
On “One of the Few” Objects

You Wu† Pankaj K. Agarwal† Chengkai Li‡ Jun Yang† Cong Yu§

†Duke University, ‡University of Texas at Arlington, §Google Research

ABSTRACT
Objects with multiple numeric attributes can be compared within
any “subspace” (subset of attributes). In applications such as com-
putational journalism, users are interested in claims of the form:
Karl Malone is one of the only two players in NBA history with
at least 25,000 points, 12,000 rebounds, and 5,000 assists in one’s
career. One challenge in identifying such “one-of-the-k” claims
(k = 2 above) is ensuring their “interestingness.” A smallk is not
a good indicator for interestingness, as one can often make such
claims for many objects by increasing the dimensionality ofthe
subspace considered. We propose a uniqueness-based interesting-
ness measure for one-of-the-few claims that is intuitive for non-
technical users, and we design algorithms for finding all interesting
claims (across all subspaces) from a dataset. Sometimes, users are
interested primarily in the objects appearing in these claims. Build-
ing on our notion of interesting claims, we propose a scheme for
ranking objects and an algorithm for computing the top-ranked ob-
jects. Using real-world datasets, we evaluate the efficiency of our
algorithms as well as the advantage of our object-ranking scheme
over popular methods such as Kemeny optimal rank aggregation
and weighted-sum ranking.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—data min-
ing; H.2.4 [Database Management]: Systems—query processing;
K.4.0 [Computers and Society]: General

Keywords
Computational journalism, fact checking, skyband, ranking

1 Introduction
Raw data in various domains are becoming more widely accessible,
e.g., play-by-play game logs for sports, databases of campaign fi-
nance and voting records for politics, etc. An increasing number of
news stories are driven by information extracted from data.Com-
putational journalism [5, 6] is a nascent field about using computing
to help improve effectiveness and reduce cost for journalism, which
serves a vital role in our society. One important goal in computa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

tional journalism is(semi-)automatic lead identificationfrom data,
i.e., finding interesting information nuggets from raw datathat lead
to further investigation and/or news stories around them. In this
paper, we take a first step toward this goal by considering a popular
form of claims exemplified by the following:

• There is no player in NBA history with more points, more re-
bounds, and more assists than Oscar Robertson in one’s career.

• Rick Perry is one of the only three candidates in the 2012 US
federal election cycle to have received at least $600k from
“lawyers & lobbyists” (an interest group that is usually pro-
Democrat) and $400k from “energy & natural resources” (usu-
ally pro-Republican).

These two claims share a common structure: both are about an ob-
ject being one of the few that “stand out” when compared according
to a set of numeric attributes. More precisely, given a set ofobjects
O, each with a setA of numeric attributes, we considerone-of-the-
fewclaims of the following form:

Object o is dominated by fewer than k objects in a non-empty
subset B ⊆ A of attributes.

Here, we sayo′ dominateso in B if o′ is no worse thano for all at-
tributes inB, ando′ is strictly better thano for at least one attribute
in B. Journalists are interested in two tasks: 1) finding all “interest-
ing” one-of-the-few claims from a given dataset; 2) rankingobjects
based on what one-of-the-few claims can be made about them. The
first task allows journalists to identify claims that can be used in
stories or serve as leads for further investigation. The second task
provides an object-centric view that allows journalists toprioritize
their investigation of particular objects (especially when there are
many interesting one-of-the-few claims).
Task 1: Finding Claims Our goal is to find interesting one-of-
the-few claims in all “subspaces” (i.e., subsets of attributes). One-
of-the-few claims are closely related to the concept ofk-skyband
for multi-dimensional data [15]. Intuitively, thek-skyband of a set
O of objects in subspaceB is the subset of objects each dominated
by fewer thank other objects inB. (The better-known notion of
skyline is a special case ofk-skyband wherek = 1.) From the
k-skyband inB, a one-of-the-few claim can be generated for each
object in the skyband straightforwardly. While various algorithms
exist for computing ak-skyband givenk andB, they do not ad-
dress the key challenge of ensuring “interestingness” of the claims
they find in a way that is easy for users to control and interpret.
Although the parameterk can be tuned, it is a poor indicator of
interestingness, as illustrated by the following example.

Example 1. Consider the set of nearly4000 players in NBA his-
tory, with stats such as career totalpoints, rebounds, and assists.
Being one of the top50 leading scorers—i.e., in the50-skyband
for the single-attribute subspace{points}—is quite an impressive

0

5

10

15

20

25

10 15 20 25 30 35

R
e

b
o

u
n

d
s

Points

Chamberlain

Jordan

Baylor

Robertson

Pettit

Abdul-Jabbar

Bird

Johnson

0

Stockton

nn
James

(a) Positive:pointsvs. rebounds

0

2

4

6

8

10

12

0 5 10 15 20 25

A
s
s
is

t
s

Rebounds

Johnson

Chamberlain

Pettit

Baylor

Abdul-Jabbar

James Bird

Robertson

Jordan

0 Stockton

(b) Negative:reboundsvs.assists
Figure 1: Correlation in NBA player stats.

feat. However, if we expand the subspace to{points, rebounds},
142 players now fit the bill—i.e., each is dominated by fewer than
50 others in{points, rebounds}. If we further includeassistsin the
subspace,324 (almost9% of all) players will be in the50-skyband.

Example 1 clearly illustrates why we cannot use a universalk to
ensure interestingness of one-of-the-few claims for different sub-
spaces: the size of the skyband tends to increase rapidly as dimen-
sionality goes up. For example, the expected number of1-skyband
(skyline) objects isO(ln|B|−1|O|/(|B|−1)!), if object ranks by in-
dividual attributes are uniformly and independently distributed [1],
e.g., when objects are uniformly distributed in a box. With afixed
k, too many claims may be in high-dimensional subspaces, mak-
ing them uninteresting. Clearly,k must be adjusted as|B| changes.
Furthermore, the appropriate setting fork is not simply as a func-
tion of dimensionality, because data characteristics—e.g., correla-
tion among attributes—also matter, as illustrated below.

Example 2. We plot a subset of NBA players, with attributespoints,
rebounds, and assistsper game, as points in subspaces{points,
rebounds} (Figure 1a) and{rebounds, assists} (Figure 1b). It is
easy to see that the skybands in Figure 1a tend to be smaller than
those in Figure 1b, because of the positive correlation between
pointsandreboundsand the negative correlation betweenrebounds
andassists. For example, the3-skyband in{points, rebounds} con-
tains 5 players (Jordan, Chamberlain, James, Baylor, and Pettit),
which translate into5 one-of-the-3 claims; on the other hand, the
3-skyband in{rebounds, assists} contains9 players (all except Jor-
dan). Hence, no single choice ofk is appropriate for these two
subspaces of the same dimensionality.

Example 2 above clearly illustrates that we cannot hope to de-
fine interestingness, which is data-dependent, by a function of k
and |B| alone. Asking the user to pick the rightk manually for
each and every subspace is also infeasible. Our quest is to find an
effective way of ensuring claim interestingness such that:1) users
are not required to tune lots of parameters; 2) the results are easy
to understand and explain in layman’s terms. Both properties are
critical for computational journalism, where journalistsare often
non-technical and the results need to be explained to the general
public in stories. Furthermore, given the interestingnessmeasure,
we need to address the challenge of finding interesting one-of-the-
few claims in all subspaces efficiently.
Task 2: Ranking Objects Even with an appropriate definition
of “interestingness,” many objects may be the subject of at least
one interesting one-of-the-few claim in some subspace. Thetask of
ranking objects allows users to prioritize their effort in investigating
objects. From our experience analyzing real data and preliminary
user studies, different data domains and user preferences call for
some degree of customization in ranking, as illustrated below.

Example 3. Both John Stockton and Larry Bird are inductees into
the Naismith Memorial Basketball Hall of Fame, but they havedif-
ferent playing styles. Stockton has the second highest assists per
game in NBA history, but is not very impressive in points or re-
bounds. Bird ranks 17th in points, 60th rebounds, and 44th inas-
sists. Stockton and Bird exemplify what we call “specialized” and
“well-rounded” objects, respectively. How to rank specialized ob-
jects relative to well-rounded ones often depends on the context, or
may simply be a matter of personal opinion.

A popular method for ranking objects based on multiple input
rankings isKemeny optimal rank aggregation[7], or Kemenyfor
short. It produces a “consensus” ranking that minimizes thenum-
ber of pairwise disagreements (in the relative ordering of two ob-
jects). When aggregating object rankings under individualattributes,
Kemeny tends to downgrade objects that rank extremely high in
few attributes but considerably low in other attributes. For Exam-
ple 3 above, Bird, who is well-rounded, would be ranked as the9th
by Kemeny, while Stockton, who is specialized, would be as low as
the 139th, which may not be acceptable to some.

While Kemeny leaves no option for customization, another pop-
ular method,weighted-sum ranking, exposes too many knobs. With
weighted-sum, a user specifies a preference vector, whose compo-
nents represent weights assigned to attributes; objects are ranked
according to their projection onto this vector (i.e., weighted com-
bination of their attribute values). For ad-dimensional dataset, the
user needs to specifyd weights; even if we learn these weights
automatically, training examples must be provided. Such require-
ments may overwhelm journalists with little time or technical ex-
pertise. Our goal is to devise a ranking scheme with as few knobs as
possible, which allows customization without overwhelming users.

Main Contributions First, we propose a simple but effective def-
inition for the interestingness of a claim based on its “uniqueness.”
For a one-of-the-few claim (with a particulark in a particular sub-
spaceB) to be interesting, we require that this claim (with the same
k andB) cannot be made for more thanτ objects. Unlikek, τ is a
user-defined threshold that applies universally to all subspaces, sig-
nificantly reducing the burden on the user to define interestingness.
For each subspace, our definition automatically adaptsk in a data-
dependent way, and naturally excludes those high-dimensional sub-
spaces where no claims are unique enough. Furthermore,τ is easy
to understand for non-technical users.

Based on this definition, we introduce the problem of finding all
interesting one-of-the-few claims across all non-empty subspaces,
given the uniqueness thresholdτ . The fact that ourk is data-
dependent and not fixed raises unique challenges not addressed by
previous work on computing skylines and skybands. We deviseef-
ficient algorithms that avoid redundant computation. In particular,
we are able to improve the worst-case complexity of finding all in-
teresting claims in a subspace fromO(|O|2) to O(τ |O|), which is
attractive becauseτ in practice is small for claims to be unique.

Building on the definition of interestingness, we propose a novel
scheme for scoring and ranking objects based on the aggregated
interestingness of claims involving them. One key insight distin-
guishing our scheme from others is that we in effect aggregate
ranks across all non-empty subspaces as opposed to just individ-
ual attributes. Our scheme supports tuning by a single parameter
α, which captures user preference between specialized and well-
rounded objects, and overcomes the inflexibility of Kemeny with-
out resorting to an overwhelming number of knobs like weighted-
sum. Extending the algorithms for finding all interesting claims,
we show how to compute top-ranked objects efficiently givenα.
We experimentally demonstrate, on real datasets, that our scheme

is able to produce rankings comparable to Kemeny and weighted-
sum while offering more effective customization.

2 Finding One-of-the-Few Claims
Preliminaries Consider a setO of n objects, each withd numeric
attributesA = {A1, A2, . . . , Ad}. A subspaceis (more precisely,
spanned by) a subset of the attributes. The set of all subspaces of
A forms a lattice under containment relation. We say that subspace
B1 is anancestor(descendant) of subspaceB2 if B1 ⊆ B2 (resp.
B1 ⊇ B2). We sayB1 is aparent(child) of B2 if B1 ⊂ B2 (resp.
B1 ⊃ B2) and their cardinalities differ by one.

We sayo1 dominateso2 in subspaceB, denotedo1 ≻B o2, if
i) ∀A ∈ B, o1.A ≥ o2.A, and ii)∃A ∈ B, o1.A > o2.A. Clearly,
dominance is transitive: ifo1 ≻B o2 ando2 ≻B o3, theno1 ≻B o3.

Definition 1 (Dominating Subset,k-Skyband, Skyline, Tier).
• Thedominating subsetof o ∈ O in subspaceB ⊆ A, denoted

DB(O, o), is the subset of objects that dominateo in B; i.e.,
DB(O, o) = {o′ ∈ O | o′ ≻B o}. Let δB(O, o) = |DB(O, o)|
denote the size of the dominating subset.

• Thek-skyband(k ≥ 1) of O in subspaceB, denotedSk
B(O),

is the subset of objects inO where each is dominated by fewer
thank objects inO; i.e.,Sk

B(O) = {o ∈ O | δB(O, o) < k}.

• Theskylineof O in subspaceB isS1
B(O), i.e., the1-skyband.

• Thei-th tier (i ≥ 1) of O in subspaceB is the subset of objects
in O where each is dominated by exactlyi− 1 objects inO; i.e.,
{o ∈ O | δB(O, o) = i− 1}.

Clearly, by definition, thek-skybandSk
B(O) is the disjoint union

of all i-th tiers with i ≤ k, and the difference between thek-
skyband and the(k − 1)-skyband is thek-th tier.1

To illustrate, consider the setO of 10 NBA players and subspace
B = {rebounds, assists} shown in Figure 1b.DB(O,Stockton)
= {Johnson}, so δB(O,Stockton) = 1. S

1
B(O) = {Johnson,

Robertson,Bird,Chamberlain} is the skyline (or1-skyband), which
is also the1-st tier.S2

B(O) = S
1
B(O) ∪ {Stockton,Baylor,Pettit}

is the2-skyband, where Stockton, Baylor, and Pettit are in the 2nd
tier and each dominated by exactly one object inO. S3

B(O), the3-
skyband, additionally includes the 3rd tier{James,Abdul-Jabbar},
leaving only Jordan out, as mentioned in Example 2.
Problem Statement As motivated in Section 1, while each object
in thek-skyband translates into a one-of-the-few claim, we measure
the interestingness of this claim by the number of objects for which
similar claims can be made, i.e., the size of thek-skyband. Instead
of struggling with settingk, which depends on the subspace and ob-
ject distribution, a user should be able to specify a single threshold
τ that caps the number of similar claims. Therefore, we introduce
the concept oftop-τ skybandbelow. While the concept is closely
related tok-skyband, a crucial difference is that a top-τ skyband
is defined by its size, while ak-skyband, defined by its number of
tiers, can be arbitrarily large.

Definition 2 (Top-τ Skyband). Givenτ ≥ 1, thetop-τ skybandof
a set of objectsO in subspaceB, denotedΦτ

B(O) (or Φτ if context
is clear), is thêk-skyband wherêk = max{k | τ ≥ |Sk

B(O)|}.

In other words, the top-τ skyband is the largest skyband whose size
does not exceedτ .

The fact that an objecto belongs to the top-τ skyband with the
k-th tier as its last non-empty tier—or alternatively, thek-skyband
with size no more thanτ—translates into the following statement:
1Note that tiers differ from the well-known concept ofmaximal layers,
where the next maximal layer is defined as the skyline of the set of objects
that are not in previous layers.

Objecto is dominated by fewer thank objects inB, and this
claim cannot be made for more thanτ objects.

Intuitively, τ measures the uniqueness of the claim made by the first
part of the above statement. For example, in Figure 1a, suppose we
setτ = 3. Φτ = {Chamberlain, Jordan} is the1-skyband. The
2-skyband would be too big, because it also contains Pettit, Baylor,
and James, and has size5 > τ . Note that the 3rd tier is empty—no
player is dominated by exactly two others in this example—sothe
3-skyband (recall Example 2) is the same as the2-skyband.

The problem of finding all interesting one-of-the-few claims can
now be formulated as follows:

Definition 3 (Finding Top-τ Skybands in All Subspaces). Given
the setO of objects and a user-specified thresholdτ , findΦτ

B(O)
for every non-empty subspaceB ⊆ A.

For each subspace, the membership of an object inΦτ corre-
sponds to a one-of-the-few claim that cannot be made for more
thanτ objects. This definition leads naturally to some desired fea-
tures. In a single-attribute subspace,Φτ contains essentially the top
τ objects ranked by this attribute. As the subspace dimensionality
goes up, the number of tiers inΦτ decreases in an automatic, data-
dependent manner until these tiers contain no more thanτ objects.
Thus, with this problem formulation, users need not manually pick
the number of tiers in the skyband for each subspace. To illustrate,
consider again Example 2. Suppose the user setsτ = 8. For sub-
space{points, rebounds} (Figure 1a),Φτ would be the5-skyband.
In contrast, for{rebounds, assists} (Figure 1b),Φτ would be the
2-skyband. Finally, in high-dimensional subspaces where somany
objects are on the skyline that no claims are interesting, our prob-
lem formulation correctly leads to an emptyΦτ .

Overview of Solutions The rest of this section discusses how to
find all interesting one-of-the-few claims. At a high level,we 1) tra-
verse the lattice of subspaces in some manner, and 2) computeΦτ

for each subspace we visit. Techniques for improving efficiency ex-
ist both across subspaces and within each subspace. For findingΦτ

in a given subspaceB, we propose two algorithms in Sections 2.1
and 2.2. We then show in Section 2.3 how to explore the latticeof
subspaces using these algorithms as subroutines.

Note that computingΦτ for a single-attribute subspace{A} sim-
ply involves finding the topτ objects sorted byA; algorithms in
Sections 2.1 and 2.2 are needed only when|B| > 1.

Also note that it is possible to devise solutions by adaptingexist-
ing techniques from literature. We present one such solution here,
which we callBaseline. For lattice traversal,Baseline adopts the
strategy ofbottom-up skyline (BUS)of Pei et al. [17], who study
the problem of computing the skyline in every subspace. BUS can
be extended to computek-skyband ifk is given. In each subspace,
Baseline starts withk = 1, and computes thek-skyband and incre-
mentsk, iteratively, until thek-skyband contains at leastτ objects.
Obviously, this iterative process of finding the rightk leads to a lot
of redundant computation. Our new algorithms avoid such redun-
dant computation, and we experimentally validate their advantages
overBaseline in Section 4.

2.1 Progressive Top-τττ Skyband Algorithm
As it turns out, all objects ofO in the(k+1)-th tier must lie on the
skyline of the set of remaining objects after those in thek-skyband
are taken out. This simple but useful observation has probably been
made in other contexts too; we state it as a lemma here for com-
pleteness (see [23] for proof):

Lemma 1. Sk+1
B

(O) \Sk
B(O) ⊆ S

1
B

(

O \Sk
B(O)

)

.

Algorithm 1 : Progressive(O,B, τ)

Data: object setO, subspaceB, and size thresholdτ
Result: Φτ

B
(O)

Φ← ∅; k ← 0;1
while true do2

S ← S1
B
(O \ Φ);3

k′ ← min{δB(Φ, o) + 1 | o ∈ S};4
∆Φ← {o ∈ S | δB(Φ, o) + 1 = k′};5
if |Φ ∪∆Φ| > τ then break;6
Φ← Φ ∪∆Φ; k ← k′;7

return Φ;8

Lemma 1 suggests the following strategy, which we callPro-

gressive (Algorithm 1), for computing the top-τ skyband for a
given subspace. Givenτ , Progressive computes the answerΦ tier
by tier, starting from the first. By Lemma 1, to obtain the nextnon-
empty tier, we first compute (Line 3) the skylineS for the set of
remaining objects (those outside the currentΦ). Objects in the next
non-empty tier (∆Φ on Line 5) are those inS whose dominating
subsets inO are the smallest in size. We add this tier toΦ as long
as their set union has no more thanτ objects. It is easy to see that
at the end of each iteration, the invariant thatΦ = S

k
B(O) holds.

Progressive terminates if the addition of the next non-empty tier
causes the size ofΦ to exceedτ .

Note that in Lines 4 and 5 we compute the size of the dominating
subset foro ∈ S in Φ instead ofO. This optimization is correct
because, being on the skyline ofO \ Φ, o is not dominated by any
object inO \ Φ, soδB(Φ, o) = δB(O, o).

Further Optimizations For clarity of presentation, Algorithm 1
leaves out some details, which we describe below. Suppose that in
the previous iteration, the skyline computed wasS̄, and∆Φ̄ ⊆ S̄
was added to the answer set. For the current iteration, it is easy to
see thatS̄ \ ∆Φ̄ ⊆ S; i.e., all remaining objects in̄S will appear
again in the skylineS to be computed. This observation leads to
two optimizations. 1) We can speed up successive skyline com-
putations on Line 3 across iterations. Specifically, we adapt the
SUBSKYalgorithm of Tao et al. [19] (in general any skyline algo-
rithm can be used). The original SUBSKY uses an index whose
size is linear in|O| to help compute the skyline ofO in any sub-
space. During execution, SUBSKY always maintains the skyline
for the subset of objects that it has examined. In our adaption of
SUBSKY, we remove from (a copy of) the SUBSKY index any
object added toΦ, and we “seed” each invocation of SUBSKY
with S̄ \ ∆Φ̄ instead of starting it with an empty skyline.2) We
can reduce the number of dominance tests involved in determining
δB(Φ, o) for o ∈ S on Lines 4 and 5. For anyo ∈ S̄ \∆Φ̄ ⊆ S, we
have already computedδB(O, o) in the previous iteration, so there
is no need to recompute it.

Complexity Following convention [19], we measure the perfor-
mance of our algorithms by the number of dominance tests.Pro-

gressive performs two types of such tests: 1) those involved in com-
puting the skyline of the remaining objects, and 2) those involved
in computing the sizes of the dominating subsets inO for objects
on that skyline. The number of type-1 tests depends on the skyline
algorithm; Tao et al. [19] describes various techniques to reduce it
for SUBSKY. However, in the worst case,|Φ| is almostτ in the
final iteration, while|S| can be roughly|O| − τ (i.e., the next non-
empty tier contains nearly all remaining objects). In this case, the
total number of dominance tests would beΘ(|O|2).

2.2 One-Pass Top-τττ Skyband Algorithm
Progressive has poor worst-case complexity: it computes the entire
next tier in order to decide whether to add that tier to the answer, but

Algorithm 2 : OnePass(O,B, τ)

Data: object setO, subspaceB, and size thresholdτ
Result: Φτ

B
(O)

Φ← ∅; k ← τ ;1
foreach o ∈ O in safe order (Definition 4)do2

c[o]← 0; // count the number of objects inΦ dominatingo3
foreach o′ ∈ Φ do // heuristically in ascending order ofc[o′]4

if o′≻B o then c[o]← c[o] + 1;5
if c[o] ≥ k then break; // no need to count further6

if c[o] < k then7
Φ← Φ ∪ {o};8
if |Φ| > τ then // Φ is too big; remove the last tier9

k ← max{c[o′] | o′ ∈ Φ};10
Φ← Φ \ {o′ ∈ Φ | c[o′] = k};11
if k = 0 then break;12

return Φ;13

that tier can be larger thanτ . In this section, we show how to tame
the complexity with another algorithmOnePass. This algorithm
works by considering objects one by one in a particular order. Each
object is either added to the answer setΦ or dropped. OnceΦ has
more thanτ objects, the last tier is peeled off. The processing
order is chosen in a “safe” way, as defined below, which allows
OnePass to cap|Φ| at τ at all times, thereby bounding the number
of dominance tests toτ |O|, in contrast toO(|O|2) by Progressive.

Definition 4 (Safe Order2). An order for a setO of objects issafe
(for OnePass) if o′ precedeso whenevero′ ≻B o.

Algorithm 2 describesOnePass. The details of implementing
the safe order will be given later in this section. Here, we first ex-
plain the algorithm and establish its correctness, the cruxof which
is captured by the lemma below (see [23] for proof).

Lemma 2. The following invariants are true at the end of each
iteration ofOnePass’s main loop, whereO⋆ denotes the set of all
objects processed so far.

(I-1) For all o′ ∈ Φ, c[o′] = δB(O, o
′).

(I-2) Φ = S
k
B(O

⋆).

(I-3) |Sk+1
B

(O)| > τ (if |O| > τ).

Consider the next objecto in the safe order.OnePass first checks
whethero is dominated by at leastk objects inΦ (Lines 3–6). If
yes, o is ignored because it would be in the(k + 1)-th or later
tier (by (I-1)) and therefore cannot be inΦτ

B(O) (by (I-3)). We
stop counting as soon asc[o] reachesk. Heuristically, we check
o against “better” objects inΦ (i.e., those with smaller dominating
sets) first, in hope of reachingk sooner with fewer dominance tests.

If c[o] < k, OnePass addso to Φ (Lines 8) and remember the
countc[o]. If doing so makes|Φ| exceedτ we remove the last tier
from Φ and updatek accordingly (Lines 9–11), to preserve (I-2)
and (I-3). Ifk drops to0 (Line 12), that means even the skyline has
size bigger thanτ (by (I-3)), so we can terminate (and return∅)
without processing the remaining objects. After all objects inO are
processed,Φ is the top-τ skyband ofO in B, by (I-2) and (I-3).

Producing a Safe Order The simplest approach forOnePass to
produce a safe processing order is to sortO by B (lexicographi-
cally, with an arbitrary ordering among the attributes), which takes
O(|O| log |O|) time. To avoid the cost of a full sort, we precom-
pute, for each of thed attributes inA, a version ofO sorted by that
attribute. Given a subspaceB, OnePass picks the attributeA ∈ B

with the largest domain (a heuristic also adopted in [2, 17]), and

2Note that a safe order is equivalent to a topological order.

use the version ofO sorted byA. During processing, ifOnePass

finds that a group of objects tie inA, OnePass further sorts this
group by the fullB. As a further optimization, before sorting this
group,OnePass first performs Lines 3–6 on each objecto in the
group, and removes those withc[o] ≥ k; the filtered group is then
sorted and further processed. In the worst case,OnePass still needs
to payO(|O| log |O|) for sorting. In practice, however, we have
found our heuristics effective in eliminating sorting, because most
ties tend to occur later in processing; by that time, most objects
will be eliminated by Lines 3–6. Furthermore, the cost of filtering
is low becauseτ andk are typically small.
Complexity BecauseOnePass caps |Φ| at τ at all times, the
number of dominance tests is bounded byτ |O|. As explained above,
sorting addsO(|O| log |O|) in the worst case, though in practice the
extra cost is rarely incurred. Furthermore, in high-dimensional sub-
spaces,k decreases rapidly asOnePass examines more objects. It
is likely that an object will be discarded after a few dominance tests.
OnePass also detects the case when the size of the skyline would
exceedτ , and is able to terminate without examining the wholeO.
Thus,OnePass is expected to run faster in practice than the bound
suggests, particularly for high-dimensional subspaces.

2.3 Lattice Traversal
Finding all interesting one-of-the-few claims requires computing
Φτ in every non-empty subspace. We now describe, on a high level,
how to accomplish this task using eitherProgressive or OnePass

as the building block; details can be found in [23].
ForProgressive, computation in every subspace starts with find-

ing the skyline. For this part, we directly apply the techniques of
Pei et al. [17], who study the problem of computing the skyline in
every subspace. Their techniques traverse the lattice of subspaces
in either bottom-up or top-down order, and try to share computation
across subspaces. For a given subspaceB, once we have computed
the skyline using these techniques, we proceed withProgressive to
compute the rest ofΦτ as discussed in Section 2.1.

ForOnePass, we traverse the lattice of subspaces top-down, i.e.,
going from low- to high-dimensional subspaces. We use the top-
down technique from Pei et al. [17] to help compute the skyline in
a subspace using those found in its parent subspaces. Moreover,
we use theΦτ in parent subspaces to fine-tune the safe processing
order in the current subspace.

Furthermore, during a top-down lattice traversal, we use two
tests to prune uninteresting high-dimensional subspaces from the
search. 1) If the “distinct-count” of skyline objects inB (i.e., the
number of distinct projections ontoB) is greater thanτ , Φτ must
be empty for all descendant subspaces. 2) GivenB, if the union of
skyline objects from parent subspaces already contains more than
τ objects,Φτ

B(O) must be empty.

3 Ranking Objects
This section presents our solution for ranking the setO of ob-
jects with attributesA, based on what one-of-the-few claims can
be made about them across subspaces, and how interesting these
claims are. Section 3.1 proposes a novel scoring scheme thatcap-
tures varying user preferences with a single parameter, while Sec-
tion 3.2 describes how the algorithms in Section 2 can be leveraged
to compute top-ranked objects.

3.1 Scoring Objects
A common approach for ranking a setO of objects (e.g., political
candidates) is to combine multiple ranked lists of them (e.g., by
voters). Traditionally, the scores for objects in a single list are as-
signed according to apositional scoring vector (or function)[25],

v, which maps a ranki (1 ≤ i ≤ |O|) to a numeric scorev(i),
such thatv(i) ≥ v(i + 1). Some examples includeBorda, where
v(i) = |O| − i, andPlurality, wherev(1) = 1 andv(i) = 0 for
i > 1. Then, the overall object ranking is done according to the
aggregate score of each object, usually defined as the sum of its
scores across all ranked lists.

A straightforward approach would be to have one ranked list of O
by each attribute inA, and sum up an object’s scores across these
lists. However, this approach has serious drawbacks, particularly
in handling data with correlation. Supposeo1 is ranked high for
two correlated attributes (e.g., contributions from finance and real
estate sectors, or minutes played and points scored), whileo2 is
ranked equally high in two anti-correlated attributes (e.g., contri-
butions from oil companies and environmental groups, or rebounds
and assists). Since it is harder to rank high for two anti-correlated
attributes, we should scoreo2 higher thano1 overall. However, the
approach of summing scores over individual attributes willassign
the same score too1 ando2 (assuming all other factors are equal).

All-Subspace Positional Scoring with Ties (APST) To resolve
the issue above, we proposeAll-Subspace Positional Scoring with
Ties. The key novelty is to aggregate object scores not just across
individual attributes, but instead over all non-empty subspaces. The
dominance relationship in a multi-dimensional subspaceB likely
does not induce a totally ranked list; hence, we draw insightfrom
Section 2 to score objects using the partial order in a way that re-
flects the uniqueness of one-of-the-few claims inB. The result is a
scoring scheme that naturally adapts to data distributions.

Definition 5 (All-Subspace Positional Scoring with Ties (APST)).
For each non-empty subspaceB ⊆ A, sort O in non-descending
order of δB(O, o), the size of the dominating subset for eacho ∈
O; ties are broken arbitrarily. Denote this ranking byπB, where
πB(o) ∈ [1, |O|] is the rank ofo in this ranking. Let[π⊢

B(o) , π
⊣
B(o)]

denote the range of ranks occupied by objects that tie witho in
δB(O, o); i.e., π⊢

B(o) = min{πB(o
′) | δB(O, o

′) = δB(O, o)}
and π⊣

B(o) = max{πB(o
′) | δB(O, o

′) = δB(O, o)}. Given a
positional scoring functionv wherev(1) > v(2) > · · · > v(|O|),
the(APST) score of objecto in B, denotedγB(o), is given by:

γB(o) =
1

π⊣

B
(o)−π⊢

B
(o)+1

·
∑

i∈[π⊢

B
(o),π⊣

B
(o)] v(i).

Overall, theAPSTscore ofo, denotedΓ(o), is the total ofo’s score
over all non-empty subspaces:Γ(o) =

∑

B⊆A,B 6=∅
γB(o) .

Intuitively, for each subspaceB, APST sorts objects by tiers, and
each tier occupies a range of ranks. The total score assignedby v
to such a range of ranks is distributed equally among objectsin
the corresponding tier, as we consider them ties inB. The larger
the tier, the less “unique” each object, and the smaller the share
each object will receive. A number of desirable properties follow
directly from the definition. For example, APST favors tiersthat
are smaller in size or occupy earlier ranges of ranks; see [23] for a
more formal discussion.

Furthermore, aggregating scores over combinations of attributes
make APST naturally adaptive to correlations in data. Consider
again the example earlier in this section, whereo1 is ranked high for
two correlated attributes{A1, B1} ando2 is ranked equally high in
two anti-correlated attributes{A2, B2}. Since it is rare to rank
high for anti-correlated attributes, few objects will be ino2’s tier or
an earlier tier in{A2, B2}; therefore, APST will scoreo2 high in
{A2, B2}. On the other hand, foro1, sinceA1 andB2 are corre-
lated, there will likely be more objects dominatingo1 in {A1, B1}
than those dominatingo2 in {A2, B2}. Thus, all other factors being
equal, APST will scoreo2 higher thano1 overall.

Adjustable Discounted APST (APST-ααα) What remains to be
discussed is the choice of the positional scoring functionv. To
make our scoring scheme easy to use, we have so far consciously
avoided introducing any tuning parameters. However, as motivated
in Example 3, we would like some degree of customization for
ranking “specialized” objects relative to “well-rounded”ones. Re-
call that a specialized object is exceptional in few attributes (such
as Stockton in assists), while a well-rounded object is exceptional
in none, but reasonably good in many, so as to be exceptional when
all those attributes are combined (such as Bird). To captureuser’s
wide ranging preferences for one or the other, we design our posi-
tional scoring function with a single tunable parameter to achieve
that flexibility while retaining APST’s desirable properties.

Definition 6 (Adjustable Discounted APST (APST-α)). Letα be a
real number in(0, 1). Theadjustable discounted APST (APST-α)
scoreof an objecto ∈ O is o’s APST score with positional scoring
functionvα(i) = αi−1.

Intuitively, the discounting factor,α, controls how much more
higher ranked objects weigh against lower ranked objects, thereby
affecting how specialized and well-rounded objects score relatively
overall. In a higher-dimensional subspaceB, tiers tend to be larger.
Hence, an object that is dominated by few others inB (but by more
objects in subsets ofB) tend to score lower inB, compared with
an object with the same number of dominating objects in a lower-
dimensional subspaceB′. With a smallerα, the score gap is wider,
so overall, it is more difficult for well-rounded objects to surpass
specialized ones, whose scores come mostly from contributions by
low-dimensional subspaces. In Section 4, we will see how effective
α is as a tuning knob on real data—compared with weighted-sum
(discussed in Section 1), APST-α has only1 knob instead ofd, but
produces comparable rankings as highly tuned weighted-sum.
Comparison with Kemeny Optimal Rank Aggregation In ad-
dition to flexible approaches where users are allowed to specify
their preferences, studies in social choice theory have also investi-
gated an alternative where some notion of “optimality” is defined
for the resulting ranks. A popular representative of this approach
is Kemeny (optimal rank aggregation). As discussed in Section 1,
given a set of rankings forO, a Kemeny optimal rank aggregation
is a ranking that minimizes the total number of pairwise disagree-
ments between this ranking and the input rankings.

One natural way to use Kemeny is to apply it to thed rankings ac-
cording to the individual attributes inA. This approach, which we
call Kemeny-d, has several issues. First, finding a Kemeny optimal
aggregation is NP-hard in|O| [7]. We would prefer an approach
that is computationally more tractable. Indeed, ranking objects us-
ing APST-α has complexity polynomial in|O|.

Second, by definition, Kemeny-d is strongly biased against spe-
cialized objects, which rank high in few attributes but low in many,
because ranking them high overall will incur many disagreements.
As discussed in Section 1 following Example 3, based on points,
rebounds, and assists per game, Kemeny-d would rank John Stock-
ton low, even though he is a Hall-of-Famer who has the second
highest assists per game in NBA history. In contrast, with a small
α, APST-α would rank it high, because it likely lies on a small sky-
band for roughly half of the2d − 1 non-empty subspaces—namely
those containing the attribute in which the object specializes.

Third, Kemeny-d sometimes fails to suggest a rank for a worthy
objectp. More precisely, there may be many consensus rankings
that are all optimal in the Kemeny sense, wherep is ranked differ-
ently, sometimes below objects that can be considered obviously
inferior to p. For an illustrative example, as well as how APST-α
avoids this issue, see [23].

Fourth, Kemeny-d does not allow for customization—if it fails
to recognize a worthy object there is little that a user can do. On the
other hand, the discounting factorα in APST-α provides a single,
effective knob that allows users to choose their preferencebetween
specialized and well-rounded objects. Indeed, we have seenfrom
above how the choice ofα helps overcome the issues faced by Ke-
meny. More detailed results on real data are shown in Section4.

Finally, instead of Kemeny-d, it is conceivable to use Kemeny to
aggregate all2d − 1 rankings according to all non-empty subsets
of attributes inA.3 We are not aware of any previous work ex-
ploring this approach. While this approach could potentially alle-
viate the second and third issues above, it still suffers from the first
(high computational complexity) and last (lack of any customiza-
tion). This approach would require the same amount of effortas
APST-α just to prepare the2d − 1 input rankings in all subspaces;
then, its rank aggregation is more expensive and not tunable.

3.2 Finding Topκκκ Objects
Computing the exact APST-α scores of all objects in subspace en-
tails computingδB(O, o) for all o ∈ O and non-emptyB ⊆ A,
which takesO(2d|O|2) time using a naive algorithm. However, for
the purpose of identifying objects most worthy of further investiga-
tion, we care only about the top-ranked objects. This observation
leads to the following problem definition:

Definition 7 (Finding Topκ Objects). Given a setO of objects, a
discounting factorα ∈ (0, 1), andκ ≥ 1, find the topκ objects in
O ranked by APST-α scores.

We show how to extend the algorithms in Section 2 to efficiently
compute approximate answers to the above question. We provide
only high-level insights here; see [23] for a full discussion with
more technical details. The key observation is that, in eachsub-
space, we need to compute only enough number of tiers in orderto
not miss any top objects overall, because score contributions from
memberships in subsequent tiers are so small that they have little
influence over whether an object can be in the topκ overall.

Given an error toleranceǫ > 0, we can compute a list of objects,
where each objecto gets an approximate scorẽΓ(o) ∈ (Γ(o) −
ǫ,Γ(o)]. Roughly speaking, we divide the error toleranceǫ among
the subspaces to be considered. Within a subspaceB with shareǫB
of error tolerance, we useProgressive or OnePass to “grow” the
skyband up to some top-τ skyband such that any object outside it
will receive a score belowǫB in B. We add the objects in this sky-
band to the output list (or update their scores if they are already in
it). With some care, we can ensure thatOnePass retains its advan-
tage overProgressive; i.e., it avoids computing the entire “next”
tier, which could include all remaining objects. The idea isthat we
only need to see enough number of objects in this tier before know-
ing that all its objects must score belowǫB, because APST scores
get “diluted” by larger tiers. When we are done withB, we can
derive a tighter bound (hopefully much less thanǫB) for errors in
B, and use it to update the error tolerance for remaining subspaces.

The user does not need to chooseǫ manually. A reasonable de-
fault is ακ−1, the value of the positional scoring function at rank
κ. With this setting, we can guarantee that any object not in the
output list cannot be among the topκ overall. The output list may
contain more thanκ objects, andǫ can be used to determine which
part of this ranking is guaranteed to be accurate. As future work,
we are developing an “online” version of the algorithm whereǫ is
incrementally tightened when given additional time or until the top
κ objects can be accurately separated from the rest.
3More precisely, such rankings are partial orders induced byskyband tiers
in their respective subspaces; Kemeny readily generalizesto partial orders.

 0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s)

Baseline Progressive OnePass

(a) NBA1

 0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s)

Baseline Progressive OnePass

(b) NBA3
Figure 2: Running time on NBA1, NBA3 (varyingτ).

0.01

0.1

1

10

100

1000

10000

100000

3 6 9 12 15

T
im

e
 (

s)

d

Baseline Progressive OnePass

(a) CORR

0.01

0.1

1

10

100

1000

3 6 9 12 15

T
im

e
 (

s)

d

Baseline Progressive OnePass

(b) ANTICORR

0.01

0.1

1

10

100

1000

3 6 9 12 15

T
im

e
 (

s)

d

Baseline Progressive OnePass

(c) IND
Figure 3: Running time on synthetic data (varyingd).

0

10000

20000

30000

40000

50000

60000

70000

100k 200k 300k 400k 500k

T
im

e
 (

s)

n

Baseline Progressive OnePass

(a) CORR

0

200

400

600

800

1000

1200

1400

1600

1800

100k 200k 300k 400k 500k

T
im

e
 (

s)

n

Baseline Progressive OnePass

(b) IND
Figure 4: Running time on synthetic data (varyingn).

 1

10

100

1000

10000

100000

1000000

50 100 150 200 250

T
im

e
 (

s)

Baseline Progressive OnePass

(a) CORR

 1

10

100

1000

10000

100000

50 100 150 200 250 300 350 400 450 500

T
im

e
 (

s)

Baseline Progressive OnePass

(b) IND
Figure 5: Running time on synthetic data (varyingτ).

4 Experiments
All algorithms were implemented in C++ and tested on a machine
with Intel Core i7-2600 3.4GHz processor and 7.8GB memory.

We use three datasets on NBA players.4 NBA1 contains theca-
reer total statistics forn ≈ 4K players. There ared = 15 per-
formance attributes, including the totalnumber of games played,
points, rebounds, etc., over the players’ whole careers.NBA2 con-
tains thecareer averagestatistics for the same set ofn ≈ 4K play-
ers. It has the same set of attributes as NBA1 exceptnumber of
games played(henced = 14), and the attribute values for a player
are derived by dividing the corresponding values in NBA1 by the
number of games played by the player.NBA3 contains the game-
by-game statistics for each player. There are a total ofn ≈ 400K
records withd = 14 performance attributes.

We also use synthetic datasets to test algorithm performance—
correlated (CORR), anti-correlated (ANTICORR), and indepen-
dent (IND), with varying size and dimensionality. CORR and AN-
TICORR are generated by first sampling data points randomly from
a multivariate Gaussian distribution; then, we stretch allpoints in
the direction of(1, 1, . . . , 1) to produce CORR, and we shrink
them in the direction of(1, 1, . . . , 1) to yield ANTICORR. This
way, the attributes are pairwise correlated or anti-correlated.

Additional results are in [23], including those on the National
Research Council survey of 127 computer science programs.

4.1 Efficiency of Top-τττ Skyband Algorithms
Given a dataset, a particularτ value, and an algorithm, we use the
algorithm to find the top-τ skyband for each and every subspace.
The total elapsed time for the2d − 1 nonempty subspaces mea-
sures the algorithm’s efficiency. We compareBaseline (Section 2),
Progressive (Algorithm 1), andOnePass (Algorithm 2).

4.1.1 Efficiency on Real Datasets
Figure 2 shows the execution time ofBaseline, Progressive, and
OnePass, under varyingτ = 10, 20, . . . , 100, on both NBA1 (n =
4K) and NBA3 (n = 400K). On both the small and large datasets,
our algorithms significantly outperform the baseline approach.

On the small NBA1 dataset (Figure 2(a)),OnePass is less ef-
ficient for smallτ and starts to outperformProgressive as τ in-

4http://www.databasebasketball.com/

creases. The reason is that the dimensionalities of subspaces in
which top-τ skyband is empty but cannot be pruned (by techniques
in Section 2.3) increase withτ . Computing the skylines for these
subspaces gets more expensive as SUBSKY becomes less efficient.
Results on NBA2 are similar to NBA1 and hence omitted.

On the large NBA3 dataset (Figure 2(b)), we also see that the
running time ofProgressive grows faster thanOnePass as τ in-
creases, for the same reason above. Moreover, attributes inNBA3
have smaller correlations than in NBA1, which induce largersky-
lines, makingProgressive even less efficient. Hence,OnePass

starts to outperformProgressive whenτ is small.
On both datasets, we observe the running time ofOnePass to be

roughly linear inτ , confirming the analysis in Section 2.2.

4.1.2 Efficiency on Synthetic Datasets
Varying d, Fixed n = 100K and τ = 100: Figure 3 shows that
bothProgressive andOnePass are faster thanBaseline by orders of
magnitude (vertical axis has logarithmic scale).Progressive runs
faster thanOnePass on correlated data (a). Their performances are
comparable on anti-correlated (b) and independent data (c). We
observe that the running times on CORR are much longer than
those on ANTICORR and IND for all algorithms. The reason is
that top-τ skybands in CORR may be non-empty even in high di-
mensional subspaces, while for ANTICORR and IND, they tend to
be empty and can be quickly detected and pruned as discussed in
Section 2.3. When the dimensionality is high, due to the way AN-
TICORR is generated for ensuring pairwise anti-correlation among
all attributes, ANTICORR becomes similar to IND; hence, we omit
the results on ANTICORR in the following discussion.

Varying n, Fixed d = 15 and τ = 100: From Figure 4, we ob-
serve again thatProgressive andOnePass outperformBaseline by
orders of magnitude, andProgressive slightly outperformsOnePass.
Their running times increase roughly linearly byn.

Varying τ , Fixed n = 100K and d = 15: Figure 5 shows
that Progressive and OnePass significantly outperformBaseline

on both CORR and IND. For all three algorithms, their running
times grow nearly exponentially inτ (vertical axis has logarithmic
scale).Progressive is slightly faster thanOnePass on CORR. On
IND, OnePass is slower thanProgressive under smallτ but be-
comes faster asτ increases.

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100

#
 H
o
F
e
rs

Rank

APST .99 APST .5 APST .01

weighted sum Kemeny d

Figure 6: Comparison of rankings
by number of HoFers in top-k.

0

10

20

30

40

50

60

70

80

0.21 0.60 0.80 0.90 0.95 0.97 0.99

R
a
n
k

artificial specialized player John Stockton

Figure 7: Ranks of an artificial
player vs. Stockton asα varies.

0

10

20

30

40

50

60

0.99 0.98 0.97 0.96 0.94 0.90 0.84 0.75 0.60 0.37

R
a

n
k

7

Figure 8: Effect ofα on the APST-α ranking of NBA players.

Overall, these experiments further confirm the significant perfor-
mance advantage ofProgressive andOnePass overBaseline.

4.2 Quality of Ranking by APST-ααα
We evaluate the quality of the rankings by APST-α, Kemeny-d,
and weighted-sum for the NBA2 dataset (career average statistics).
For each ranking, we measure its quality by the number of Hallof
Fame inductees (HoFers for short) found among the top-k players
according the the ranking, under variousk values.

We use7 out of the14 attributes in NBA2 for ranking because the
dataset did not record statistics such assteals, blocks, andminutes
for games played before 1971. Including these attributes would
unfairly underrate the players from the early days. We do notuse
NBA1 (career total performance) because it would also underrate
earlier players, as they did not play as many games as recent ones.

APST-α vs. Weighted-Sum We varyα in APST-α to produce
different rankings. For weighted-sum, the weights on the attributes
are determined as follows. We first find a linear classifier to sepa-
rate HoFers from non-HoFers that minimizes the number of inaccu-
rately classified players. We then use the unit vector perpendicular
to the linear classifier as the weight vector in weighted-sum.

Figure 6 compares weighted-sum, APST-.99, APST-.5, and APST-
.01, by the numbers of HoFers found among the topk players in
their rankings, respectively (ignore the curve for Kemeny-d for
now). We can see that APST-α contains visibly more HoFers in
top-k under most combinations ofα andk considered. Note that
the performance of all ranking methods are negatively affected by
active players who would be good candidate HoFers in the future,
but will not be eligible until 5 years after retirement.5 For example,
at k = 80, the topk players identified by weighted-sum include
48 HoFers. Among the remaining32, 23 are not yet eligible;9 are
eligible but not HoFers.

APST-α vs. Kemeny-d For Kemeny-d, solving for the optimal
ranking proved computationally challenging on this real dataset, re-
inforcing our discussion in Section 3.1. We model the optimization
as an integer program (IP) and solve it with CPLEX.6 Recall that
there are about4K players. On our reasonably powerful machine,
CPLEX caused memory overflow with close to300 players, and it
failed to find solutions with more than200 players because of pre-
cision issues. Thus, we improvise by first identifying200 players,
who are the set union of the7 top-40 lists for the7 attributes used
for ranking. Then, we run Kemeny-d on these200 players only.

In Figure 6, we can see that in most cases APST-α rankings con-
tain noticeably more HoFers in top-k than Kemeny-d. The scale
limitation Kemeny-d is to blame: there are91 HoFers in the4K
players in NBA2, but only59 of them are among those200 consid-
ered by Kemeny-d. In contrast, APST-α and weighted-sum have
been computed over all4K players. For comparison disregarding

5For weighted-sum, we excluded these players when training the weight
vector, but included them in ranking as with other methods.
6http://www.ibm.com/software/integration/optimization/
cplex-optimizer/

Kemeny’s scale limitation, we have also used APST-α to rank the
same subset of200 players; in that case APST-α and Kemeny-d
showed comparable performance (see [23] for results).

4.3 Effect ofααα in APST-ααα
To understand how the parameterα in APST-α helps in promoting
specialized vs. well-rounded objects, we inject an artificial player
into NBA2. Again, we use7 attributes, as explained in Section 4.2.
This artificial player has the highestpointsbut the lowest values for
all other attributes. Figure 7 shows how this player’s rank changes
in the APST-α ranking whenα varies. Asα decreases from1,
the artificial player quickly gets ranked high among real players.
Its rank converges asα approaches0, but never becomes the first
because it cannot surpass real players who have the highest values
on some other attributes. We have observed similar behaviors when
the artificial player specializes in other attributes. Thisresult agrees
with the discussion in Section 3 that a smallerα favors specialized
objects over well-rounded ones. An example of a specializedplayer
is John Stockton, a HoFer, who is second only to Magic Johnson
in assists per game, but is not ranked high in any other attributes
considered. His ranks under variousα values are also plotted in
Figure 7, which show a similar trend to that for the artificialplayer.

In Figure 8, we focus on the top30 players bound by APST-.9
in NBA2, under the three attributes:points, rebounds, andassists.
The figure shows how their ranking positions change byα (hori-
zontal axis has logarithmic scale). At the bottom of the figure, the
top 9 players always remain in the top13, because of their excep-
tional performance in multiple attributes. The ranks of theremain-
ing players respond well to changes inα. We can categorize these
players into two types: I) specialized players, who are exceptional
on very few attributes; II) well-rounded players, who are not ex-
ceptional on any single attribute, but are reasonably good on mul-
tiple attributes. In Figure 8, the curves of Type-I players go down
asα decreases, because smallα favors them more against other
players in at least half of the subspaces, i.e., those containing the
attribute on which they specialize. On the contrary, the curves of
Type-II players go up asα decreases. They get rewarded in higher-
dimensional subspaces for not being dominated by many players in
such subspaces, while they can be easily dominated by otherson
individual dimensions.

For a concrete example, consider the lowest-ranked playersat
largest and smallestα, respectively. The lowest ranked curve (53rd)
at the largestα (on the leftmost) corresponds to Nate Thurmond,
a HoFer, ranked 277th inpoints, 6th in rebounds, and 579th inas-
sists. As a representative Type-I player, whenα decreases, his over-
all rank becomes higher, ending eventually at 18th. In contrast, the
lowest ranked player (42nd) at the smallestα, Charles Barkley (an-
other HoFer), ranked 33rd, 23rd, and 223rd respectively inpoints,
rebounds, andassists. As a representative Type-II player, whenα
decreases, his rank goes all the way down from 11th. A tunable
α thus allows a user to specify personal preference between Thur-
mond and Barkley effectively.

5 Related Work
Our work is closely related to skyline computation for multidimen-
sional data, which can be roughly grouped into two classes. The
first class [3, 4, 8] includes Block Nested Loop (BNL), Divideand
Conquer (D&C) and their variants, and do not require precomputed
indices. The second class [18, 11, 15] adopts B+-tree or R-tree in-
dices to prune unnecessary computation. Skyline computation for
multiple (or all) subspaces are first studied by Pei et al. [17] (BUS
and TDS algorithms) and by Tao et al. [19] (SUBSKY algorithm).
The former are extensions of BNL and D&C algorithms that tra-
verse the subspace lattice without using indices, while thelatter fol-
lows the index-based approaches. Extending skyline tok-skyband
was first studied in [15].

While our notion of top-τ skyband is the first to provide a univer-
sal parameter suitable for selecting the right set of objects regard-
less of the subspaces being considered, there are previous works
proposing various advanced selection criteria when the size of the
skyline is too large. For example, BBS [15] and PBT [24] focus
on selecting points that dominate the most other points, andLin et
al. [13] focus on selecting a fixed sized set of points that collec-
tively dominate the most other points. More recently, Lu et al. [14]
propose the notion of layered skylines, where each layer is defined
as the skyline after objects in previous layers are removed.Com-
pared with these works, we believe our notion of top-τ skyband is
more appealing in terms of usability, because it has a simpleinter-
pretation and a single parameter works across all subspaces.

Linear ranking of objects for the purpose of answering top-k
queries has been studied extensively, including approaches using
skyline and skybands [21, 22]. These studies focus on performance
improvements and do not consider providing better control of the
semantics of the ranking functions. Kemeny ranking [7], on the
other hand, was proposed in social choice theory and offer good
semantics. As discussed in Section 3.1, however, it does notpro-
vide a flexible knob, such as ourα parameter, for adjusting the
ranking based on the users’ preference towards different types of
interesting objects. Moreover, computing Kemeny is NP-hard.

Several lines of work on data mining, to various extents, share
our focus on finding interesting claims that can be translated to sim-
ple, intuitive English statements. Local pattern discovery [26, 20]
and subgroup discovery [12, 10] aim to find semantically describ-
able subsets of data whose properties deviate strongly fromthe
overall distribution. However, our subsets of interest, based on
dominance, do not fit in their frameworks. Redescription min-
ing [16] seeks to describe a given subset of data using a sequence of
set operations. In contrast, we mine the subset in the first place, and
our desired description of the subset involves dominance and count-
ing instead. [9] finds “prominent streaks” (consecutive high/low
values in a data sequence) and captures the significance of such
streaks by skyline dominance test on streak length and value.

6 Conclusion
The tasks of finding one-of-the-few claims from data and ranking
objects by such claims are important to the nascent field of com-
putational journalism. We have introduced a simple and intuitive
problem formulation for finding all interesting claims, using a sin-
gle uniqueness thresholdτ that automatically adapts to data char-
acteristics and applies to all subspaces. We have proposed anovel
scheme for ranking objects, overcoming the inflexibility ofKemeny
without resorting to a large number of knobs like weighted-sum.
We have devised efficient algorithms for both tasks, using tech-
niques such as pruning and approximation to tame complexity. We

believe that our attention to usability will appeal to journalists and
citizens alike.
Acknowledgments Y.W., P.K.A., and J.Y. are supported by NSF
grants CNS-05-40347 and IIS-07-13498. P.K.A. is additionally
supported by NSF grants CCF-06-35000, CCF-09-40671, CCF-
10-12254, by ARO grants W911NF-07-1-0376 and W911NF-08-
1-0452, and by an ARL award W9132V-11-C-0003. J.Y. is addi-
tionally supported by NSF grant IIS-09-16027. C.L. is supported
by NSF Grants IIS-10-18865 and CCF-11-17369. Both J.Y. and
C.L. are also supported by HP Labs Innovation Research Awards.

References
[1] J. Bentley, H. Kung, M. Schkolnick, and C. Thompson. On the

average number of maxima in a set of vectors and applications.
JACM, 25(4):536–543, 1978.

[2] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse
and iceberg cube.ACM SIGMOD Record, 28(2):359–370, 1999.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In
ICDE, 2001.

[4] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. InICDE, 2003.

[5] S. Cohen, J. T. Hamilton, and F. Turner. Computational journalism.
Communications of the ACM, 54(10):66–71, 2011.

[6] S. Cohen, C. Li, J. Yang, and C. Yu. Computational journalism: A
call to arms to database researchers. InCIDR, 2011.

[7] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation
methods for the web. InWWW, 2001.

[8] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in
large data sets. InVLDB, 2005.

[9] X. Jiang, C. Li, P. Luo, M. Wang, and Y. Yu. Prominent streak
discovery in sequence data. InKDD, pages 1280–1288, 2011.

[10] B. Kavšek, N. Lavrǎc, and V. Jovanoski. Apriori-sd: Adapting
association rule learning to subgroup discovery.Advances in
Intelligent Data Analysis V, pages 230–241, 2003.

[11] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An
online algorithm for skyline queries. InVLDB, 2002.

[12] N. Lavrǎc, F. Železǹy, and P. Flach. Rsd: Relational subgroup
discovery through first-order feature construction.Inductive Logic
Programming, pages 149–165, 2003.

[13] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:The k most
representative skyline operator. InICDE, 2007.

[14] H. Lu, C. Jensen, and Z. Zhang. Skyline ordering: A flexible
framework for efficient resolution of size constraints on skyline
queries. Technical report, Aalborg University, 2010.

[15] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems.TODS, 30(1):41–82, 2005.

[16] L. Parida and N. Ramakrishnan. Redescription mining: Structure
theory and algorithms.AAAI, 20(2):837, 2005.

[17] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao,
J. Yu, and Q. Zhang. Towards multidimensional subspace skyline
analysis.TODS, 31(4):1335–1381, 2006.

[18] K. Tan, P. Eng, B. Ooi, et al. Efficient progressive skyline
computation. InVLDB, 2001.

[19] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of
skylines in subspaces. InICDE, 2006.

[20] Y. Tian, G. Weiss, D. Hsu, and Q. Ma. A combinatorial fusion
method for feature mining. InKDD, volume 7, 2007.

[21] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava.
Ranked join indices. InICDE, 2003.

[22] A. Vlachou, C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis.
Skyline-based peer-to-peer top-k query processing. InICDE, 2008.

[23] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu. On “one of the few”
objects. Technical report, Duke University, Feb. 2012.http://www.
cs.duke.edu/dbgroup/papers/2012-WuEtAl-oneoffew.pdf.

[24] M. Yiu and N. Mamoulis. Efficient processing of top-k dominating
queries on multi-dimensional data. InVLDB, 2007.

[25] H. Young. Social choice scoring functions.SIAM Journal on Applied
Mathematics, pages 824–838, 1975.

[26] S. Zhang and M. Zaki. Mining multiple data sources: local pattern
analysis.KDD, 12(2):121–125, 2006.

