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Abstract

In this paper, we identify a novel and interesting type of queries, contextual ranking queries, which
return the ranks of query tuples among some context tuples given in the queries. Contextual ranking
queries are useful for olap and decision support applications in non-traditional data exploration.
They provide a mechanism to quickly identify where tuples stand within the context. In this paper, we
extend the sql language to express contextual ranking queries and propose a general partition-based
framework for processing them. In this framework, we use a novel method that utilizes bitmap indices
built on ranking functions. This method can efficiently identify a small number of candidate tuples,
thus achieves lower cost than alternative methods. We analytically investigate the advantages and
drawbacks of these methods, according to a preliminary cost model. Experimental results suggest that
the algorithm using bitmap indices on ranking functions can be substantially more efficient than other
methods.
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1. Introduction

In olap and decision support applications, user-
s often want to express non-traditional database
queries with “soft” criteria that capture notion-
s such as similarity, relevance, and preference, in
contrast to standard Boolean queries (i.e., queries
with Boolean selection and join conditions). Pro-
posals such as top-k ranking queries, skyline queries,
and preference queries have gained popularity in
recent years (e.g., [1, 2, 3, 4, 5]). In this paper,
we identify a novel and interesting type of con-
textual ranking queries, symmetrical to ranking.
A contextual ranking query obtains the rank of a
query tuple within a context given in the query.
The rank indicates how many tuples in the con-
text have higher ranking scores than the query
tuple.
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Contextual ranking queries can be useful in
many places. For instance, when selling a prod-
uct in an online market, the seller may want to
know how popular the product would be, in order
to set an appropriate price. As another exam-
ple, we may want to compare a house to others
with regard to region, size, year, etc. The appli-
cations of contextual ranking could include store
location selection, online advertising placement,
player drafting in fantasy sports games, and so
on. A motivating example is as follows.

Example 1 Consider a home building company
that is planning to build a new house with cer-
tain properties at certain location. The company
wants to compare the house in plan with the ex-
isting houses from all realtors in the city, using
certain ranking criteria that capture buyers’ pref-
erences. The comparison result, more specifically
the rank position of the future house, indicates
how popular it might be and thus provides assis-

Preprint submitted to Information Systems December 5, 2012



tance in revising the building plan.
The key is that the builder is not looking for

top houses among existing ones since she is con-
strained by the available options in building the
new one. Instead she wants to know where the
new house would stand compared to the exist-
ing ones, and to modify their plan accordingly.
The ranking criteria are ad-hoc, because different
decision makers may have different ways of un-
derstanding potential buyers and modeling their
preferences. Moreover, the decision makers wan-
t to focus on certain subsets of the context (i.e.,
existing houses), e.g., those in a given district or
with a specific property. Furthermore, the builder
needs to accomplish the same analysis for various
alternatives, i.e., multiple choices in building the
new house, whenever such an alternative arises.
Thus contextual ranking queries may be processed
many times, for varying ranking criteria, context,
and query object.

To process contextual ranking queries, a sim-
ple brute-force approach is to fully materialize the
results of a Boolean query, i.e., the context of
ranking, count the number of tuples with high-
er ranking scores than a query object, and thus
obtain the query object’s rank. This approach
can be inefficient, since it has to generate the ful-
l Boolean results, even for getting the rank of
a single tuple. More importantly, the results of
exhaustive computation become invalid whenever
query conditions change, thus it is only suitable
for infrequent or one-shot analytical operations.
On the contrary, the contextual ranking problem
engaging us in this paper is a day-to-day opera-
tion, requested by a large number of users, using
diverse ranking attributes and functions upon dif-
ferent result sets from varying Boolean condition-
s. We thus focus on efficiently supporting such
on-the-fly analysis and integrating with Boolean
conditions.

To answer contextual ranking queries, we must
locate where the given query tuples stand among
the context tuples. The key to an efficient so-
lution lies in avoiding full materialization by the
aforementioned exhaustive approach. To be more
specific, we want to prune irrelevant context tu-

ples and quickly zoom into the regions containing
tuples with scores close to the query tuples.

Based on the symmetry between top-k queries
and contextual ranking, it may appear that var-
ious top-k query algorithms(e.g., [1, 2]) can be
adopted, since they also often avoid full materi-
alization. The difference on the surface is that
contextual ranking looks for the rank of a given
tuple, whereas top-k ranking looks for the tuples
ranked within top k. Hence, a natural adoption of
a top-k algorithm would operate by continuously
getting the “next” top tuple, until it reaches a tu-
ple with a score lower than that of the query tuple.
When it terminates, the “k” is the query tuple’s
rank. However, top-k algorithms are explicitly op-
timized for retrieving few (k) top answers. When
k is relatively large, the performance of these al-
gorithms become even worse than an exhaustive
approach [2]. Unfortunately, a contextual rank-
ing query may ask for the rank of a tuple that
may be ranked anywhere, corresponding to arbi-
trary k. Therefore top-k algorithms may only be
efficient for contextual ranking queries in special
cases (very small k).

We design a general partition-and-prune frame-
work for processing contextual ranking queries.
It starts by partitioning the space of tuples into
buckets. The upper and lower bounds of ranking
scores for tuples within each bucket are derived.
These bounds determine the candidate buckets
that consist of tuples ranked near a query tuple.
After their cardinalities (number of tuples) are
computed, the non-candidate buckets can be safe-
ly pruned because their tuples are all ranked high-
er (lower) than the query tuple. Therefore we only
need to retrieve the tuples in candidate buckets,
for obtaining the query tuple’s rank position. Un-
surprisingly such a partition-and-prune (or simi-
larly branch-and-bound) approach has been shared
by many works on ranking and top-k queries [2].
However, we emphasize that branch-and-bound is
only a high-level paradigm (which is applied in
many places including B-tree and R-tree), while
the challenges remain in forming the solution to
a specific problem under this paradigm.

The method of realizing the framework in an
efficient manner does not come straightforwardly.
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At the first glance, one may resort to various ex-
isting data structures in a dbms, including multi-
dimensional histogram and multi-dimensional in-
dex, as they naturally provide a partition of tu-
ples. However we note that, without going in-
to the technical details, the practicality of these
choices in answering contextual ranking queries is
seriously limited. They could only be competi-
tive in special cases. First, multi-dimensional his-
tograms or indices must be constructed before-
hand for a given set of attributes. When ranking
attributes do not match the index/histogram at-
tributes, they can only obtain loose upper and
lower bounds, resulting in a prohibitively large
number of candidate buckets, thus losing the ef-
fect of pruning. Unfortunately in reality it is not
affordable to exhaustively build histograms or in-
dices for all possible combinations of ranking at-
tributes. Therefore the “curse of dimensionality”
significantly limits the applicability of such meth-
ods. Moreover, there is little room to further al-
low Boolean conditions. Although methods exist
for building and utilizing multi-dimensional his-
tograms and indices for joins, the combination of
ranking and Boolean attributes from joined tables
will only increase the number of dimensions that
need to be matched by these structures, resulting
in a heavier curse of dimensionality. An alterna-
tive to multi-dimensional structures is to parti-
tion by intersecting single-dimensional structure
such as B-trees. However, such a method incurs
large overhead due to the overwhelming traversal
of tree nodes and intersections of their tuple list-
s. Detailed analysis of these methods are further
given in Section 5.2.

Our solution hinges on the idea of a novel
multi-dimensional index structure that aligns with
ranking functions (Section 5.1). First, this index
does not partition a tuple space horizontally and
vertically, unlike conventional multi-dimensional
index. Instead, it partitions by ranges of scores
based on a ranking function. By such an align-
ment, the index generates a small number of can-
didate buckets, avoiding heavy access to candi-
date tuples, a problem suffered by convention-
al index in answering contextual ranking queries.
Second, while it cannot afford building indices

for every possible ranking functions, this method
chooses to create indices for functions that are
similar to the ones in many previous queries, guid-
ed by query workloads. When a future query ar-
rives, it can select indices “close” to the query,
with the reasonable expectation that future queries
share similar characteristics with the workload and
thus the index can potentially match the ranking
functions of many future queries. Finally, we use
bitmap index to implement such function-based
index because it allows fast bit operations, includ-
ing intersecting indices, counting bucket size, and
so on.

Experiments (Section 6) show that the method
of using bitmap index on ranking functions can
significantly outperform alternative approaches.
The algorithm achieves good efficiency without
requiring too many queries in the workload or too
many indices, it maintains efficiency up to a suf-
ficient number of ranking attributes for typical
ranking applications, it scales up to large tables,
and it allows joins.

The rest of the paper is organized as follows.
Section 2 discusses related work. Section 3 in-
troduces the sql extension to define contextual
ranking queries. Section 4 presents the partition-
and-prune framework. Section 5 introduces the
method of using function-based bitmap index and
other alternatives. We experimentally evaluate
the algorithms in Section 6 and conclude in Sec-
tion 7.

2. Related Work

There are many previous works (e.g., [6, 7, 8])
on computing quantiles on a set of data values
(e.g., the 40% quantile of a set {10, 15, 4, 23, 11}).
The q quantile is the value vq such that a frac-
tion q of the data values are higher (lower) than
vq. In contextual ranking queries, database tu-
ples are ranked by functions combining multiple
attributes. In order to apply any such quantile
computing algorithm in solving contextual rank-
ing queries, we must at least fully materialize the
context tuples and then compute their ranking s-
cores, in order to obtain a set of data values that
these algorithms work on. Such full materializa-
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tion is exactly what we want to avoid for better
efficiency, as mentioned before.

There also exists a duality between contextual
ranking queries and quantile queries [9]. While a
contextual ranking query looks for the rank of a
query tuple with known features, a quantile query
identifies the features possessed by a tuple at cer-
tain rank position. [9] considers using R-tree in
processing quantile queries in multi-dimensional
space. An R-tree must be constructed beforehand
and the dimensions of the R-tree must exactly
match the ranking attributes in a quantile query.
Although in principle R-tree can be used for com-
puting contextual ranking as well, the require-
ment of exact attribute match could significantly
limit the applicability of this method, when there
is mismatch between indexed attributes and rank-
ing attributes. (Detailed analysis in Section 5.2.)
Moreover, contextual ranking queries have Boolean
conditions (selections and joins) in addition to
ranking. Integration with Boolean conditions was
not considered by previous works on quantile com-
puting.

The preliminary version of this work appears
in [10], where the concept of contextual ranking
query was originally proposed, under the term
inverse ranking query. Lian et al. [11] studied
probabilistic inverse ranking queries in uncertain
databases. While we focus on precise data and ex-
act answers, their work is on answering queries in
uncertain databases with confidence guarantees.
One main focus of their work is to derive the prob-
abilistic score bounds. Another focus is on uncer-
tain query objects. Bernecker et al. [12] further
studied the problem in the setting of uncertain da-
ta streams. Given the very different problem set-
tings and focuses, the techniques developed in our
work and [11, 12] are not applicable for each other.
These works all follow the general methodology
of pruning by upper/lower-bound scores, which is
commonly exploited in ranked query processing.

Wan et al. [13] investigated the problem of cre-
ating new combinations of products that are not
dominated by existing combinations. The domi-
nance relationship between products is based on
the concept of skyline [4], in which multiple crite-
ria are not combined by a ranking function.

3. Defining Contextual Ranking Queries

In this section, we propose extensions to sql

language for expressing contextual ranking queries.
While syntax is not our focus, a formal descrip-
tion facilitates the discussion of our concept and
solution in following sections.

To specify a contextual ranking query, we over-
load the olap function rank() in sql, as follows:

select . . . , rank() in ( select . . .
from R1, ..., Rn

where B(c1, . . . , cj) )
from R′

1, ..., R
′
h

where B′(c′1, . . . , c
′
l)

order by F(p1, . . . , pm)

In a contextual ranking query Q, the product
of the base relations R′

1×. . .×R
′
h, filtered by a

Boolean function B′(c′1, . . . , c
′
l) (e.g., B

′=c′1∧c
′
2∧c

′
3),

constitutes the query tuples RB′=σB′(c′
1
,...,c′

l
) (R

′
1 ×

· · ·×R′
h). Following rank() IN, another Boolean

function B (c1, . . ., cj) over R1× . . .×Rn supplies
the context tuples or context relation RB=σB(c1,...,cj)

(R1×· · ·×Rn). A ranking function F over the
ranking attributes p1, . . ., pm (e.g., F=p1+p2+p3)
gives a ranking score F [t] for each context and
query tuple t. (Note that the context and query
tuples should have the ranking attributes, i.e., the
schemata of both RB and RB′ contain attributes
p1, . . ., pm.) Formally, Q returns RB′ together
with their ranks among RB, by the descending or-
der of their scores. 1 For a query tuple tq∈RB′ , its
rank is the number of context tuples tc that have
higher scores than tq (plus 1), i.e., rank(tq)=1+
|{tc|F [tc]>F [tq], tc∈RB}|.

2

The aforementioned query obtains query tu-
ples RB′ by Boolean selection and join conditions.
However, we may be interested in the ranks of vir-
tual tuples that do not necessarily exist. Hence
we propose the following alternative syntax that
requests the rank of a virtual tuple p1=v1, . . .,
pm=vm.

1We assume order by asc|desc uses descending (desc)
by default.

2When there are ties in scores, an arbitrary determin-

istic “tie-breaker” function can determine an order, e.g.,
by tuple IDs.
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select rank() in ( select . . .
from R1, ..., Rn

where B(c1, . . . , cj) )
values (p1 = v1, . . . , pm = vm)
order byF(p1, . . . , pm)

Example 2 Consider a home builder. To decide
how popular an existing house (with id 1001) is in
the market, the following query gets the house’s
rank among those in the same area. Various rank-
ing functions can be used in computing ranking
scores. For simplicity, a weighted sum (with both
positive and negative weights) function on house
price and size is used.

select hid, rank() in ( select *
from Houses

where zipcode=12345)
from Houses

where hid=1001
order by size− 0.01×price

Alternatively, we might want to use the fol-
lowing query to determine the rank of a (virtual)
house that is in plan.

select rank() in ( select *
from Houses

where zipcode=12345)
values (size=4000, price=250000)
order by size− 0.01×price

We do not discuss how to obtain RB′ . There
can be situations when the cost of obtaining RB′

themselves dominates that of getting their ranks.
However, we speculate that contextual ranking
queries are mostly on small number of query tu-
ples that can be quickly identified, such as by tu-
ple IDs or by fast index on their properties.

4. Partition-and-Prune Framework

This section presents a general framework for
processing contextual ranking queries. The frame-
work is simple and intuitive. We partition the
space of tuples, i.e., the context relation, into
buckets and compute the upper-bound and lower-
bound of ranking scores of the tuples within each
bucket. The bounds classify the buckets into three
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Figure 1: Buckets in a 2-dimensional space.

categories, with regard to a given query tuple tq.
The buckets with lower-bounds higher than F [tq]
contain context tuples ranked higher than tq; the
buckets with upper-bounds lower than F [tq] con-
tain lower-ranked context tuples; and the context
tuples in remaining buckets, the candidate tuples,
may be ranked higher or lower than tq. Therefore
by counting the cardinalities (number of tuples)
of buckets, we know how many context tuples are
guaranteed to be ranked higher (lower) than tq,
and we only need to look up the scores of can-
didate tuples, in order to obtain tq’s rank. We
illustrate the idea in Example 3, as our running
example.

Example 3 Consider a query that asks for the
ranks of those tuples in R with a=35 and b=20,
ranked by a+b.

select *, rank() in (select * from R)
from R

where a=35 and b=20
order by a+b

Figure 1 shows the tuple space partitioned in-
to 16 buckets on a and b, along with the ranges of
a and b for each bucket. For instance, the buck-
et B0 has ranges 0≤a<10 and 0≤b<10. These
ranges determine the upper- and lower-bound of
tuple scores for buckets. We show the bounds and
the cardinality inside each bucket. For instance,
B0 contains 5 tuples with lower- and upper-bound
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score 0 and 20, respectively. Among these buck-
ets, the shaded ones are candidate buckets and
others are pruned. Bucket B15 is pruned because
the scores of tuples inside it are at least 60, which
is higher than the query tuples’ score, 35+20=55.
The 10 left lower buckets are also pruned because
their tuple scores are below 55. The tuples in
candidate buckets may score above or below 55.
There are 10 tuples in B15 and totally 30 tuples
in all candidate buckets. Hence the query tuples’
ranks are between 11 and 40. To get their ranks,
we obtain the tuples in candidate buckets and re-
solve their orders to the query tuples.

Below we formally present the framework. Sec-
tion 4.1 defines the partitioning and pruning of
tuple space, as the basis of a general algorithm in
Section 4.2. Section 4.3 discusses a cost model,
which helps us in designing and analyzing various
schemes of partitioning in Section 4.4, and is the
guideline in forming our algorithm in Section 5.
Throughout the discussion, we assume the con-
text relation RB is simply one base table, without
Boolean conditions over context tuples. In Sec-
tion 5.1.4, we briefly discuss how to extend the
techniques to handle join and selection condition-
s.

4.1. Tuple Space Partitioning and Pruning

Definition 1 (Partition, Bucket, Constraint)
A relation R is a set of tuples {t1, t2, . . .} with
schema A={a1, a2, . . .}. A partition PR={b1, b2, . . .}
is a set of mutual-exclusive subsets of R that cov-
er R, i.e, ∪bi=R, bi 6=∅, and bi∩bj=∅, ∀bi, bj∈PR.
Each subset bi is a bucket. Given bi, its cardinality
|bi| is the number of tuples belonging to bi. That
is, bi={ti1, . . . , ti|bi|}, where tij∈R, ∀1≤j≤|bi|. Each
bi is associated with a set of constraints Ci={ci1,
ci2 , . . .}. Each constraint is of the form l ≤ g(A) <
u, where g(A) is a function over A. Given any tu-
ple tij ∈ bi, all the constraints associated with bi
are satisfied.

Example 4 Continue Example 3. Figure 1 is a
partition of R, consisting of 16 buckets. The car-
dinalities of the buckets are shown. Every bucket
is associated with two constraints. For instance,

bucket B0 has constraints {0≤a<10, 0≤b<10}.
All the tuples in B0 thus have both attribute a

and b in the range [0, 10). Note that the con-
straints associated with these buckets are in the
form of a very simple function– a single attribute.

Definition 2 (Upper-bound, Lower-bound)
Given a bucket b, an upper-bound score ⌈b⌉ is a
value that is larger than the highest score among
the tuples in b, i.e., ⌈b⌉>F [t], ∀t ∈ b. Similarly,
a lower-bound score ⌊b⌋ is a value that is smaller
than or equal to the lowest score among the tuples
in b, i.e., ⌊b⌋≤F [t], ∀t ∈ b. 3 4

Definition 3 (Pruned and Candidate buckets)
With regard to a query tuple tq, a bucket b is
a pruned bucket if F [tq], the score of tq, is an
upper-bound of b, or if F [tq] is a lower-bound of
b and there is no tuple in b with score equal to
F [tq]. Formally, given a partition PR, the set of
pruned buckets with regard to tq is pruned(PR, tq)
= pruned+(PR, tq)∪pruned

−(PR, tq), where pruned
+

(PR, tq)={b|b∈PR and F [t] > F [tq], ∀ t ∈ b} are
the dominating buckets of tq and pruned−(PR, tq)=
{b|b∈PR and F [t]< F [tq], ∀t ∈ b} are the domi-

nated buckets of tq. The set of candidate buckets
is candidate(PR, tq)=PR−pruned(PR, tq).

Example 5 Continue Example 4. The bucket B0

has constraints {0≤a<10, 0≤b<10}. Thus the
tuples in B0 can score at most 10+10=20 (with-
out equality), and as low as 0, i.e., ⌈B0⌉=20 and
⌊B0⌋=0.5 Similarly, we obtain the bounds of oth-
er buckets. The query tuple has score 55. Hence
the white buckets in Figure 1 are pruned and the
shaded ones are candidates, by Definition 3.

In determining the query tuple’s rank, we can
safely discard the pruned buckets and only look

3Without loss of generality, we require ⌈b⌉ to be open-
ended while ⌊b⌋ to be close-ended. Correspondingly the
constraints in Definition 1 are left-end closed and right-
end open.

4There is an infinite number of upper- and lower-
bounds for any bucket.

5More strictly, ⌈B0⌉=20 means 20 is one known upper-
bound for B0. Similar statement applies for ⌊B0⌋.
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up the candidate tuples, as already illustrated in
Example 3. More formally, we have the following
property. The straightforward proof is omitted.

Property 1 (Bucket Pruning Property) Given
a relation R and its partition PR, the rank of a
query tuple tq is its rank inR∪{tq}, i.e., rank(tq)=
1+

∑
b∈pruned+(PR,tq)

|b|+ |{tc|F [tc] >F [tq] ∧ tc∈ b

s.t. b ∈ candidate (PR, tq)}|.

4.2. General Algorithm

Based on Property 1, a general algorithm is
outlined in Figure 2. It takes the following steps
in sequence:

1. Partitioning Space: The algorithm partitions
the tuple space into buckets by deciding the num-
ber of buckets and their associated constraints.
The constraints directly determine the geometri-
cal shape and area of a bucket.

2. Deriving Bounds : The algorithm derives the
upper- and lower-bound of every bucket, based
on the associated constraints. For a set of gen-
eral constraints, deriving the bounds of a rank-
ing function is a nonlinear programming (NLP)
problem. While the general NLP problem is hard,
there are methods for special cases [14].

We concentrate on monotonic ranking func-
tions, which are commonly studied in top-k queries.
Examples of such functions include sum, weighted
average, and Lp-norm distance (e.g., Manhattan

and Euclidean distance). With single-attribute
constraints in the form of l≤a<u, the bounds
of such a monotonic function can be straightfor-
wardly determined by the ranges on attributes.
Therefore given a partition by only single-attribute
constraints, the algorithm can handle any mono-
tonic ranking function.

Deriving the bounds becomes a linearly con-

strained optimization problem when all constraints
are linear functions over the attributes, and fur-
ther a linear programming (LP) problem when
the ranking function is a linear function as well.
There are well-studied algorithms for solving LP

problems, such as the Simplex method [15]. There-
fore given a partitioning scheme using linear con-
straints, the algorithm can process linear ranking
functions, a subset of monotonic functions 6 7.

3. Computing Cardinalities : The algorithm com-
putes the cardinality of every bucket according to
the constraints.

4. Classifying Buckets : The bounds and cardinal-
ities help to identify pruned and candidate buck-
ets, following Definition 3.

5. Retrieving Candidates : It retrieves candidate
tuples, evaluates their scores, and obtains the ranks
of query tuples.

Among the five steps, step 2 and 4 are shown
in Figure 2 and are not further discussed. Step
1 is the basis of the algorithm, since the parti-
tioning scheme determines what type of ranking
functions can be handled and which implementa-
tion methods are applicable. An appropriate par-
titioning scheme is thus key to the efficiency of
this approach. In Section 4.3 we describe an ana-
lytical cost model of the algorithm, which guides
the design of partitioning schemes in Section 4.4.

4.3. Cost Model

The primitive cost model in this section is for
analyzing and comparing the choices in realizing
our framework 8. It has the following compo-
nents:

Cost factors : The cost of our algorithm is de-
termined by several factors, including tuple space
partition, data distribution, data size, and query.

Cost parameters : The cost is a function of several
parameters, including number of buckets (|PR|),
their score bounds (⌊b⌋ and ⌈b⌉) and cardinalities
(|b|), and candidate buckets (candidate(PR, tq)).

6Single-attribute constraint is an extreme case of linear
constraint.

7A linear function such as 2p1−3p2 is monotonic on p1
and −p2.

8A complete cost model in query optimizer is beyond
our focus.
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Procedure Partition-and-Prune Inverse Ranking
/* relation: R, with schem A */
/* partition: PR */
/* ranking function: F(A) */
/* query tuple: tq */

begin

1: /* 1. Partitioning Space */
2: determine the number of buckets, n
3: for each bucket bi do
4: determine constraints Ci={ci1 , ci2 , . . .}, where cij is:
5: lij ≤ gi(A) ≤ uij

6:

7: /* 2. Deriving Bounds */
8: for each bucket bi do
9: /* solve the following optimization problem */

10: ⌈bi⌉ ← the value maximizes F(A) in bi
11: ⌊bi⌋ ← the value minimizes F(A) in bi
12:

13: /* 3. Computing Cardinalities */
14: for each bucket bi do
15: |bi| ← compute the number of tuples in bi
16:

17: /* 4. Classifying Buckets */
18: pruned−(PR, tq)← ∅ /* dominated buckets */
19: pruned+(PR, tq)← ∅ /* dominating buckets */
20: candidate(PR, tq)← ∅ /* candidate buckets */
21: for each bucket bi do
22: if ⌈bi⌉ ≤ F [tq] then
23: pruned−(PR, tq)← pruned−(PR, tq) ∪ bi
24: else if ⌊bi⌋ > F [tq] then
25: pruned+(PR, tq)← pruned+(PR, tq) ∪ bi
26: else

27: candidate(PR, tq)← candidate(PR, tq) ∪ bi
28:

29: /* 5. Retrieving Candidates */
30: R′ ← ∪bi∈candidate(PR,tq)bi /* candidate tuples */
31: retrieve tuples in R′

32: rankR′(tq) ← the rank of tq in R′

33: rank(tq) ← rankR′(tq) +
∑

b∈pruned+(PR,tq)
|b|

34: return t

end

Figure 2: The algorithm outline.

These parameters are determined by the afore-
mentioned cost factors. Specifically, the parti-
tion determines the number of buckets and their
bounds (constraints), the data distribution and
size determine the cardinalities, and the query
determines the candidate buckets, together with
partition, data distribution and size.

Cost formula: The cost formula in terms of time
is the sum of CPU cost, I/O cost for obtaining
cardinalities (step 3 in Section 4.2), and I/O cost
for retrieving candidate tuples (step 5). Among
the five steps in Figure 2, step 1, 2, and 4 do not

# of buckets

constraints 

of buckets

interval between 

bounds

cardinalities 

of buckets
# of candidate 

tuples

↑               ↓ ↓

↑
↓

↓

↓
↓

↓more aligned 

with ranking 

function 

Figure 3: The relationships among cost parameters.

involve disk I/O.

C = CCPU + C3I/O + C5I/O (1)

Conventional database query algorithms are I/O-
bound rather than CPU-bound. Therefore the
common practice in investigating query plan cost
is to focus on disk I/O cost. However, we shall
see that some of the methods in Section 5 involve
CPU costs that cannot be ignored.

To achieve the goal of avoiding full materi-
alization of context tuples, we aim to compute
cardinalities of buckets (step 3) without fetching
their individual tuples. Without getting into the
details yet, we note that we intersect bitmap vec-
tors and use COUNT operations on resulting vec-
tors to obtain bucket cardinalities. On the con-
trary, step 5 needs to retrieve individual tuples in
candidate buckets, in order to evaluate their ex-
act scores. The size of a bitmap vector is much
smaller than that of the tuples represented by the
vector. Therefore, we focus on the disk I/O cost
of step 5, for which a good metric is the number
of candidate tuples, i.e.,

C5I/O = fretrieve ×
∑

b∈candidate(PR ,tq)

|b| (2)

where fretrieve is a factor. In principle the more
candidate tuples, the higher cost, although the
exact fretrieve depends on the specific method of
retrieving tuples.

Figure 3 summarizes the relationships among
these cost parameters, in determining the num-
ber of candidate tuples. The up-arrow and down-
arrow represent “increase in amount” and “de-
crease in amount”, respectively. First, the num-
ber of candidate tuples is directly determined by
the bounds and cardinalities of buckets. The more
tuples in each candidate bucket, the more candi-
date tuples; and the bigger interval between the
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Figure 4: Constraints and bounds.

upper-bound and the lower-bound (⌈b⌉ − ⌊b⌋) of
each bucket, the more candidate buckets (since
the chance of subsuming the query tuple score is
bigger), thus the more candidate tuples.

Second, the cardinalities and bounds are deter-
mined by the partition, i.e., the number of buck-
ets and their constraints. The relationship be-
tween the number of buckets and the cardinali-
ties/bounds is clear. The more buckets, the less
tuples in each bucket, and the smaller intervals
between the upper and lower bounds. It seems to
indicate we should have as many buckets as pos-
sible, in order to get less candidate tuples. How-
ever, with more buckets, the cost of constructing
them and computing cardinalities can be signifi-
cant.

In addition to the number of buckets, the con-
straints also determine the bounds, illustrated by
the following example.

Example 6 Figure 4 shows a space over x and
y of relation R. We look for the rank of a tuple
with score 43, under ranking function x+y. Tu-
ples with same scores are on distinct contour lines,
one for each score value. For instance, the dashed
line in Figure 4 is the contour line of x+y=43.

Different constraints can result in very differ-
ent bounds. Figure 4 shows two partitions of the
same space, where the solid lines are boundaries
of buckets. The partition in Figure 4(a) uses con-
straints of the form {x1≤x<x2, y1≤y<y2}, while
the partition in (b) has constraints {l≤x+y<u},
i.e., the constraints are parallel to the contour
lines of the ranking function. Both (a) and (b)
partition the space into 16 equi-area buckets. How-
ever, the buckets in (b) have much smaller inter-

vals between bounds than the buckets in (a) do.
Therefore there are 7 candidate buckets (in shade)
in (a), while only 1 in (b). In fact, the candidate
buckets in (b) are subsumed by the candidates in
(a).

The above example illustrates that which con-
straint results in the smallest intervals between
bounds depends on the ranking function itself.
For instance, the contour lines for 2x+y have dif-
ferent slope than that in Figure 4, thus the con-
straints parallel to the contour lines are also dif-
ferent.

4.4. Partitioning Schemes

The above analysis indicates that the most
significant cost component, the number of candi-
date tuples, is determined by partitioning scheme,
which consists of number of buckets and constraints,
by definition. Constraints specify the way of par-
tition, while number of buckets controls the gran-
ularity of partition. Below we present several
partitioning schemes, i.e., various types of con-
straints. Their implementations are in Section 5.

Single-Attribute Constraints: A straightfor-
ward approach of partitioning is to use the sim-
plest constraints, which are intervals (ranges) over
individual attributes. That is, a constraint has
the form l≤a<u, where a is one attribute, and l

and u are some constant values. The boundaries
between buckets are parallel to the dimension-
s, i.e., attributes. This scheme can support any
monotonic functions on these attributes. More-
over, it is easy to conduct satisfaction test for con-
straints. For instance, a B-tree on a may be used
in obtaining those tuples satisfying constraint l ≤
a < u.

Function Constraints: Partitioning by single-
attribute constraints can be sub-optimal. As dis-
cussed in Section 4.3, the constraints should be
aligned with the contour lines of the ranking func-
tion, in order to achieve small number of candi-
date tuples. Following this intuition, we propose
a partitioning scheme that uses functions as con-
straints. In this scheme, each constraint has the
form l≤g<u, where g is a linear function. Given
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a linear ranking function f , if g is “close” to f (in
other words, g is aligned with f), the number of
candidate buckets and tuples can be small. One
heuristic to measure closeness is to use the angle
between f and g, i.e., the cosine similarity of their
coefficients. Note that this scheme is applicable
when we consider only linear ranking functions
and linear constraints. Computing score bound-
s under such constraints is a linear programming
problem, as Section 4.2 states. We build bitmap
index over g (instead of single attribute a) to per-
form satisfaction test for function constraints.

Workload-Based Function Constraints: For
the above scheme to achieve a small number of
candidate tuples, g should be close to f . In oth-
er words, we must build indices for various g, so
that among them we can find one close to the
dynamic f in query. However, as the number of
attributes involved in ranking functions increases,
the necessary number of indices for g may become
prohibitively large. Our idea in tackling this chal-
lenge is to use query workload to guide the selec-
tion of functions g to build index for. The indexed
functions are chosen such that they are “close” to
many previous queries. With the reasonable ex-
pectation that future queries share similar charac-
teristics with the workload, the indexed functions
can capture many future queries.

5. Using Bitmap Index on Ranking Func-
tions for Contextual Ranking Queries

This section presents how to realize the partition-
and-prune framework by function constraints and
workload-based function constraints, utilizing a
novel bitmap index over ranking functions. We
also compare with alternative methods based on
single-attribute constraints using histogram, B-
tree, multi-dimensional index, and bitmap index
on single attributes.

5.1. The Method of Using Bitmap Index on Rank-

ing Functions

5.1.1. Intersecting Bitmap Indices on Functions

Following the intuition of using function con-
straints (Section 4.4), we propose a method of in-
tersecting bitmap indices on functions. Different

than conventional bitmap indices, the bitmap in-
dices intersected are built upon ranking functions
instead of individual attributes. The motivation
in using bitmap index instead of other index struc-
tures such as B-tree is that, intersecting bitmap
index is much more efficient than intersecting B-
trees.

Given a bitmap index [16] on an attribute,
there exists a bitmap (a vector of bits) for each
distinct attribute value. The length of the vector
equals the number of tuples in the indexed rela-
tion. In the vector for value x of attribute v, its
ith bit is set to 1, when and only when the val-
ue of v on the ith tuple is x, otherwise 0. With
bitmap indices, complex selection queries can be
efficiently answered by bitwise operations (AND,
OR, XOR, and NOT) over the bit vectors. More-
over, bitmap indices enable efficient computation
of aggregates such as SUM and COUNT [16].

As an efficient index for decision support queries,
bitmap index has gained broad interests. Although
bitmap index is arguably not as standard as some
other index structures such as B-tree, it is widely
adopted in DBMSs. Nowadays, bitmap index is
supported in major commercial database system-
s (e.g, Oracle, SQL Server), and it is often the
default (or only) index option in column-oriented
database systems (e.g., Vertica, C-Store [17], Lu-
cidDB), especially for applications with read-mostly
or append-only data, such as OLAP and data
warehouses.

The state-of-the-art developments of bitmap
compression methods [18, 19, 20] and encoding s-
trategies [21, 22, 16] have substantially broaden
the applicability of bitmap index on all sorts of
attributes. For high-cardinality attributes, a par-
ticularly useful type of bitmap index is bit-sliced

index (BSI) [23]. Given a numeric attribute on
integers or floating-point numbers, BSI directly
captures the binary representations of attribute
values. The tuples’ values on an attributes are
represented in binary format and kept in s bit
vectors (i.e., slices), which represent 2s different
values.

For answering contextual ranking queries, dur-
ing index construction, a bitmap index is creat-
ed for each selected ranking function. It consists
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of several bit vectors, each of which corresponds
to an interval of ranking scores over the ranking
function. For a database tuple, its correspond-
ing bit in the vector for the interval subsuming
its ranking score is set to 1, and the same bits
in other vectors are 0. During query answering,
we select one or more indices (functions) that are
close to the query’s ranking function. The con-
straints on buckets are specified by intervals of
scores over the chosen functions. Tuples inside a
bucket can thus be obtained by intersecting (AND
operation) all vectors corresponding to the inter-
vals. A 1 bit in the resulting vector indicates the
corresponding tuple is in the bucket. Comput-
ing bucket cardinality is a COUNT operation on
the resulting vector. The union (OR operation)
of all the vectors for candidate buckets produces
a single vector, where each 1 bit corresponds to a
candidate tuple. Thus we get the IDs of all can-
didate tuples. The following example illustrates
the idea.

Example 7 Consider ranking functions w1×a1 +
... +wn×an, where each ai is an attribute and wi is
the corresponding weight. Given a specific func-
tion, i.e., (w1, ..., wn), the tuples in the space are
ranked in the order of contour lines w1×a1+...+wn

×an=s, where each s is a score. We construct a
bitmap index for the given function, where each
vector corresponds to a score interval.

Figure 5(a) shows a relation R with tuples and
attribute values. The ranking function is x+2y.
Among the functions with bitmap indices con-
structed, the two functions x+y and x+3y are
chosen, since they are close to x+2y. Their in-
dices are shown in Figure 5(c) and (d), respec-
tively. Specifically, the index for x+y consist-
s of 4 bitmaps, corresponding to score interval-
s [0, 2), [2, 4), [4, 6), and [6, 8). The index for
x+3y also has 4 bitmaps, corresponding to [0, 4),
[4, 8), [8, 12), and [12, 16). The boundaries be-
tween these intervals, i.e., the contour lines, are
shown in Figure 5(b). The intersections of these
intervals give a tuple space partition. For in-
stance, the bucket corresponding to the intersec-
tion of the two shaded areas has constraints {2 ≤
x + y < 4, 8≤x+3y<12}. The upper- and lower-

bound scores for this bucket are 6 and 3, respec-
tively, based on linear programming. The bitmap-
s for 2≤x+y<4 and 8≤x+3y<12 are 0001100110
and 0101000100. Therefore the bitmap for the
shaded bucket is 0001100110 AND 0101000100 =
0001000100. That is, the bucket contains tuples
r4 and r8.

5.1.2. Heuristics for Choosing Index to Build

We discuss two index selection heuristics. The
first heuristic, random selection, is to simply choose
arbitrary functions to build index for. Clearly this
strategy has the problem of exponential explosion-
As the number of attributes involved increases,
the hope of an arbitrary indexed function get-
ting close to a future dynamic query is slim. This
“curse of dimensionality” is well known in many
other areas, such as multi-dimensional indexing.

To address this concern, our second heuristic,
workload-based selection, is to build bitmap in-
dices for those functions that capture the query
workload. By doing that, we achieve efficiency for
more frequent queries and sacrifice less frequen-
t ones. To be more specific, each linear ranking
function is viewed as a point in a multi-dimensional
space. Given a set of previous queries, i.e., a set
of points in the space, we partition the space in-
to buckets. 9 Associated with each bucket is a
virtual query, located at the center of that buck-
et. We thus capture the queries in the bucket
as a set of queries identical to the virtual query.
This is based on the intuition that if a query s-
pace partition is fine-grained enough, queries in-
side each bucket are close enough to each other.
After measuring the number of queries in each
bucket, we choose to build bitmap indices on the
virtual query functions of those buckets that con-
tain a large number of queries.

The workload-based selection is effective on-
ly when there do exist frequent queries in the
workload, i.e., the workload is clustered. In other
words, if queries in the space have equal prob-
ability to be issued by users, then the strategy
degrades to the above random selection heuristic.

9The space and buckets of queries should not be con-
fused with the space and buckets of tuples in Section 4.1.
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TID x y

r1 1 0

r2 3 3

r3 2 4

r4 0 3

r5 2 1

r6 4 3

r7 0 0

r8 1 3

r9 3 1

r10 1 4

the interval [20,40) for x+y

the interval [40,80) for x+3y

20
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y

40

0 10 20 30
0 x40

10

(a) The relation R. (b) Intersecting bitmap indices.

TID B
[0,2)

B
[2,4)

B
[4,6)

B
[6,8)

r1 1 0 0 0

r2 0 0 1 0

r3 0 0 1 0

r4 0 1 0 0

r5 0 1 0 0

r6 0 0 0 1

r7 1 0 0 0

r8 0 1 0 0

r9 0 1 0 0

r10 0 0 1 0

TID B
[0,4)

B
[4,8)

B
[8,12)

B
[12,16)

r1 1 0 0 0

r2 0 0 1 0

r3 0 0 0 1

r4 0 0 1 0

r5 0 1 0 0

r6 0 0 0 1

r7 1 0 0 0

r8 0 0 1 0

r9 0 1 0 0

r10 0 0 0 1

(c) Bitmap index for x+ y. (d) Bitmap index for x+ 3y.

Figure 5: Intersect bitmap indices on functions.

The workload for (contextual) ranking queries is
naturally clustered, due to the existence of com-
mon senses in user preferences and common inter-
ests among similar users.

Questions remain on how many vectors to have
for each index. Such a choice is very important in
determining the approach’s efficiency and it form-
s a challenging problem that warrants further re-
search. The experiments in Section 6 demonstrate
the validity of our approach, under heuristically
chosen number of vectors.

5.1.3. Heuristics for Choosing Index to Intersect

With bitmap indices built for the workload,
given a new query, we select two indices that are
the closest to the query and intersect them. To
be more specific, suppose the linear ranking func-
tion in a query is f : w1× a1+...+wn ×an, where
wi is the weight and ai is the attribute. Given
an indexed function g: w′

1× a′1+...+w′
n ×a

′
n, the

closeness between f and g is defined as their co-
sine similarity,

closeness(f, g) =
−→vf ·
−→vg

‖−→vf ‖ ‖
−→vg‖

, (3)

where −→vf=<w1, . . . , wn> and −→vg=<w′
1, . . . , w

′
n>.

We note that cosine similarity is just an in-
tuitive measure to capture the closeness between
functions. Similarly the decision of selecting two
indices to intersect is also a heuristic, although in
principle we may also use one index or intersec-
t more indices. It warrants further research in-
to various problems, including how to decide the
number of intersected indices, how many inter-
vals to build for each index, and how to optimally
measure the closeness between functions.

Note that although this method is also based
on multi-dimensional space, it does not suffer from
the attribute mismatch problem associated with
multi-dimensional histogram and index. (More
details in Section 5.2.) The reason is that a func-
tion such as w1×a1 is a special case of functions
involving more attributes such as w1×a1+w2×a2.
Therefore as long as w1×a1 appears frequently,
the workload on dimensions (a1,a2) is able to cap-
ture it.
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Figure 6: Using MDH to get the rank of a tuple with score
x+y+z=16.

5.1.4. Dealing with Boolean Conditions

Up to this point, we assume the nonexistence
of Boolean conditions, i.e., we assume the con-
text relation RB is simply one base table. This
assumption was made only for simplicity of pre-
sentation. Before performing the intersections of
bit vectors shown in Figure 5, the vectors over the
indexed function intervals must reflect the filter-
ing effects of the Boolean conditions. If a tuple
does not belong to the context relation RB, we
must set its corresponding bits in the vectors to
0. In fact, logic bit vector operations easily al-
low us to integrate the proposed techniques with
bitmap index-based solutions for selection condi-
tions [21, 22, 16] and join queries [24].

5.2. Alternative Methods: Partitioning by Single-

Attribute Constraints

In this section we discuss several alternative
methods that partition by single-attribute con-
straints. They may have significant limitations in
reality, although they could be competitive in spe-
cial cases such as very small number of attributes,
fixed ranking dimensions, and so on. Neverthe-
less, they might be the solutions that one resort
to at the first glance of the contextual ranking
problem. The experimental results in Section 6
verify that these methods have very limited effec-
tiveness.

Using Multi-Dimensional Histogram (MD-
H):

A multi-dimensional histogram (MDH) partitions
tuples into buckets, with the cardinality of every
bucket pre-computed. Each bucket is defined by
intervals (ranges) over individual attributes. For
instance, the partition in Figure 1 can indeed be
a 2-dimensional histogram. A histogram main-
tains cardinality information, but cannot provide
access to individual tuples. Therefore, we must
use multiple sql range queries concatenated by
UNION, one for each bucket, to retrieve the tu-
ples in candidate buckets. For instance, suppose
Figure 1 is a histogram, the range queries corre-
sponding to the candidate buckets use condition-
s (10≤a AND a<20 AND 30≤b AND b<40), (30≤a

AND a<40 AND 10≤b AND b<20), and so on. (An
alternative is to use disjunctives to combine these
conditions in a single WHERE clause.)

This method has serious disadvantages. First,
the multiple range queries are inefficient to eval-
uate, as they may require access to the full do-
main of every attribute. To illustrate, consider
Figure 6. The ranking function is x+y+z, and the
query asks for the rank of a tuple with score 16.
The candidate buckets must at least contain the
gray plane x+y+z=16, which spans through the
whole domain of x, y, and z, respectively. Second,
the dimensions in a histogram may not match
the attributes in a ranking function, resulting in
loose upper-bound and lower-bound. The loose
bounds further produce significant overlapping a-
mong the bounds of buckets, thus large number
of candidate buckets. For instance, suppose the
histogram in Figure 1 is used to answer anoth-
er query with ranking function a+b+c, instead
of a+b. Attribute c has domain [0, 40). Since the
histogram only uses a and b to partition the space,
a constraint, 0≤c<40, is implicitly given for every
bucket. With such an identical loose constrain-
t, all buckets may become candidates. Finally,
it is difficult to apply this method when there
are join or selection conditions in our query. Al-
though there exist multi-dimensional histograms
for joins, the combination of ranking and Boolean
attributes from joined tables will only increase the
number of dimensions that need to be matched,
resulting in even looser bounds.
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parameter meaning values

t # tuples 400K,800K, 4M, 8M

a # ranking attributes 2,3,4,5,6,7

q rank of the query tuple (in percentage) 1%, 10%, 25%, 50%

i # index built 100, 200, 300, 400

v # vector per index 7, 8, 9, 10

Table 1: Configuration Parameters.

Traversing Multi-Dimensional Index (MDI):
Similar to multi-dimensional histogram, MDI is
also a partition scheme where buckets are speci-
fied by intervals over attributes. Here we use R-
tree [25] as an example, without losing generality.
The index nodes can be viewed as buckets. There
exists a hierarchy in the index tree, thus a hierar-
chy for the buckets as well. Different than MDH,
MDI provides access to tuples. Although stan-
dard R-tree does not contain cardinality (number
of tuples under each subtree), there are extensions
that augment each node in R-tree with cardinali-
ty, e.g., aggregate R-tree (aR-tree) [26, 27].

Using MDI has problems similarly existing for
MDH. First, the attributes in an index may not
match the attributes of a ranking function, result-
ing in loose score bounds, thus a large number of
candidate buckets. The mismatch seriously limit-
s the applicability of this method, since it is not
affordable to exhaustively build indices for all pos-
sible combinations of dimensions. Second, it must
use random access to tuples to obtain the values of
missing ranking attributes (that are not indexed),
when un-clustered index is used. The number
of random accesses may become prohibitive when
the number of candidate buckets increases. Third,
for MDI with tuple-partitioning (e.g., R-tree), the
boundary of an index node (e.g., minimal bound-
ing rectangle (MBR)) is determined towards the
efficiency of insertion/deletion operations, which
may conflict with the efficiency of answering con-
textual ranking queries. For instance, an MBR in
R-tree may stretch over a big range along one di-
mension, resulting in a large interval between the
upper-bound and lower-bound of the correspond-
ing bucket. The consequence is a large number of
candidate buckets. Finally, similar to MDH, M-

DI cannot smoothly deal with selection and join
conditions.

Intersecting B-tree Indices (BTree):
We can partition the tuple space by intersect-
ing indices over individual attributes (such as B-
trees). 10 A B-tree index naturally partitions an
attribute domain into intervals. The results of in-
dex intersection provide the (pointers to) tuples
in each bucket, thus the cardinality. This method
can handle any combinations of ranking attributes
as long as the individual indices are available.
However, unlike MDI where the space is readi-
ly partitioned, it requires explicit intersections of
indices. The main overhead of this method thus
lies in partitioning, where B-trees over attributes
must be fully traversed, and tuple lists are inter-
sected. The traversal on each index may repeat
multiple times if the memory cannot hold the n-
odes from all indices.

Intersecting Bitmap Indices (BAttr):
This method intersects bitmap indices instead of
B-trees. The procedures of computing cardinali-
ties and retrieving candidates are essentially the
same as in the method of function-based bitmap
index (Section 5.1). The difference is that bitmap
indices here are on individual attributes instead
of ranking functions. In other words, it is a spe-
cial case of function-based bitmap index, since a
single attribute can be viewed as a function as
well. The buckets are specified by intervals on
attributes. The IDs of tuples within one specific
interval on an attribute are given by the corre-
sponding bit vector.

10Such index intersection was used in evaluating selec-
tion queries [28].
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Figure 7: Single table queries: Execution time varying by t.
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The advantage of this method is that the bit
operations in getting the vectors for buckets are
much more efficient than traversing B-trees and
intersecting verbatim lists of tuple IDs. Howev-
er, in a multi-dimensional space with many in-
tervals on each dimension, the number of buckets
and thus the number of bitmap operations can be
fairly large, resulting in large cost in computing
cardinalities of buckets.

6. Experiments

The algorithms are implemented in C++. Our
bitmap index implementation is based on [29],
which builds multiple bitmap indices at differen-
t domain resolutions and compresses them using
the WAH compression method [18]. The B-tree
index intersection algorithm is built upon a B-
tree implementation in libgist, an library that im-
plements GiST [30].

We experimentally compared the following meth-
ods: an exhaustive method that uses sequential s-
can on single table (Scan), an exhaustive method
using sort-merge join (SMJ ), B-tree intersection
(Btree), intersecting bitmap index on attributes
(BAttr), intersecting bitmap index on randomly
selected functions (BFuncRND), and the method
of intersecting bitmap index on workload-based
functions (BFuncWKLD).

6.1. Experimental Settings

The experiments were over synthetic tables.
The schema of each table consists of a set of at-
tributes, with total width of 100 bytes. The at-
tributes are 4-byte floating point numbers, inde-
pendently generated by different distributions, in-
cluding uniform, Gaussian, and cosine distribu-
tions.

We also experimented with join queries in star-
schema. The join condition is A.j=B.j1 AND
B.j2=C.j, where A.j and C.j are keys of A and
C, respectively. B.j1 and B.j2 are the foreign
keys in B referencing them. A, B, and C have
the same size. About half of A’s tuples do not join
with any tuple in B. Each tuple in the remaining
half in average joins with 2 tuples in B. The same
applies to the join between C and B.

Our queries use weighted-sum over ranking at-
tributes as the ranking function. We experiment-
ed with various numbers of ranking attributes.
The workload was created by a data generator
for clustering algorithms from [31]. Viewing each
query ranking function as a point, i.e., a vector of
weights, in the query space, a workload is a set of
clusters. The generator creates values based on
underlying data models, one model per cluster.
A model specifies, for the corresponding cluster,
the mean and standard deviation of each weight
individually. The values on a weight parameter
are generated by a Gaussian distribution with the
mean and standard deviation.

The experiments were conducted on a PC with
2.8GHz Intel Xeon SMP (dual hyperthreaded C-
PUs each with 1MB cache), 2GB RAM, and a
RAID5 array consisting of 3 146GB SCSI disks,
running Linux 2.6.15.

6.2. Experimental Results

We evaluated the performance of various meth-
ods and studied how they are affected by impor-
tant configuration parameters, which are summa-
rized in Table 1. For BFuncRND and BFuncWKLD,
by default there are bitmap indices built for 200
functions. For BFuncWKLD, the functions are
chosen based on a query workload containing 500
queries. For each index on a function, we use bit-
sliced index (BSI) [23] mentioned in Section 5.1.1.
To be more specific, the tuples’ values on a func-
tion are partitioned into multiple ranges. The
binary representation of these range numbers on
this function is kept in v vectors, which represent
2v ranges. By default v=7.

Single-Table Queries:
To evaluate the performance of single-table queries,
we conducted experiments under groups of con-
figurations by the value combinations of three pa-
rameters, t, a, and q. In each group of experi-
ments, we varied the value of one parameter and
fixed the values of the remaining two. We then
ran all the methods and studied how their perfor-
mance is affected by the varying parameter val-
ue. The resulting wall-clock execution time under
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Figure 10: Join queries: Execution time varying by t.
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Figure 11: Join queries: Execution time varying by a.
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Figure 13: Single table queries: varying by i and v.

six sample groups of experiments is shown in Fig-
ure 7, 8, and 9. From the figures, we can make
the following observations:

First, BFuncWKLD is usually the best algo-
rithm and it is several times more efficient than
others. This validates the approach of using bitmap
index built upon query workload.

Second, for single-table queries, Scan performed
pretty well in comparison with other methods, ex-
cept BFuncWKLD. This verifies the analysis of
various methods in Section 5.2. They all have
significant disadvantages. For instance, Figure 8
shows that, as the number of ranking attributes
increases, the performance of Btree degrades ex-
ponentially due to the fact that it has to fully
traverse all B-trees and intersect their tuple point-
ers. As another example, Figure 8(b) clearly il-
lustrates the “curse of dimensionality” on BFun-

cRND, as mentioned in Section 5.1.2. The fig-
ure also shows that BFuncWKLD scales properly
by number of ranking attributes. We also note
that user-defined ranking functions typically are
defined over small number of ranking attributes.

Third, Figure 9 shows that requested rank po-
sition has an important impact on algorithm ef-
ficiency. Specifically, the smaller rank position,
the more efficient BFuncRND and BFuncWKLD

are. On the other hand, the performance of the s-
traightforward approach Scan is independent from
rank position. Figure 9 shows that, to obtain the
rank of an object ranked at 1% (e.g., the object
ranked at 8192 when t=800K), BFuncRND out-
performed Scan. However, as rank position in-
creases, it became worse than Scan. With regard

to BFuncWKLD, it always outperformed Scan,
but its margin of advantage over Scan shrunk as
rank position increases.

Join Queries:
The results of join queries are shown in Figure 10-
12. Note that SMJ replaces Scan for join queries
and Btree becomes unapplicable. We make the
following observations from these figures: First,
BFuncWKLD is still clearly the best method, and
its advantages over other algorithms are enlarged
under join. Second, different from single-table s-
cenario, the exhaustive approach SMJ now is of-
ten the worst method. This is due to that a ful-
l join needs to process a large number of input
tuples and intermediate results. Third, BFun-

cRND is often the second best method. However,
when the number of ranking attributes increases,
this method suffers more than other methods, as
shown by Figure 11.

To further understand the methods BFuncRND
and BFuncWKLD, we conducted more experiments
to analyze how their performance is affected by
various parameters, as shown in Figure 13. As ex-
pected, when the number of built indices increas-
es (Figure 13(a)), these two methods are more
efficient. However, 400 indices do not give us
substantial performance improvement over 100 in-
dices. This indicates that a small number of in-
dices are sufficient for the given workload. Under
other workloads, more indices may become nec-
essary. Figure 13(b) shows that increasing the
number of vectors makes the performance of B-
FuncRND worse. The reason is that randomly se-
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lected functions cannot match the query function-
s well, resulting in a large number of candidate
buckets. As there are more vectors per index, the
partition has more buckets, therefore BFuncRND
needs to intersect more bit vectors and compute
the cardinalities for more candidate buckets, re-
sulting in degraded performance. On the other
hand, BFuncWKLD is not seriously affected by
v, indicating that the workload-based function-
s can successfully capture the queries, resulting
in a small number of intersections and candidate
buckets.

Note that we did not experiment with Boolean
selection and join conditions. The synthetic table
can be viewed as the results after such conditions
are applied. To obtain the results, the approach
of using bitmap index has been well-studied and is
shown to be very efficient for range selections and
star-joins [24, 16, 21, 22]. In Section 5.1.4 we have
discussed how to integrate with such techniques.
Therefore, to focus on the performance study of
contextual ranking queries, we do not mix with
the performance measurements on Boolean con-
ditions, whose results are well-known.

7. Conclusion

We studied contextual ranking queries that
obtain the ranks of query objects among context
objects. Such queries are useful in many data ex-
ploration applications. For processing contextual
ranking queries, we develop a general partition-
and-prune framework and a novel method based
on bitmap index on ranking functions. We ana-
lytically study the cost model of this framework
and empirically compare various methods. Exper-
iments show that our method can be substantially
more efficient than alternative methods.
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