20.2,
distributed by Cloudera. The cluster frontend was used exclusively
as a NameNode/JobTracker, while the rest 8 compute nodes were
used as DataNodes/TaskTrackers. Each server has 4 Xeon cores at
3.2GHz with 4GB memory. That is, there were a total of 32 cores
available for map/reduce tasks. We repeated our experiments for 3
different Hadoop configurations: 8 nodes (32 cores), 6 nodes (24
cores), and 4 nodes (16 cores). For each configuration, we had to
format the DFS and reinstall the data to make sure that data blocks
were equally distributed to data nodes.

Our first measurement evaluates the effectiveness of our opti-
mization techniques for nested queries, which use our generalized
join that incorporates data nesting. For this experiment, we used the
Orders and Customer tables from the TPCH benchmark. We used
5 datasets TPCH-i, for i = 1, . . . , 5, of size i ∗ 4GBs (the total size
of Orders and Customer tables) using the TPCH dbgen option -s =

i ∗ 20. That is, the largest dataset was 20GBs. We considered the
following MRQL query:

select c.NAME
from c in Customer
where avg(select o.TOTALPRICE

from o in Orders
where o.CUSTKEY=c.CUSTKEY) < 150000.0

which selects the customers whose average order prices are below
150K. MRQL translates this query to a single MapReduce2 join.
Using traditional optimization techniques, we could have gener-
ated a flat join followed by a group-by. Figure 3.(A) compares the

graph = select (key, select x. to from x in n)
from n in source(line , "graph.csv" ,...) group by key: n.id ;

size = count(graph);

select (x. id ,x.rank)
from x in
(repeat nodes = select < id: key, rank: 1.0/size, adjacent: al >

from (key,al) in graph
step select (< id : m.id, rank: n.rank, adjacent: m.adjacent >,

abs((n.rank−m.rank)/m.rank) > 0.1)
from n in (select < id : key,

rank: 0.25/size+0.85∗sum(select x.rank from x in c) >
from c in (select < id : a, rank: n.rank/count(n.adjacent) >

from n in nodes, a in n.adjacent)
group by key: c.id),

m in nodes
where n.id = m.id)

order by x.rank desc;

Figure 4: PageRank in MRQL

evaluation time of this query using the MapReduce2 join, called
MRJ, versus the evaluation time based on the traditional method
of using a join (a simplified MapReduce2) followed by a group-
by with aggregation (a MapCombineReduce), called JG. The his-
tograms shown in Figure 3.(A) show the MRJ time (white boxes)
and the time difference JG-MRJ (shaded boxes). We can see that,
for all three cluster sizes (4, 6, and 8 nodes), the time improvement
using our joins was between 50% and 65%, thus justifying our de-
cision for using a special join for nested queries.

The next query we evaluated was PageRank over various datasets.
The complete PageRank query is given in Figure 4. Given that our
datasets represent a graph as a flat list of edges, the first query in
Figure 4 groups this list by the edge source so that each tuple in
the resulting graph contains all the neighbors of a node in a bag.
We only measured the execution time of the last query in Figure 4,
which calculates the PageRank of the graph (this is done by the
repeat MRQL expression) and then orders the nodes by their rank.

http://lambda.uta.edu/mrql/

Recall from Section 3 that, for the repeat to converge, the condition
abs((n.rank-m.rank)/m.rank) > 0.1 must become false for all graph
nodes. The purpose of this evaluation was to measure the effective-
ness of the algebraic rewrite rules for fusing a join with a group-by
and for mapping a self-join to a MapReduce that traverses the input
once (these rules are described informally in Section 1 and formally
in Section 6.4). The optimized query requires one MapReduce per
iteration, while the non-optimized query requires one MapReduce2

and one MapReduce per iteration. We evaluated PageRank with
and without these optimizations over the following datasets:

1. DBLP: the DBLP dataset in XML format, available at
http://dblp.uni-trier.de/xml/, which is 865MBs.
The citation graph we considered had 1.7M papers and 112K
citations. PageRank required 10 steps to converge.

2. HG: the Hungarian web graph http://web-graph.org/,
which is 734MBs, has 500K nodes and 14M links. PageRank
required 9 steps to converge.

3. RMAT-i: synthetic data generated by the R-MAT algorithm [9]
using the parameters a=0.57, b=0.19, c=0.19, and d=0.5 for
the Kronecker graph generator. The number of distinct edges
generated were 10 times the number of nodes. We used 10
datasets RMAT-i, for i = 1, . . . , 10, of size i∗140MBs, with
i ∗ 106 nodes and i ∗ 107 edges. That is, the largest dataset
was 1.4GBs. PageRank required 6 steps to converge.

Figures 3.(B) and 3.(C) show the evaluation of PageRank over the
DBLP citation graph and over the Hungarian Web for a cluster of
8, 6, and 4 nodes. From Figures 3.(D1)-(D3), we can see that there
is no clear winner for the synthetic graphs generated by R-MAT. If
there are enough nodes to assign tasks or less data (more precisely,
when the number of available cores is at least 50% more than the
number of data blocks), then our optimizations clearly win. This
suggests that a cost-based optimizer must consider both plans and
choose the best based on data size and system resources.

8. CONCLUSION AND FUTURE WORK
We have presented an SQL-like query language that is expres-

sive enough to capture most map-reduce computations. We have
also presented an algebra, physical plan operators, and an effec-
tive optimization framework that identifies opportunities for joins
and translates every query construct to map-reduce operations in
Hadoop. The most important component that needs to be com-
pleted and improved in our framework is a comprehensive cost
model based on statistics. In the future, we are planning to use
a dynamic cost analyzer, where statistics are collected and the opti-
mization is done at run-time. More specifically, we are planning to
develop a method to incrementally reduce the query graph at run-
time, and enhance the reduce stage of a map-reduce operation to
generate enough statistics to decide about the next graph reduction
step. In addition, the Hadoop map-reduce operation uses a number
of parameters that need to be adjusted for better performance, such
as the number of reducers. We are planning to investigate tech-
niques for incorporating these parameters into the cost model.

Acknowledgments: This work is supported in part by the National
Science Foundation under the grant 1117369.

9. REFERENCES
[1] A. Abouzeid, et al. HadoopDB: An Architectural Hybrid of

MapReduce and DBMS Technologies for Analytical
Workloads. In VLDB’09.

[2] S. Babu. Towards Automatic Optimization of MapReduce
Programs. In SOCC’10.

[3] D. Battre, et al. Nephele/PACTs: A Programming Model and
Execution Framework for Web-Scale Analytical Processing.
In SOCC’10.

[4] A. Behm, V. Borkar, M. J. Carey, et al. ASTERIX: Towards a
Scalable, Semistructured Data Platform for Evolving-World
Models. Distrib Parallel Databases (2011) 29: 185–216.

[5] V. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica.
Hyracks: A Flexible and Extensible Foundation for
Data-Intensive Computing. In ICDE’11.

[6] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop:
Efficient Iterative Data Processing on Large Clusters. In
VLDB’10.

[7] M. J. Cafarella and C. Re. Manimal: Relational Optimization
for Data-Intensive Programs. In WebDB’10.

[8] R. Chaiken, et al. SCOPE: Easy and Efficient Parallel
Processing of Massive Data Sets. In PVLDB’08.

[9] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A
Recursive Model for Graph Mining. In SDM’04.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI’04.

[11] J. Dittrich, et al. Hadoop++: Making a Yellow Elephant Run
Like a Cheetah (Without It Even Noticing). In VLDB’10.

[12] L. Fegaras. A New Heuristic for Optimizing Large Queries.
In DEXA’98.

[13] L. Fegaras, C. Li, U. Gupta, and J. J. Philip. XML Query
Optimization in Map-Reduce. In WebDB’11.

[14] A. F. Gates, et al. Building a High-Level Dataflow System on
top of Map-Reduce: the Pig Experience. In PVLDB 2(2),
2009.

[15] Hadoop. http://hadoop.apache.org/.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks. In EuroSys’07.

[17] M. Isard and Y. Yu. Distributed Data-Parallel Computing
Using a High-Level Programming Language. In
SIGMOD’09.

[18] E. Jahani, M. J. Cafarella, and C. Ré. Automatic
Optimization for MapReduce Programs. In PVLDB’11, 4(6).

[19] S. P. Jones and P. Wadler. Comprehensive Comprehensions
(Comprehensions with Order by and Group by). In Haskell’07.

[20] J. Lin and C. Dyer. Data-Intensive Text Processing with
MapReduce. Book pre-production manuscript, April 2010.

[21] MRQL. http://lambda.uta.edu/mrql/.

[22] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.
Tomkins. Pig Latin: a not-so-Foreign Language for Data
Processing. In SIGMOD’08.

[23] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the Data: Parallel Analysis with Sawzall.
Scientific Programming 13(4), 2005.

[24] M. Stonebraker, et al. MapReduce and Parallel DBMSs:
Friends or Foes? In CACM 53(1), 2010.

[25] A. Thusoo, et al. Hive: a Warehousing Solution over a
Map-Reduce Framework. In PVLDB 2(2), 2009.

[26] A. Thusoo, et al. Hive: A Petabyte Scale Data Warehouse
Using Hadoop. In ICDE’10.

[27] T. White. Hadoop: The Definitive Guide. O’Reilly, 2009.

[28] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D.S. Parker.
Map-Reduce-Merge: Simplified Relational Data Processing
on Large Clusters. In SIGMOD’07.

http://dblp.uni-trier.de/xml/
http://web-graph.org/
http://hadoop.apache.org/
http://lambda.uta.edu/mrql/

	Introduction
	Related Work
	The MRQL Model and Language
	The MRQL Physical Operators
	The MapReduce Operation
	Reduce-Side Join
	Fragment-Replicate Join
	Other Physical Operations

	The Query Algebra
	The Optimization Framework
	Simplifying the Query
	Constructing the Query Graph
	Deriving an Algebraic Form
	Algebraic Optimization
	Synthesizing the Combine Function

	Performance Evaluation
	Conclusion and Future Work
	References

