On “One of the Few” Objects

You Wu' Pankaj K. Agarwal'

Chengkai Li¢

Jun Yangt Cong Yu¢

fDuke University, *University of Texas at Arlington, {Google Research

ABSTRACT

Objects with multiple numeric attributes can be comparethiwi
any “subspace” (subset of attributes). In applicationfraagccom-
putational journalism, users are interested in claims efftdrm:
Karl Malone is one of the only two players in NBA history with
at least 25,000 points, 12,000 rebounds, and 5,000 assisisé’s
career. One challenge in identifying such “one-of-tké&-claims

(k = 2 above) is ensuring their “interestingness.” A smials not

a good indicator for interestingness, as one can often makie s
claims for many objects by increasing the dimensionalitythef
subspace considered. We propose a uniqueness-basedtintere
ness measure for one-of-the-few claims that is intuitiverfon-
technical users, and we design algorithms for finding adiriexting
claims (across all subspaces) from a dataset. Sometiners, aie
interested primarily in the objects appearing in thesentdaiBuild-
ing on our notion of interesting claims, we propose a schemne f
ranking objects and an algorithm for computing the top-eahéb-
jects. Using real-world datasets, we evaluate the effigi@iour
algorithms as well as the advantage of our object-rankihgrse
over popular methods such as Kemeny optimal rank aggregatio
and weighted-sum ranking.

Categories and Subject Descriptors

H.2.8 [Database Managemerjt Database Applications-gata min-
ing; H.2.4 [Database Managemerjt Systems—query processing
K.4.0 [Computers and Society. General

Keywords

Computational journalism, fact checking, skyband, ragkin

1 Introduction

Raw data in various domains are becoming more widely addessi
e.g., play-by-play game logs for sports, databases of cigmfia
nance and voting records for politics, etc. An increasingber of
news stories are driven by information extracted from d&tam-
putational journalism [5, 6] is a nascent field about usingeoting
to help improve effectiveness and reduce cost for jourmmalvghich
serves a vital role in our society. One important goal in cotap

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

KDD’12, August 12-16, 2012, Beijing, China.

Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

tional journalism igsemi-)automatic lead identificatidnom data,
i.e., finding interesting information nuggets from raw déat lead
to further investigation and/or news stories around themthis
paper, we take a first step toward this goal by consideringalpo
form of claims exemplified by the following:

e There is no player in NBA history with more points, more re-
bounds, and more assists than Oscar Robertson in one’sicaree

e Rick Perry is one of the only three candidates in the 2012 US
federal election cycle to have received at least $600k from
“lawyers & lobbyists” (an interest group that is usually pro
Democrat) and $400k from “energy & natural resources” (usu-
ally pro-Republican).

These two claims share a common structure: both are about-an o
ject being one of the few that “stand out” when compared atingr

to a set of numeric attributes. More precisely, given a sebggcts

O, each with a setl of numeric attributes, we considene-of-the-
fewclaims of the following form:

Object o is dominated by fewer than k objectsin a non-empty
subset B C A of attributes.

Here, we say’ dominates in B if o’ is no worse thamw for all at-
tributes inB, ando’ is strictly better tham for at least one attribute
in B. Journalists are interested in two tasks: 1) finding alléiest-
ing” one-of-the-few claims from a given dataset; 2) rankitgects
based on what one-of-the-few claims can be made about theen. T
first task allows journalists to identify claims that can ksed in
stories or serve as leads for further investigation. Thersgt¢ask
provides an object-centric view that allows journalistptmritize
their investigation of particular objects (especially wttbere are
many interesting one-of-the-few claims).

Task 1: Finding Claims Our goal is to find interesting one-of-
the-few claims in all “subspaces” (i.e., subsets of attébli One-
of-the-few claims are closely related to the concepk-akyband
for multi-dimensional data [15]. Intuitively, thie-skyband of a set

O of objects in subspac® is the subset of objects each dominated
by fewer thank other objects irB. (The better-known notion of
skylineis a special case df-skyband wheré: = 1.) From the
k-skyband inB, a one-of-the-few claim can be generated for each
object in the skyband straightforwardly. While variousalthms
exist for computing &-skyband giverk and B, they do not ad-
dress the key challenge of ensuring “interestingness” ettaims
they find in a way that is easy for users to control and intérpre
Although the parametek can be tuned, it is a poor indicator of
interestingness, as illustrated by the following example.

Example 1. Consider the set of nearlB000 players in NBA his-
tory, with stats such as career totpbints rebounds and assists
Being one of the top0 leading scorers—i.e., in the0-skyband
for the single-attribute subspadgoints}—is quite an impressive

25 12

Johnson
Chamberlain | * o ’
20 19Stockton 4 gopartson
2 s Pettit ol
° James R
€ +Baylor ‘3 * Bird
%10 Abdul-Jabbar , g ot Chamberlain
& Bird * Jordan oBaylor
o James .
Johnson Robertson® + Abdul-Jabbar ¢
Jordan 3 Pettit
LA
Stockton
0 0

10 15 20 25 30 35 0 5 10 15 20 25

Points Rebounds

(a) Positive:pointsvs.rebounds (b) Negative:reboundsys. assists
Figure 1: Correlation in NBA player stats.

feat. However, if we expand the subspace points rebound$,

Example 3. Both John Stockton and Larry Bird are inductees into
the Naismith Memorial Basketball Hall of Fame, but they hdife
ferent playing styles. Stockton has the second highesitagsér
game in NBA history, but is not very impressive in points er re
bounds. Bird ranks 17th in points, 60th rebounds, and 44thsin
sists. Stockton and Bird exemplify what we call “specialfzand
“well-rounded” objects, respectively. How to rank spe@ald ob-
jects relative to well-rounded ones often depends on thteeggror
may simply be a matter of personal opinion.

A popular method for ranking objects based on multiple input
rankings iskemeny optimal rank aggregatidii], or Kemenyfor
short. It produces a “consensus” ranking that minimizesnima-
ber of pairwise disagreements (in the relative orderingnaf ob-
jects). When aggregating object rankings under individttaibutes,
Kemeny tends to downgrade objects that rank extremely tigh i

142 players now fit the bill—i.e., each is dominated by fewer than few attributes but considerably low in other attributesr Esam-

50 others in{points rebound$. If we further includeassistsn the
subspace324 (almost9% of all) players will be in thes0-skyband.

Example 1 clearly illustrates why we cannot use a univetgal
ensure interestingness of one-of-the-few claims for dffié sub-
spaces: the size of the skyband tends to increase rapidiynasd
sionality goes up. For example, the expected numbérsiyband
(skyline) objects ig)(In'®I=1|0|/(|B|—1)!), if object ranks by in-
dividual attributes are uniformly and independently distted [1],
e.g., when objects are uniformly distributed in a box. Witfixad

ple 3 above, Bird, who is well-rounded, would be ranked a®the
by Kemeny, while Stockton, who is specialized, would be asde
the 139th, which may not be acceptable to some.

While Kemeny leaves no option for customization, anothgr-po
ular methodyveighted-sum rankingxposes too many knobs. With
weighted-sum, a user specifies a preference vector, whospaeo
nents represent weights assigned to attributes; objeetsaaked
according to their projection onto this vector (i.e., weeghcom-
bination of their attribute values). Fordadimensional dataset, the

k, too many claims may be in high-dimensional subspaces, mak- User needs to specify weights; even if we learn these weights

ing them uninteresting. Clearll,must be adjusted 4%| changes.
Furthermore, the appropriate setting fors not simply as a func-
tion of dimensionality, because data characteristics—eagrela-
tion among attributes—also matter, as illustrated below.

Example 2. We plot a subset of NBA players, with attribupeénts
rebounds and assistsper game, as points in subspacfsoints
rebound$ (Figure 1a) and{reboundsassist$ (Figure 1b). It is
easy to see that the skybands in Figure 1a tend to be sma#er th
those in Figure 1b, because of the positive correlation keetw
pointsandreboundsand the negative correlation betwerbounds
andassists For example, th8-skyband in{points rebound$ con-
tains 5 players (Jordan, Chamberlain, James, Baylor, and Pettit),
which translate intd> one-of-the3 claims; on the other hand, the
3-skyband in{reboundsassist$ contains9 players (all except Jor-
dan). Hence, no single choice kfis appropriate for these two
subspaces of the same dimensionality.

automatically, training examples must be provided. Sudjuire-
ments may overwhelm journalists with little time or tectaliex-
pertise. Our goal is to devise a ranking scheme with as felwkas
possible, which allows customization without overwhelgirsers.

Main Contributions First, we propose a simple but effective def-
inition for the interestingness of a claim based on its “umigess.”
For a one-of-the-few claim (with a particul&rin a particular sub-
spaceB) to be interesting, we require that this claim (with the same
k andB) cannot be made for more tharobjects. Unlikek, 7 is a
user-defined threshold that applies universally to all gabss, sig-
nificantly reducing the burden on the user to define intargagss.
For each subspace, our definition automatically adajtsa data-
dependent way, and naturally excludes those high-dimeaksub-
spaces where no claims are unique enough. Furthermisesasy
to understand for non-technical users.

Based on this definition, we introduce the problem of findithg a
interesting one-of-the-few claims across all non-emptyspaces,

Example 2 above clearly illustrates that we cannot hope {0 de given the uniqueness threshotd The fact that ourk is data-

fine interestingness, which is data-dependent, by a fumaifo:
and|3B| alone. Asking the user to pick the rightmanually for
each and every subspace is also infeasible. Our quest igitariin
effective way of ensuring claim interestingness such thatisers
are not required to tune lots of parameters; 2) the resuteasy
to understand and explain in layman’s terms. Both propedie
critical for computational journalism, where journalistee often
non-technical and the results need to be explained to therglen
public in stories. Furthermore, given the interestingmasasure,
we need to address the challenge of finding interesting itleco
few claims in all subspaces efficiently.

Task 2: Ranking Objects Even with an appropriate definition
of “interestingness,” many objects may be the subject okast
one interesting one-of-the-few claim in some subspace tagieof
ranking objects allows users to prioritize their effortiméstigating
objects. From our experience analyzing real data and piredity
user studies, different data domains and user prefererate®rc
some degree of customization in ranking, as illustratedvael

dependent and not fixed raises unique challenges not addrbgs
previous work on computing skylines and skybands. We defise
ficient algorithms that avoid redundant computation. Irtipalar,
we are able to improve the worst-case complexity of findihgnal
teresting claims in a subspace frad{|O|?) to O(7|0|), which is
attractive because in practice is small for claims to be unique.
Building on the definition of interestingness, we proposeweh
scheme for scoring and ranking objects based on the aggtegat
interestingness of claims involving them. One key insigktia-
guishing our scheme from others is that we in effect aggesgat
ranks across all non-empty subspaces as opposed to jugtdindi
ual attributes. Our scheme supports tuning by a single peteam
«, which captures user preference between specialized altd we
rounded objects, and overcomes the inflexibility of Kemerighw
out resorting to an overwhelming number of knobs like wesght
sum. Extending the algorithms for finding all interestingiiis,
we show how to compute top-ranked objects efficiently giwen
We experimentally demonstrate, on real datasets, thatahense

is able to produce rankings comparable to Kemeny and wealghte
sum while offering more effective customization.

2 Finding One-of-the-Few Claims

Preliminaries Consider a seéf of n objects, each witld numeric
attributesA = {41, Az, ..., Aq}. A subspaces (more precisely,
spanned by) a subset of the attributes. The set of all subspzc
A forms a lattice under containment relation. We say thatsades
B, is anancestor(descendantof subspacé; if B1 C B, (resp.
By O Bs). We sayB; is aparent(child) of B, if B; C B, (resp.
B1 D B») and their cardinalities differ by one.

We sayo; dominateso. in subspaceB, denotedo; =5 02, if
) VA € B,01.A > 02.A,and ii)JA € B,01.A > 02.A. Clearly,
dominance is transitive: i, =5 02 andos >3 03, theno; >=x o0s.

Definition 1 (Dominating Subset;-Skyband, Skyline, Tier)

e Thedominating subsetf o € O in subspaceB C A, denoted
D3(0,0), is the subset of objects that dominatén B; i.e.,
93(0,0) = {0/ €0 | o ~x O}. Letdg(o,o) = |@5 (0,0)|
denote the size of the dominating subset.

e Thek-skyband(k > 1) of O in subspaceB, denoteds% (0),
is the subset of objects ih where each is dominated by fewer
thank objects inO; i.e., 6% (0) = {0 € O | 65(0,0) < k}.

e Theskylineof O in subspace is G5 (0), i.e., thel-skyband.

e Thei-th tier (i > 1) of O in subspaceB is the subset of objects
in O where each is dominated by exaatly 1 objects inO; i.e.,
{0€0]3(0,0) =1i—1}.

Clearly, by definition, thé-skybandS% (O) is the disjoint union
of all ¢-th tiers with: < k, and the difference between tlie
skyband and thék — 1)-skyband is the-th tier!

To illustrate, consider the sétof 10 NBA players and subspace
B = {reboundsassist$ shown in Figure 1b.D (0, Stocktor
= {Johnson, so dx (0O, Stockton) = 1. &3(0) = {Johnson
RobertsonBird, Chamberlain is the skyline (o -skyband), which
is also thel-st tier. 63, (0) = &% (0) U {Stockton Baylor, Pettit:
is the2-skyband, where Stockton, Baylor, and Pettit are in the 2nd
tier and each dominated by exactly one objeddir&3,(0), the3-
skyband, additionally includes the 3rd tiglamesAbdul-Jabba¥,
leaving only Jordan out, as mentioned in Example 2.

Problem Statement As motivated in Section 1, while each object
in thek-skyband translates into a one-of-the-few claim, we measur
the interestingness of this claim by the number of objeatsvfich
similar claims can be made, i.e., the size of khgkyband. Instead
of struggling with setting:, which depends on the subspace and ob-
ject distribution, a user should be able to specify a singleshold

7 that caps the number of similar claims. Therefore, we intoaed
the concept ofop-r skybandbelow. While the concept is closely
related tok-skyband, a crucial difference is that a toepskyband

is defined by its size, while A-skyband, defined by its number of
tiers, can be arbitrarily large.

Definition 2 (Top-r Skyband) Givenr > 1, thetop-r skybandof
a set of object®) in subspaceB, denotedd3 () (or @7 if context

is clear), is thek-skyband wheré = max{k | 7 > |&%(0)|}.

In other words, the top-skyband is the largest skyband whose size
does not exceed.

The fact that an objeat belongs to the top- skyband with the
k-th tier as its last non-empty tier—or alternatively, thakyband
with size no more tham—translates into the following statement:
INote that tiers differ from the well-known concept ofaximal layers

where the next maximal layer is defined as the skyline of thefsebjects
that are not in previous layers.

Objecto is dominated by fewer thah objects inB, and this
claim cannot be made for more tharobjects.

Intuitively, measures the uniqueness of the claim made by the first
part of the above statement. For example, in Figure 1a, seppe
setr = 3. ®” = {ChamberlainJordar} is the 1-skyband. The
2-skyband would be too big, because it also contains Petitlds,
and James, and has size- 7. Note that the 3rd tier is empty—no
player is dominated by exactly two others in this example-thgo
3-skyband (recall Example 2) is the same as2tskyband.

The problem of finding all interesting one-of-the-few claioan
now be formulated as follows:

Definition 3 (Finding Top+ Skybands in All Subspaces)Given
the setO of objects and a user-specified thresheldfind ®% (0)
for every non-empty subspa®eC A.

For each subspace, the membership of an objedi’ircorre-

sponds to a one-of-the-few claim that cannot be made for more
thanr objects. This definition leads naturally to some desired fea
tures. In a single-attribute subspa@é, contains essentially the top
7 objects ranked by this attribute. As the subspace dimeakipn
goes up, the number of tiers @ decreases in an automatic, data-
dependent manner until these tiers contain no more thabjects.
Thus, with this problem formulation, users need not magyztk
the number of tiers in the skyband for each subspace. Targlies
consider again Example 2. Suppose the usersets8. For sub-
space{points reboundg (Figure 1a)®" would be thes-skyband.
In contrast, for{reboundsassist$ (Figure 1b),®” would be the
2-skyband. Finally, in high-dimensional subspaces whemaaoy
objects are on the skyline that no claims are interestingpoab-
lem formulation correctly leads to an empby .

Overview of Solutions The rest of this section discusses how to
find all interesting one-of-the-few claims. Ata high lewsk 1) tra-
verse the lattice of subspaces in some manner, and 2) coripute
for each subspace we visit. Techniques for improving efficyeex-

ist both across subspaces and within each subspace. Fogftbdi

in a given subspac®, we propose two algorithms in Sections 2.1
and 2.2. We then show in Section 2.3 how to explore the lattice
subspaces using these algorithms as subroutines.

Note that computing@™ for a single-attribute subspagel } sim-
ply involves finding the top- objects sorted byl; algorithms in
Sections 2.1 and 2.2 are needed only wfgn> 1.

Also note that it is possible to devise solutions by adaptixigt-
ing techniques from literature. We present one such saidtere,
which we call Baseline. For lattice traversalBaseline adopts the
strategy ofbottom-up skyline (BUS)f Pei et al. [17], who study
the problem of computing the skyline in every subspace. B&alg ¢
be extended to computeskyband ifk is given. In each subspace,
Baseline starts witht = 1, and computes thie-skyband and incre-
mentsk, iteratively, until thek-skyband contains at leastobjects.
Obviously, this iterative process of finding the righteads to a lot
of redundant computation. Our new algorithms avoid suclhimed
dant computation, and we experimentally validate theimathkges
overBaseline in Section 4.

2.1 Progressive Topr Skyband Algorithm

As it turns out, all objects ad in the (k + 1)-th tier must lie on the
skyline of the set of remaining objects after those inkkekyband

are taken out. This simple but useful observation has piglieen
made in other contexts too; we state it as a lemma here for com-
pleteness (see [23] for proof):

Lemma 1. &5(0) \ &6%(0) C 65(0\ 65(0)).

Algorithm 1: Progressive(O, B,)

Algorithm 2: OnePass(0, B, 1)

Data: object set), subspacé, and size threshold
Result @7, (0)

1 &+ Tk« 0

2 while true do

S 640\ ®);

k' + min{d5(®,0)+ 1|0 € S}

AP+ {o€ S| dp(P,0)+1=Fk};

if |® U A®| > 7 then break;

D+ DUAD; k + K;

3
4
5
6
7
8 return @;

Lemma 1 suggests the following strategy, which we éaib-
gressive (Algorithm 1), for computing the top- skyband for a
given subspace. Given Progressive computes the answér tier
by tier, starting from the first. By Lemma 1, to obtain the nect-
empty tier, we first compute (Line 3) the skylitefor the set of
remaining objects (those outside the cur@htObjects in the next
non-empty tier A® on Line 5) are those ii$ whose dominating
subsets irO are the smallest in size. We add this tiedias long
as their set union has no more thaobjects. It is easy to see that
at the end of each iteration, the invariant that= &% (0O) holds.
Progressive terminates if the addition of the next non-empty tier
causes the size df to exceedr.

Note thatin Lines 4 and 5 we compute the size of the dominating
subset foro € S in ® instead of0. This optimization is correct
because, being on the skyline ®f\ @, o is not dominated by any
object inO \ @, s0dz (P, 0) = 65(0,0).

Further Optimizations For clarity of presentation, Algorithm 1
leaves out some details, which we describe below. Suppasénth
the previous iteration, the skyline computed w#sandA® C S
was added to the answer set. For the current iteration, &g ®
see thatS \ A® C S; i.e., all remaining objects i will appear
again in the skylineS to be computed. This observation leads to
two optimizations. 1) We can speed up successive skyline com-
putations on Line 3 across iterations. Specifically, we adap
SUBSKYalgorithm of Tao et al. [19] (in general any skyline algo-
rithm can be used). The original SUBSKY uses an index whose
size is linear in|O| to help compute the skyline @ in any sub-
space. During execution, SUBSKY always maintains the skyli
for the subset of objects that it has examined. In our adafo
SUBSKY, we remove from (a copy of) the SUBSKY index any
object added taP, and we “seed” each invocation of SUBSKY
with S\ A® instead of starting it with an empty skylin) We
can reduce the number of dominance tests involved in det@rgi
55 (®, 0) foro € SonLines 4 and 5. Foranye S\A® C S, we
have already computei: (O, o) in the previous iteration, so there
is no need to recompute it.

Complexity Following convention [19], we measure the perfor-
mance of our algorithms by the number of dominance te3ts-
gressive performs two types of such tests: 1) those involved in com-
puting the skyline of the remaining objects, and 2) thoselired

in computing the sizes of the dominating subset§) ifor objects
on that skyline. The number of type-1 tests depends on tHasky
algorithm; Tao et al. [19] describes various technique®thuce it
for SUBSKY. However, in the worst casgp| is almostr in the
final iteration, while|.S| can be roughlyO| — (i.e., the next non-
empty tier contains nearly all remaining objects). In thase, the
total number of dominance tests would®¢|0|?).

2.2 One-Pass Topr Skyband Algorithm

Progressive has poor worst-case complexity: it computes the entire
next tier in order to decide whether to add that tier to thevensbut

Data: object set), subspacé, and size threshold
Result @7, (0)

1 O+ T kT,

2 foreacho € O in safe order (Definition 4§lo

3 clo] < 0; // count the number of objects {h dominatingo
4 foreach o’ € ® do// heuristically in ascending order efo’]
5 if o’ =5 othen c[o] + c[o] + 1;

6 if c[o] > k then break; // no need to count further

7 if clo] < k then

8 P+ PU{o};

9 if |®| > 7 then// @ is too big; remove the last tier
10 k < max{c[0] | o’ € D};

11 D — D\ {o €®|clo] =k}

12 if k& = 0 then break;

13 return ®;

that tier can be larger than In this section, we show how to tame
the complexity with another algorithr®nePass. This algorithm
works by considering objects one by one in a particular orflach
object is either added to the answer $edr dropped. Onc@ has
more thanr objects, the last tier is peeled off. The processing
order is chosen in a “safe” way, as defined below, which allows
OnePass to cap|®| atr at all times, thereby bounding the number
of dominance tests to|0|, in contrast taD(|O|?) by Progressive.

Definition 4 (Safe Ordef). An order for a set) of objects isafe
(for OnePass) if o' precedes wheneven’ -3 o.

Algorithm 2 describenePass. The details of implementing
the safe order will be given later in this section. Here, wst fix-
plain the algorithm and establish its correctness, the ofuxhich
is captured by the lemma below (see [23] for proof).

Lemma 2. The following invariants are true at the end of each
iteration of OnePass's main loop, wherg9* denotes the set of all
objects processed so far.

(I-1) Forall o’ € @, c[o'] = 65(0,0").
(1-2) = &5 (0%).
(I-3) [&5TH(O)| > 7 (if |O] > 7).

Consider the next objeetin the safe ordeitOnePass first checks
whethero is dominated by at leagt objects in® (Lines 3-6). If
yes, o is ignored because it would be in tii¢ + 1)-th or later
tier (by (I-1)) and therefore cannot be #7;(0) (by (I-3)). We
stop counting as soon a$o| reachesk. Heuristically, we check
o against “better” objects i@ (i.e., those with smaller dominating
sets) first, in hope of reachirigsooner with fewer dominance tests.

If clo] < k, OnePass addso to ® (Lines 8) and remember the
countc|o]. If doing so makes$®d| exceedr we remove the last tier
from ® and update: accordingly (Lines 9-11), to preserve (I-2)
and (I-3). Ifk drops to0 (Line 12), that means even the skyline has
size bigger tham (by (I-3)), so we can terminate (and retuer)
without processing the remaining objects. After all obgentO are
processedp is the tops skyband of9 in B, by (I-2) and (I-3).
Producing a Safe Order The simplest approach f@nePass to
produce a safe processing order is to sbiy B (lexicographi-
cally, with an arbitrary ordering among the attributes)jchitakes
O(]|0]log |O|) time. To avoid the cost of a full sort, we precom-
pute, for each of thd attributes inA, a version of9 sorted by that
attribute. Given a subspa@ OnePass picks the attributed € B
with the largest domain (a heuristic also adopted in [2, 1&Hd

’Note that a safe order is equivalent to a topological order.

use the version of sorted byA. During processing, iDnePass
finds that a group of objects tie id, OnePass further sorts this
group by the fullB. As a further optimization, before sorting this
group, OnePass first performs Lines 3—-6 on each objecin the
group, and removes those witfo] > k; the filtered group is then
sorted and further processed. In the worst c@sePass still needs
to pay O(|9|log |O|) for sorting. In practice, however, we have
found our heuristics effective in eliminating sorting, base most
ties tend to occur later in processing; by that time, mosedisj
will be eliminated by Lines 3—-6. Furthermore, the cost o&filig

is low because andk are typically small.

Complexity BecauseOnePass caps|®| at = at all times, the
number of dominance tests is boundedh§|. As explained above,
sorting addsD(|O| log |O|) in the worst case, though in practice the
extra cost is rarely incurred. Furthermore, in high-diniemal sub-
spacesk decreases rapidly @nePass examines more objects. It

is likely that an object will be discarded after a few domicatests.
OnePass also detects the case when the size of the skyline would
exceedr, and is able to terminate without examining the whoéle
Thus,OnePass is expected to run faster in practice than the bound
suggests, particularly for high-dimensional subspaces.

2.3 Lattice Traversal

Finding all interesting one-of-the-few claims requiresnguiting

®7 in every non-empty subspace. We now describe, on a high level
how to accomplish this task using eitherogressive or OnePass

as the building block; details can be found in [23].

For Progressive, computation in every subspace starts with find-
ing the skyline. For this part, we directly apply the techugg of
Pei et al. [17], who study the problem of computing the slg/lim
every subspace. Their techniques traverse the latticelspsiees
in either bottom-up or top-down order, and try to share caamn
across subspaces. For a given subsfaamnce we have computed
the skyline using these techniques, we proceed Riitigressive to
compute the rest 6™ as discussed in Section 2.1.

For OnePass, we traverse the lattice of subspaces top-down, i.e.,
going from low- to high-dimensional subspaces. We use the to
down technique from Pei et al. [17] to help compute the sleyim
a subspace using those found in its parent subspaces. Moreov

we use thed” in parent subspaces to fine-tune the safe processing

order in the current subspace.

Furthermore, during a top-down lattice traversal, we use tw
tests to prune uninteresting high-dimensional subspaces the
search. 1) If the “distinct-count” of skyline objects T (i.e., the
number of distinct projections ontB) is greater thar, & must
be empty for all descendant subspaces. 2) G®eifi the union of
skyline objects from parent subspaces already containe than
7 objects, % (O) must be empty.

3 Ranking Objects

This section presents our solution for ranking the Gebf ob-
jects with attributesA, based on what one-of-the-few claims can
be made about them across subspaces, and how interestigg the
claims are. Section 3.1 proposes a novel scoring schemedhpat
tures varying user preferences with a single parametete\@c-

tion 3.2 describes how the algorithms in Section 2 can bedgpesl

to compute top-ranked objects.

3.1 Scoring Objects

A common approach for ranking a s@tof objects (e.g., political
candidates) is to combine multiple ranked lists of them.(eby
voters). Traditionally, the scores for objects in a singge dre as-
signed according to positional scoring vector (or functiorf5],

v, which maps a rank (1 < ¢ < |O[) to a numeric score(i),
such thaw(i) > v(i + 1). Some examples includgorda, where
v(i) = |0] — 4, andPlurality, wherev(1) = 1 andwv(i) = 0 for

i > 1. Then, the overall object ranking is done according to the
aggregate score of each object, usually defined as the suta of i
scores across all ranked lists.

A straightforward approach would be to have one rankedfliét o
by each attribute itd, and sum up an object’s scores across these
lists. However, this approach has serious drawbacks,cpéatly
in handling data with correlation. Supposeis ranked high for
two correlated attributes (e.g., contributions from firmaod real
estate sectors, or minutes played and points scored), whils
ranked equally high in two anti-correlated attributes (econtri-
butions from oil companies and environmental groups, couelds
and assists). Since it is harder to rank high for two antredated
attributes, we should score higher tharp, overall. However, the
approach of summing scores over individual attributes asBign
the same score @ ando. (assuming all other factors are equal).

All-Subspace Positional Scoring with Ties (APST) To resolve
the issue above, we propodd-Subspace Positional Scoring with
Ties The key novelty is to aggregate object scores not just acros
individual attributes, but instead over all non-empty qates. The
dominance relationship in a multi-dimensional subsp&dékely
does not induce a totally ranked list; hence, we draw indigim
Section 2 to score objects using the partial order in a watyréa
flects the uniqueness of one-of-the-few claim®inThe result is a
scoring scheme that naturally adapts to data distributions

Definition 5 (All-Subspace Positional Scoring with Ties (APST))
For each non-empty subspate C A, sort O in non-descending
order of 3 (0, 0), the size of the dominating subset for eack
O; ties are broken arbitrarily. Denote this ranking bys, where
75(0) € [1,]0[] is the rank ob in this ranking. Lefr’s (0) , 7 (0)]
denote the range of ranks occupied by objects that tie with
65(0,0); i.e., T (0) = min{mg(0’) | §5(0,0') = 55(0,0)}
and 73 (0) = max{7ms (o) | 95(0,0") = 65(0,0)}. Given a
positional scoring functiom wherev(1) > v(2) > --- > v(|0]),
the (APST) score of objeat in B, denotedys (o), is given by:

1
7\'%(0)77\';(0)4»1

B (0) = : ZiG[ﬂ;(o),‘n%(o)] ’U(’L)
Overall, theAPSTscore ofo, denoted™(o), is the total ofo’s score

over all non-empty subspacel(0) = 35 4 5.5 75(0) -

Intuitively, for each subspac®, APST sorts objects by tiers, and
each tier occupies a range of ranks. The total score assigned
to such a range of ranks is distributed equally among objects
the corresponding tier, as we consider them tie®inThe larger
the tier, the less “unique” each object, and the smaller Hezes
each object will receive. A number of desirable propert@kodv
directly from the definition. For example, APST favors tiénat
are smaller in size or occupy earlier ranges of ranks; sge¢2a
more formal discussion.

Furthermore, aggregating scores over combinations dfatés
make APST naturally adaptive to correlations in data. Gimrsi
again the example earlier in this section, wherés ranked high for
two correlated attribute§A,, B:1} andos is ranked equally high in
two anti-correlated attribute§A2, Bo}. Since it is rare to rank
high for anti-correlated attributes, few objects will beits tier or
an earlier tier in{ A2, B> }; therefore, APST will score; high in
{A2, B2}. On the other hand, fas;, sinceA; and B, are corre-
lated, there will likely be more objects dominatingin {A:, B1}
than those dominating: in { A2, B2}. Thus, all other factors being
equal, APST will score. higher thar; overall.

Adjustable Discounted APST (APSTe) What remains to be
discussed is the choice of the positional scoring functionTo

Fourth, Kemenyd does not allow for customization—if it fails
to recognize a worthy object there is little that a user car@othe

make our scoring scheme easy to use, we have so far congciousl other hand, the discounting factarin APST« provides a single,

avoided introducing any tuning parameters. However, asvatet

in Example 3, we would like some degree of customization for
ranking “specialized” objects relative to “well-roundeaiies. Re-
call that a specialized object is exceptional in few attiésusuch

as Stockton in assists), while a well-rounded object is jtiaral

in none, but reasonably good in many, so as to be exceptidmeh w
all those attributes are combined (such as Bird). To capiseg’'s
wide ranging preferences for one or the other, we design asir p
tional scoring function with a single tunable parameterdbieve
that flexibility while retaining APST's desirable propesi

Definition 6 (Adjustable Discounted APST (APST})). Leta be a
real number in(0, 1). Theadjustable discounted APST (AP3J-
scoreof an objecto € O is o's APST score with positional scoring
functionve, (i) = o'~ 1.

Intuitively, the discounting factory, controls how much more
higher ranked objects weigh against lower ranked objeatseby
affecting how specialized and well-rounded objects scelaively
overall. In a higher-dimensional subspagetiers tend to be larger.
Hence, an object that is dominated by few other® ifput by more
objects in subsets dB) tend to score lower iB, compared with
an object with the same number of dominating objects in atowe
dimensional subspad®’. With a smaller, the score gap is wider,
so overall, it is more difficult for well-rounded objects tarpass
specialized ones, whose scores come mostly from conwitsity
low-dimensional subspaces. In Section 4, we will see hoecéffe

« is as a tuning knob on real data—compared with weighted-sum

(discussed in Section 1), APSiThas onlyl knob instead of, but
produces comparable rankings as highly tuned weighted-sum

Comparison with Kemeny Optimal Rank Aggregation In ad-
dition to flexible approaches where users are allowed toifgpec
their preferences, studies in social choice theory haveial@sti-
gated an alternative where some notion of “optimality” isired
for the resulting ranks. A popular representative of thisrapch
is Kemeny (optimal rank aggregatianf\s discussed in Section 1,
given a set of rankings fap, a Kemeny optimal rank aggregation
is a ranking that minimizes the total number of pairwise giisa-
ments between this ranking and the input rankings.

One natural way to use Kemeny is to apply it to h@nkings ac-
cording to the individual attributes id. This approach, which we
call Kemenyd, has several issues. First, finding a Kemeny optimal
aggregation is NP-hard if)| [7]. We would prefer an approach
that is computationally more tractable. Indeed, rankingctls us-
ing APST« has complexity polynomial ifQ|.

Second, by definition, Kemeny1s strongly biased against spe-
cialized objects, which rank high in few attributes but lewnany,
because ranking them high overall will incur many disagreets
As discussed in Section 1 following Example 3, based on ppint
rebounds, and assists per game, Kemémyeuld rank John Stock-

effective knob that allows users to choose their preferbeteeen
specialized and well-rounded objects. Indeed, we have fsean
above how the choice @i helps overcome the issues faced by Ke-
meny. More detailed results on real data are shown in Sedtion
Finally, instead of Kemeny; it is conceivable to use Kemeny to
aggregate al2? — 1 rankings according to all non-empty subsets
of attributes inA.2> We are not aware of any previous work ex-
ploring this approach. While this approach could potelstialle-
viate the second and third issues above, it still suffensftioe first
(high computational complexity) and last (lack of any cusiza-
tion). This approach would require the same amount of effert
APST just to prepare the? — 1 input rankings in all subspaces;
then, its rank aggregation is more expensive and not tunable

3.2 Finding Top k Objects

Computing the exact APSd-scores of all objects in subspace en-
tails computingdz (0, o) for all o € O and non-emptyB C A,
which takesO(27|0|?) time using a naive algorithm. However, for
the purpose of identifying objects most worthy of furtherastiga-
tion, we care only about the top-ranked objects. This olasienv
leads to the following problem definition:

Definition 7 (Finding Topx Objects) Given a setd of objects, a
discounting factorx € (0, 1), andx > 1, find the topx objects in
O ranked by APST scores.

We show how to extend the algorithms in Section 2 to efficientl
compute approximate answers to the above question. Wedgrovi
only high-level insights here; see [23] for a full discussiwith
more technical details. The key observation is that, in eadi
space, we need to compute only enough number of tiers in tyder
not miss any top objects overall, because score contritgifimm
memberships in subsequent tiers are so small that they htee |
influence over whether an object can be in thesagverall.

Given an error tolerance> 0, we can compute a list of objects,
where each objeai gets an approximate scofgo) € (I'(o) —
¢,I'(0)]. Roughly speaking, we divide the error toleram@@mong
the subspaces to be considered. Within a subspagith sharecs
of error tolerance, we usrogressive or OnePass to “grow” the
skyband up to some top-skyband such that any object outside it
will receive a score belows in B. We add the objects in this sky-
band to the output list (or update their scores if they aresaly in
it). With some care, we can ensure tkatePass retains its advan-
tage overProgressive; i.e., it avoids computing the entire “next”
tier, which could include all remaining objects. The idethist we
only need to see enough number of objects in this tier befooak
ing that all its objects must score belew, because APST scores
get “diluted” by larger tiers. When we are done wikh we can
derive a tighter bound (hopefully much less thay) for errors in
B, and use it to update the error tolerance for remaining sadesp

ton low, even though he is a Hall-of-Famer who has the second The user does not need to choeseanually. A reasonable de-

highest assists per game in NBA history. In contrast, witialk
«, APST« would rank it high, because it likely lies on a small sky-
band for roughly half of the? — 1 non-empty subspaces—namely
those containing the attribute in which the object spenisli

Third, Kemenyd sometimes fails to suggest a rank for a worthy

fault is "1, the value of the positional scoring function at rank
k. With this setting, we can guarantee that any object notén th
output list cannot be among the tepoverall. The output list may
contain more thar objects, and can be used to determine which
part of this ranking is guaranteed to be accurate. As futkw

objectp. More precisely, there may be many consensus rankings We are developing an “online” version of the algorithm wheis

that are all optimal in the Kemeny sense, whgiie ranked differ-
ently, sometimes below objects that can be considered oslyio
inferior to p. For an illustrative example, as well as how AP&T-
avoids this issue, see [23].

incrementally tightened when given additional time or Lihié top
x objects can be accurately separated from the rest.

SMore precisely, such rankings are partial orders induceskiypand tiers
in their respective subspaces; Kemeny readily generdiizpartial orders.

BBaseline BBaseline

1400

Progressive %OnePass Progressive OnePass

ElBaseline

BBaseline
1000

BBaseline
1000

Progressive >OnePass Progressive OnePass Progressive *OnePass

1200 i 100000 — - -kLzZ —
1 1000 8 | A
1000 - 800 | / N 10000 1 = 100 *EI’E‘; 100 4@*‘3;
Z 800 - = 1000 = —— X 7 X
g 2600 P A T 100 ——BF— K z 10 =& T 0
i 600 7 F o / X g o X H i P g A
/ —f ﬁ—X— S 3 £ P — B]
200 - ,>< [X o1 > Bl ¥
K < 14 S — 7 e
200 1 - = 200 Bﬂh - L — 0.1 %~
e] s 0 B R 01 F—
10 20 30 40 50 60 70 80 %0 100" 10 20 30 40 50 60 70 80 9 100" 0.01 4 d 0.01 d 0.01 d
3 6 9 12 15 3 6 9 12 15 3 6 9 12 15
(a) NBA1 (b) NBA3 (a) CORR (b) ANTICORR (c) IND

Figure 2: Running time on NBA1, NBA3 (varying).

HBaseline Progressive <OnePass HBaseline Progressive <OnePass
70000 1800
]
1600
60000 —F—f —
B 1400 _T/
50000 a 1200
240000 21000 =
E @
{£ 30000 [E 800 P
20000 600 e
400 [F
10000 200 S
XX X
0 - ™ n 0 - . & “n
100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
(@) CORR (b) IND

Figure 4: Running time on synthetic data (varyimyg

4 Experiments

All algorithms were implemented in C++ and tested on a machin
with Intel Core i7-2600 3.4GHz processor and 7.8GB memory.

We use three datasets on NBA play@iBA1 contains thea-
reer total statistics forn ~ 4K players. There ard = 15 per-
formance attributes, including the totalimber of games played
points reboundsetc., over the players’ whole careeNBA2 con-
tains thecareer averagestatistics for the same setofx 4K play-
ers. It has the same set of attributes as NBA1 exoeptber of
games playedhenced = 14), and the attribute values for a player
are derived by dividing the corresponding values in NBA1 Iy t
number of games played by the playBiBA3 contains the game-
by-game statistics for each player. There are a total ef 400K
records withd = 14 performance attributes.

We also use synthetic datasets to test algorithm perforeaanc
correlated CORR), anti-correlated ANTICORR), and indepen-
dent (ND), with varying size and dimensionality. CORR and AN-
TICORR are generated by first sampling data points randoroiy f
a multivariate Gaussian distribution; then, we stretctpalhts in
the direction of(1,1,...,1) to produce CORR, and we shrink
them in the direction of1,1,...,1) to yield ANTICORR. This
way, the attributes are pairwise correlated or anti-cateel.

Additional results are in [23], including those on the Na#b
Research Council survey of 127 computer science programs.

4.1 Efficiency of Tops Skyband Algorithms

Given a dataset, a particularvalue, and an algorithm, we use the
algorithm to find the top= skyband for each and every subspace.
The total elapsed time for th&? — 1 nonempty subspaces mea-
sures the algorithm’s efficiency. We comp&eseline (Section 2),
Progressive (Algorithm 1), andOnePass (Algorithm 2).

4.1.1 Efficiency on Real Datasets

Figure 2 shows the execution time Bfiseline, Progressive, and
OnePass, under varyingr = 10, 20, ..., 100, on both NBA1 @ =
4K) and NBA3 (» = 400K). On both the small and large datasets,
our algorithms significantly outperform the baseline appto

On the small NBA1 dataset (Figure 2(aPnePass is less ef-
ficient for small~ and starts to outperforrRrogressive as r in-

“http://www.databasebasketball . com/

Figure 3: Running time on synthetic data (varyif)g

HBaseline Progressive ><OnePass HBaseline Progressive <OnePass
1000000 100000
100000 —_g——+1 10000 =
g— o =
- 10000 [= 1000 o
‘e 1000 o xX—X X
£ £ T A NEAN
£ = 100 =
= 4} $e—
100 o
10 3~
10
1 T 1
50 100 150 200 250 50 100 150 200 250 300 350 400 450 500
(@) CORR (b) IND

Figure 5: Running time on synthetic data (varying

creases. The reason is that the dimensionalities of suespac
which top+ skyband is empty but cannot be pruned (by techniques
in Section 2.3) increase with. Computing the skylines for these
subspaces gets more expensive as SUBSKY becomes lessefficie
Results on NBA2 are similar to NBA1 and hence omitted.

On the large NBA3 dataset (Figure 2(b)), we also see that the
running time ofProgressive grows faster tharDnePass as7 in-
creases, for the same reason above. Moreover, attribulBA3
have smaller correlations than in NBA1, which induce largjer
lines, makingProgressive even less efficient. Henc&nePass
starts to outperfornProgressive whenr is small.

On both datasets, we observe the running tim@wéPass to be
roughly linear inr, confirming the analysis in Section 2.2.

4.1.2 Efficiency on Synthetic Datasets

Varying d, Fixedn = 100K and 7 = 100: Figure 3 shows that
bothProgressive andOnePass are faster thaBaseline by orders of
magnitude (vertical axis has logarithmic scal®yogressive runs
faster tharOnePass on correlated data (a). Their performances are
comparable on anti-correlated (b) and independent data\{&®
observe that the running times on CORR are much longer than
those on ANTICORR and IND for all algorithms. The reason is
that tops skybands in CORR may be non-empty even in high di-
mensional subspaces, while for ANTICORR and IND, they tend t
be empty and can be quickly detected and pruned as discussed i
Section 2.3. When the dimensionality is high, due to the whly A
TICORR is generated for ensuring pairwise anti-correfaimong

all attributes, ANTICORR becomes similar to IND; hence, wato

the results on ANTICORR in the following discussion.

Varying n, Fixedd = 15 and 7 = 100: From Figure 4, we ob-
serve again thaerogressive andOnePass outperformBaseline by
orders of magnitude, arRfogressive slightly outperform$nePass.
Their running times increase roughly linearly by

Varying 7, Fixedn = 100K and d = 15: Figure 5 shows
that Progressive and OnePass significantly outperformBaseline

on both CORR and IND. For all three algorithms, their running
times grow nearly exponentially in (vertical axis has logarithmic
scale). Progressive is slightly faster tharOnePass on CORR. On
IND, OnePass is slower thanProgressive under small- but be-
comes faster as increases.

CAPST-99 APST_S Dargificial specialized player ~John Stockton

¥weighted-sum ©Kemeny-d
0 70

%APST-.01

70 12 0 @
. 0 %"')d X 50 /
£ 50 g)
a0 ,@fé 53 540
=30 /w/g % 30

20 K,@ < 20

10 pg” 10

k
10 20 30 40 50 0 70 O 90 100 0 a
Rank 0.21 0. 0 0. 0 0.90 0.95 0.97 0.99

Figure 6: Comparison of rankingsFigure 7: Ranks of an artificial
by number of HoFers in tog- player vs. Stockton as varies.

Overall, these experiments further confirm the significamfqr-
mance advantage ®frogressive andOnePass overBaseline.

4.2 Quality of Ranking by APST-«

We evaluate the quality of the rankings by AP&TKemenys,
and weighted-sum for the NBA2 dataset (career averagstitaji
For each ranking, we measure its quality by the number of éfall
Fame inductees (HoFers for short) found among thektpayers
according the the ranking, under varidusalues.

We use7 out of thel4 attributes in NBA2 for ranking because the
dataset did not record statistics suctsteals blocks andminutes
for games played before 1971. Including these attributesldvo
unfairly underrate the players from the early days. We douset
NBAL (career total performance) because it would also uatker
earlier players, as they did not play as many games as regest o

APST-a vs. Weighted-Sum We vary « in APST« to produce
different rankings. For weighted-sum, the weights on tivébates
are determined as follows. We first find a linear classifierefoes
rate HoFers from non-HoFers that minimizes the number aidna
rately classified players. We then use the unit vector pelipalar
to the linear classifier as the weight vector in weighted-sum
Figure 6 compares weighted-sum, APST-.99, APST-.5, andTAPS
.01, by the numbers of HoFers found among the kgpayers in
their rankings, respectively (ignore the curve for Keménfer
now). We can see that APST-contains visibly more HoFers in
top-k under most combinations af and & considered. Note that
the performance of all ranking methods are negatively tdtbby
active players who would be good candidate HoFers in thedutu
but will not be eligible until 5 years after retiremehEor example,
atk = 80, the topk players identified by weighted-sum include
48 HoFers. Among the remainirg®, 23 are not yet eligible9 are
eligible but not HoFers.

APST-a vs. Kemenyd For Kemenyd, solving for the optimal
ranking proved computationally challenging on this reahdat, re-
inforcing our discussion in Section 3.1. We model the optation
as an integer program (IP) and solve it with CPLERecall that
there are abowtK players. On our reasonably powerful machine,
CPLEX caused memory overflow with close300 players, and it
failed to find solutions with more tha200 players because of pre-
cision issues. Thus, we improvise by first identifyi2@) players,
who are the set union of tHetop-40 lists for the7 attributes used
for ranking. Then, we run Kemeny-on these200 players only.

In Figure 6, we can see that in most cases ARS&nkings con-
tain noticeably more HoFers in tdpthan Kemenyd. The scale
limitation Kemenyd is to blame: there ar@1 HoFers in thelK
players in NBA2, but only9 of them are among thoS®0 consid-
ered by Kemenyt. In contrast, APSTx and weighted-sum have
been computed over allK players. For comparison disregarding

5For weighted-sum, we excluded these players when traiiegneight
vector, but included them in ranking as with other methods.
Snttp://www.ibm.com/software/integration/optimization/
cplex-optimizer/

50 —

c

&30 ,ﬁ\ ——
- ————
10

0 —
099 09 097 09 094 090 0.4 075 0.0 037
Figure 8: Effect ofe on the APSTe ranking of NBA players.

Kemeny's scale limitation, we have also used ARS® rank the
same subset dZ00 players; in that case APSI-and Kemenyd
showed comparable performance (see [23] for results).

4.3 Effect ofa in APST-«

To understand how the parametein APST-« helps in promoting
specialized vs. well-rounded objects, we inject an aréfipiayer
into NBA2. Again, we us€ attributes, as explained in Section 4.2.
This artificial player has the highespintsbut the lowest values for
all other attributes. Figure 7 shows how this player’s ranénges
in the APSTer ranking whena varies. Asa decreases from,
the artificial player quickly gets ranked high among realypta.
Its rank converges as approache$, but never becomes the first
because it cannot surpass real players who have the higilassv
on some other attributes. We have observed similar betswioen
the artificial player specializes in other attributes. Tesult agrees
with the discussion in Section 3 that a smallefavors specialized
objects over well-rounded ones. An example of a speciajiiayger

is John Stockton, a HoFer, who is second only to Magic Johnson
in assists per game, but is not ranked high in any other atéib
considered. His ranks under varioasvalues are also plotted in
Figure 7, which show a similar trend to that for the artifigikdyer.

In Figure 8, we focus on the taj0 players bound by APST-.9
in NBA2, under the three attributeppints rebounds andassists
The figure shows how their ranking positions changexbfhori-
zontal axis has logarithmic scale). At the bottom of the figthe
top 9 players always remain in the tdi3, because of their excep-
tional performance in multiple attributes. The ranks of id@ain-
ing players respond well to changesanWe can categorize these
players into two types:) specialized players, who are ptioaal
on very few attributes; Il) well-rounded players, who are ex-
ceptional on any single attribute, but are reasonably gaoohal-
tiple attributes. In Figure 8, the curves of Type-I playeosdpwn
as a decreases, because smalfavors them more against other
players in at least half of the subspaces, i.e., those congathe
attribute on which they specialize. On the contrary, thevesiof
Type-ll players go up aa decreases. They get rewarded in higher-
dimensional subspaces for not being dominated by many daye
such subspaces, while they can be easily dominated by athers
individual dimensions.

For a concrete example, consider the lowest-ranked platers
largest and smallest, respectively. The lowest ranked curve (53rd)
at the largestx (on the leftmost) corresponds to Nate Thurmond,
a HoFer, ranked 277th ipoints 6th inrebounds and 579th iras-
sists As a representative Type-I player, whedecreases, his over-
all rank becomes higher, ending eventually at 18th. In esttthe
lowest ranked player (42nd) at the smallesCharles Barkley (an-
other HoFer), ranked 33rd, 23rd, and 223rd respectivepoints
rebounds andassists As a representative Type-Il player, whean
decreases, his rank goes all the way down from 11th. A tunable
« thus allows a user to specify personal preference betwean Th
mond and Barkley effectively.

5 Related Work

Our work is closely related to skyline computation for nitthen-
sional data, which can be roughly grouped into two classde T
first class [3, 4, 8] includes Block Nested Loop (BNL), Divided
Conquer (D&C) and their variants, and do not require preategh
indices. The second class [18, 11, 15] adoptstBee or R-tree in-
dices to prune unnecessary computation. Skyline computéoir
multiple (or all) subspaces are first studied by Pei et all (BUS
and TDS algorithms) and by Tao et al. [19] (SUBSKY algorithm)
The former are extensions of BNL and D&C algorithms that tra-
verse the subspace lattice without using indices, whiléetter fol-
lows the index-based approaches. Extending skylirieskyband
was first studied in [15].

While our notion of topr skyband is the first to provide a univer-
sal parameter suitable for selecting the right set of objestiard-
less of the subspaces being considered, there are previoks w
proposing various advanced selection criteria when theafizhe
skyline is too large. For example, BBS [15] and PBT [24] focus
on selecting points that dominate the most other points Lamet
al. [13] focus on selecting a fixed sized set of points thakecel
tively dominate the most other points. More recently, Lulefla]
propose the notion of layered skylines, where each layezfined
as the skyline after objects in previous layers are remo@Gam-
pared with these works, we believe our notion of topkyband is
more appealing in terms of usability, because it has a siinfbe-
pretation and a single parameter works across all subspaces

Linear ranking of objects for the purpose of answering top-
queries has been studied extensively, including apprcaakiag
skyline and skybands [21, 22]. These studies focus on pedoce
improvements and do not consider providing better controhe
semantics of the ranking functions. Kemeny ranking [7], ba t
other hand, was proposed in social choice theory and offed go
semantics. As discussed in Section 3.1, however, it doeproet
vide a flexible knob, such as our parameter, for adjusting the
ranking based on the users’ preference towards differgrastyf
interesting objects. Moreover, computing Kemeny is NRihar

Several lines of work on data mining, to various extentsresha
our focus on finding interesting claims that can be trandledeim-
ple, intuitive English statements. Local pattern discg\@6, 20]
and subgroup discovery [12, 10] aim to find semantically diesc
able subsets of data whose properties deviate strongly fhem
overall distribution. However, our subsets of interestsdshon
dominance, do not fit in their frameworks. Redescription -min
ing [16] seeks to describe a given subset of data using a segé
set operations. In contrast, we mine the subset in the faisephnd
our desired description of the subset involves dominandeannt-
ing instead. [9] finds “prominent streaks” (consecutivehifiigw
values in a data sequence) and captures the significanceclof su
streaks by skyline dominance test on streak length and value

6 Conclusion

The tasks of finding one-of-the-few claims from data and i@k
objects by such claims are important to the nascent field wf-co
putational journalism. We have introduced a simple anditiméu
problem formulation for finding all interesting claims, ngia sin-
gle uniqueness threshotdthat automatically adapts to data char-
acteristics and applies to all subspaces. We have proposedea
scheme for ranking objects, overcoming the inflexibilityk@meny
without resorting to a large number of knobs like weightadis
We have devised efficient algorithms for both tasks, usim-te
niques such as pruning and approximation to tame complaigy

believe that our attention to usability will appeal to joalists and
citizens alike.

Acknowledgments Y.W., P.K.A., and J.Y. are supported by NSF
grants CNS-05-40347 and 11S-07-13498. P.K.A. is additigna
supported by NSF grants CCF-06-35000, CCF-09-40671, CCF-
10-12254, by ARO grants W911NF-07-1-0376 and W911NF-08-
1-0452, and by an ARL award W9132V-11-C-0003. J.Y. is addi-
tionally supported by NSF grant [1S-09-16027. C.L. is supgd

by NSF Grants [1S-10-18865 and CCF-11-17369. Both J.Y. and
C.L. are also supported by HP Labs Innovation Research Award

[10]

(11]

[21]

[23]

[24]

References
JACM, 25(4):536-543, 1978.
[2]
S. Borzsonyi, D. Kossmann, and K. Stocker. The skylinerafor. In
presorting. INCDE, 2003.
(5]
S. Cohen, C. Li, J. Yang, and C. Yu. Computational jousmal A
methods for the web. IdVWW 2001.
8]
B. Kavsek, N. Lavrg, and V. Jovanoski. Apriori-sd: Adapting
D. Kossmann, F. Ramsak, and S. Rost. Shooting stargiskijx An
discovery through first-order feature constructitmductive Logic
representative skyline operator. I[@DE, 2007.
queries. Technical report, Aalborg University, 2010.
[16] L. Parida and N. Ramakrishnan. Redescription minirtgacSure
J. Yu, and Q. Zhang. Towards multidimensional subspacéngkyl
computation. InVLDB, 2001.
[20] Y. Tian, G. Weiss, D. Hsu, and Q. Ma. A combinatorial fursi
Ranked join indices. IWCDE, 2003.
Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu. On “one ottfew”
M. Yiu and N. Mamoulis. Efficient processing of top-k dovating
[25]
Mathematicspages 824838, 1975.

[1] J. Bentley, H. Kung, M. Schkolnick, and C. Thompson. Oa th
average number of maxima in a set of vectors and applications
K. Beyer and R. Ramakrishnan. Bottom-up computationpairse
and iceberg cubeACM SIGMOD Record28(2):359-370, 1999.

[3]

ICDE, 2001.

[4] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skylinelwi
S. Cohen, J. T. Hamilton, and F. Turner. Computationafjalism.
Communications of the ACNB4(10):66—71, 2011.

6]
call to arms to database researchersCIBR, 2011.

[7] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggitem
P. Godfrey, R. Shipley, and J. Gryz. Maximal vector cotagion in
large data sets. IWLDB, 2005.

[9] X.Jiang, C. Li, P. Luo, M. Wang, and Y. Yu. Prominent skea
discovery in sequence data. KIDD, pages 1280-1288, 2011.
association rule learning to subgroup discoveékglvances in
Intelligent Data Analysis Vpages 230-241, 2003.
online algorithm for skyline queries. MLDB, 2002.

[12] N. Lavret, F. Zelezy, and P. Flach. Rsd: Relational subgroup
Programming pages 149-165, 2003.

[13] X.Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting starbe k most

[14] H. Lu, C. Jensen, and Z. Zhang. Skyline ordering: A flexib
framework for efficient resolution of size constraints oglsie

[15] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressymsk
computation in database systeri©DS 30(1):41-82, 2005.
theory and algorithmsAAAl, 20(2):837, 2005.

[17] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, ¥ao,
analysis.TODS 31(4):1335-1381, 2006.

[18] K. Tan, P. Eng, B. Ooi, et al. Efficient progressive skgli

[19] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computatif
skylines in subspaces. I€DE, 2006.
method for feature mining. IKDD, volume 7, 2007.
P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, andrba§ava.

[22] A. Vlachou, C. Doulkeridis, K. Ngrvag, and M. Vazirgiais.
Skyline-based peer-to-peer top-k query processingCIDE, 2008.
objects. Technical report, Duke University, Feb. 208Rtp: //www.
cs.duke. edu/dbgroup/papers/2012-WuEtAl-oneoffew.pdf.
queries on multi-dimensional data. W.DB, 2007.
H. Young. Social choice scoring functionSIAM Journal on Applied
S. Zhang and M. Zaki. Mining multiple data sources: Iquattern
analysis.KDD, 12(2):121-125, 2006.

[26]

