Towards a Query-by-Example System for Knowledge
Graphs

Nandish Jayaram® Arijit Khan# Chengkai Lit Xifeng Yan®* Ramez Elmasrit
YUniversity of Texas at Arlington, # Systems Group, ETH Zurich, $ University of California, Santa Barbara

ABSTRACT

We witness an unprecedented proliferation of knowledge graphs
that record millions of heterogeneous entities and their diverse rela-

tionships. While knowledge graphs are structure-flexible and content-

rich, it is difficult to query them. The challenge lies in the gap
between their overwhelming complexity and the limited database
knowledge of non-professional users. If writing structured queries
over “simple” tables is difficult, it gets even harder to query com-
plex knowledge graphs. As an initial step toward improving the
usability of knowledge graphs, we propose to query such data by
example entity tuples, without requiring users to write complex
graph queries. Our system, GQBE (Graph Query By Example), is a
proof of concept to show the possibility of this querying paradigm
working in practice. The proposed framework automatically de-
rives a hidden query graph based on input query tuples and finds
approximate matching answer graphs to obtain a ranked list of top-
k answer tuples. It also makes provisions for users to give feedback
on the presented top-k answer tuples. The feedback is used to refine
the query graph to better capture the user intent. We conducted ini-
tial experiments on the real-world Freebase dataset, and observed
appealing accuracy and efficiency. Our proposal of querying by
example tuples provides a complementary approach to the existing
keyword-based and query-graph-based methods, facilitating user-
friendly graph querying. To the best of our knowledge, GQBE is
among the first few emerging systems to query knowledge graphs
by example entity tuples.

1. INTRODUCTION

Consider the scenario where a Silicon Valley business analyst is
interested in writing an article on entrepreneurs who have founded
technology companies head-quartered in California. She could be
aware of only a few such founder-company pairs; nevertheless,
to write the article, she must have a more comprehensive list of
such tuples. In general, query users might be interested in finding
heterogeneous entities (e.g., persons, products, organizations) that
are related in certain ways.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

GRADES 2014, June 22, 2014, Snowbird, Utah, USA.

Copyright 2014 ACM 978-1-4503-2982-8/14/06...$15.00.

DOI: 10.1145/2621934.2621937.

Figure 1: An Excerpt of a Knowledge Graph

Tasks like the above one are becoming increasingly common in
several applications, including search, recommendation systems,
and business intelligence. The analyst may have several ways to
retrieve the founder-company list, such as querying a knowledge
graph with some graph-querying procedure, e.g., using SPARQL.
Particularly, the analyst may tap into knowledge graphs, which
capture entities and their relationships. For example, Figure 1 is
an excerpt of a knowledge graph, in which the edge labeled founded
from node Jerry Yang to node Yahoo! captures the fact that the person
founded the company. Instances of real-world knowledge graphs
include DBpedia [3], YAGO [20], Probase [24], Satori', and Free-
base [4] which powers Google’s knowledge graph 2.

Although knowledge graphs are a great source of information,
both users and application developers are often overwhelmed by
the daunting task of understanding and using them, due to the sheer
size and complexity of such data. Given its schema-less and semi-
structured nature, a knowledge graph is typically represented as a
set of (subject, property, object) triples. The Linking Open Data
community has interlinked billions of RDF triples spanning over
several hundred datasets, and these are stored in relational databases,
graph databases, and triple-stores. In retrieving data from these
databases, the norm is often to use structured query languages such
as SQL, SPARQL, and those alike. However, writing structured
queries requires extensive experiences in query language and data
model, as well as a good understanding of the particular dataset [7].

Motivated by the aforementioned usability challenge, we present
GQBE, a framework that can be used to query knowledge graphs by
example tuples of entities without having to write complex struc-

! http://accounts.satori-design.com/index.php

% http://www.google.com/insidesearch/features/search/knowledge
.html

place_founded (P)

<Jerry Yang, Yahoo!> Query Graph

~ _|Answer Space O -

Query

Discovery

Input Tuples

Maximal Query
A Graph (MQG)

Modeling ~| Processing

Query Lattice

Ranked Top-k Answer Tuples
<David Filo, Yahoo!>

User Feedback

Result
Browsing

<Sergey Brin, Google>

<Steve Wozniak, Apple Inc.>

Figure 2: The Architecture and Components of GQBE

tured queries. [9] presents a proof of concept of this system which
shows that such a querying paradigm is indeed a viable option.

Example 1 (Querying by Example Tuple): (Jerry Yang, Yahoo!) is
an example input tuple that satisfies the analyst’s query intent. This
is shown in red as the input to GQBE in Fig. 2. Given the knowl-

edge graph in Figure 1, GQBE finds answers such as (David Filo, Yahoo!)

and (Sergey Brin, Google) as shown in blue in Fig. 2. It is to be noted
here that the entities like Jerry Yang and Google are specific vertices
in the knowledge graph, and not keywords.

Substantial progress has been made on query mechanisms that
help users construct query graphs or even do not require explicit
query graphs. Such mechanisms include keyword search (e.g., [11]),
keyword-based query formulation [18, 25], and interactive and form-
based query formulation [5, 8]. Note that query graphs or patterns
are often used in the literature to graphically present queries over
graphs. Underlyingly query graphs are formed by using structured
query languages or some of the aforementioned query mechanisms.
Therefore query graph is not what we refer to as “example”. In
fact, one of the components in GQBE discovers a hidden query
graph from input entity tuples. Query by example (QBE) has a long
positive history in relational databases [26]. Particularly, QBE and
keyword-based methods are adequate for different usage scenarios.
Using keyword-based methods, a user has to articulate query key-
words, e.g., “technology companies head-quartered in California
and their founders.” for the aforementioned analyst. Not only a
user may find it challenging to clearly articulate a query, but also a
query system might not return accurate answers, since it is non-
trivial to precisely separate these keywords and correctly match
them with entities, entity types, and relationships. This has been
verified through our own experience on a keyword-based system
adapted from SPARK [15]. In contrast, a GQBE user only needs to
know the names of some entities in example tuples, without being
required to specify how exactly the entities are related. On the other
hand, keyword-based querying is more adequate when a user does
not know a few sample answers with respect to her query.

More formally, GQBE addresses the following problem. A data
graph is a directed multi-graph G with node set V' (G) and edge set
E(G). Each node veV (G) represents an entity and has a unique
identifier id(v). Each edge e=(v;,v;)€F(G) denotes a directed
relationship from entity v; to entity v;. It has a label, denoted as
label(e). Multiple edges can have the same label. The user input
and output of GQBE are both entity tuples, called query tuples and
answer tuples, respectively. A tuple t=(v1,...,vy) is an ordered
list of entities (i.e., nodes) in GG. The constituting entities of query
(answer) tuples are called query (answer) entities. Given a data

graph GG and a query tuple ¢, our goal is to find the top-k most
similar answer tuples to t.

Since the users of GQBE are not required to construct a query
graph, the system automatically discovers a hidden weighted query
graph to capture the user’s query intent. The system then finds a
ranked list of similar answer tuples that are presented to the user.
Provisions for the user to provide feedback on the answer tuples are
made using which the user can re-rank the answer tuples and also
mark their relevance. This iterative feedback mechanism is used by
the system to refine the query graph until the user is satisfied with
the results.

2. SYSTEM OVERVIEW

Figure 2 shows the various components involved in GQBE’s
framework. Since the input to the system is an example tuple,
Query Graph Discovery module automatically discovers a weighted
query graph that captures important relationships and entities be-
tween and around the entities in the example tuple. This module
must discover the hidden query graph behind the example tuple that
captures the user intent. Such a graph is called the maximal query
graph (MQG) and edge-isomorphic answer graphs are projected to
form various answer tuples.

It is unlikely that we will find an edge-isomorphic match to the
MQG, so it becomes imperative to find approximate matches to the
MQG. The Answer Space Modeling component of GQBE models
the space of all answer graphs as a query lattice formed by the sub-
sumption relationship between all subgraphs of the MQG. An edge-
isomorphic match to a subgraph of the MQG is an approximate
match to the MQG. The query lattice can be large and obtaining
the top-k answer tuples requires evaluating these query graphs.
For a large lattice, the brute-force approach of evaluating all the
lattice nodes can be prohibitively expensive. The Query Processing
module efficiently finds the top-k answer tuples, which would stop
after partial lattice evaluation if the top-k answer tuples are found.

The top-k answer tuples obtained are presented to the user by
the Result Browsing module. The user can browse through the
presented top-k answer tuples and provide feedback to the system.
The user can mark the relevant and irrelevant answers among the
presented top-k answer tuples and also re-rank the answer tuples.
This kind of feedback helps the system better understand the user
intent since it gets both positive and negative example tuples from
the feedback. This is an iterative process that will help the user in
refining the query until her exact query intent is captured by the
system and is satisfied with the answer tuples.

3. CURRENT SOLUTION
3.1 Query Graph Discovery

The goal of the Query Graph Discovery module is to discover a
hidden maximal query graph that captures relationships that a user
might be interested in for the given example tuple. Based on the
data graph statistics, we assign weights to the edges which are used
to retrieve the maximal query graph.

To illustrate the idea of assigning edge weights, let us consider
the knowledge graph in Figure 1 and let (Jerry Yang, Yahoo!) be the
input query tuple. First, we capture neighbors of query entities up
to some pre-determined length d to construct a neighborhood graph
(H), and then remove the unimportant edges from this neighbor-
hood graph. For example, in Figure 1, edge e1=(Jerry Yang, Stanford)
labeled education, represents an important relationship between Stan-
ford and a query entity Jerry Yang. But other edges labeled education
and incident on Stanford (edges e2 and es in Figure 1) are deemed
unimportant (and thus removed) with regard to query entity Jerry
Yang, since there can be many graduates of Stanford in the knowl-
edge graph. Despite pruning such clearly unimportant edges, the
neighborhood graph H can still be large and its edges must thus be
further pruned. We hence rank the edges of H by weighting them
using several distance-based and frequency-based heuristics:

w(e) = ief(e) / (p(e) x d*(e)) (1)

The weight w(e) of an edge e=(u, v) is: (1) directly proportional
to its inverse edge frequency, ief(e), that captures how rare a re-
lationship is globally in the data graph; (2) inversely proportional
to its participation, p(e), that determines the number of edges in
the data graph that share the same label and one of e’s end nodes
(u or v); and (3) inversely proportional to the distance, d(e), that
captures the distance of edge e from the query entities. A greedy
heuristic is used to choose the MQG (e.g., MQG in Figure 2), that is
an m-edged weakly connected subgraph of H containing all query
entities, while maximizing the total edge weight.

3.2 Query Processing

In order to find approximate matches to the maximal query graph,
GQBE models the space of all answer graphs as a query lattice
formed by the subsumption relationship between all subgraphs of
the MQG. Fig. 3(a) is an example query lattice corresponding to
the MQG in Fig. 2. An approximate answer graph is defined as an
edge-isomorphic match to some query graph, which is a subgraph
of the MQG, and is present in the query lattice as a lattice node.
The query lattice can be large, and obtaining the top-k£ answer
tuples * requires evaluating all these query graphs. Given a query
lattice, a brute-force approach is to evaluate all lattice nodes (query
graphs) to find all answer tuples. Its exhaustive nature leads to
clear inefficiency, since we only seek the top-k answers. Moreover,
the brute-force method evaluates all the queries separately, without
sharing any computation.

We propose an efficient algorithm which allows sharing of com-
putation. We employ an upper-bound based bottom-up, best-first
strategy to explore the lattice. To process a query (), at least one
of its children Q'=Q—e must have been processed. The results of
Q' is used to efficiently process Q. At any given moment during
query lattice evaluation, the lattice nodes belong to three mutually-
exclusive sets—the evaluated, the unevaluated and the pruned. A
subset of the unevaluated nodes, denoted the lower-frontier (LF),
are candidates for the node to be evaluated next. At the beginning,
LF contains only the minimal query trees (nodes F and HL in

 The details of the ranking criteria of the answer tuples are
discussed in the extended version of the paper [10].

Figure 3: Query Lattice at Different Stages

Fig. 3(a)). After a node is evaluated, all its parents are added to LF.
Therefore, the nodes in LF either are minimal query trees or have
at least one evaluated child. For each unevaluated candidate node
Q in LF, we define an upper-bound score, which is the best score
Q’s answer tuples can possibly attain. In the beginning all nodes in
LF have the score of the MQG (node FGHLP) as its upper-bound
score. The chosen node, Qpest, must have the highest upper-bound
score among all the nodes in LF. If evaluating () returns an answer
graph A, A has the potential to grow into an answer graph A’ to an
ancestor node @". In such a case, A and A’ are projected to the
same answer tuple ¢ a=t 4. The answer tuple always gets the better
score from A’, under the simplified scoring function that sums up
weights of all edges in query graph Q" and assigns it as A”’s score.

Hence, ’s upper-bound score depends on its upper boundary—
(’s unpruned ancestors that have no unpruned parents.The upper
boundary of a node Q in LF, denoted UB(Q), consists of nodes
Q' in the upper-frontier (UJF), which is the set of unpruned nodes
without unpruned parents, that subsume or is equal to Q). The
upper-bound score of anode () is the maximum score of any query
graph in its upper boundary. Fig. 3(a) shows a lattice where nodes
F and HL are the evaluated nodes and all the nodes shaded grey
belong to LF. Node FGHLP is the only node in the upper-frontier
UF. Node GHL is the Qpes: next chosen for evaluation. A lattice
node that does not have any answer graph is referred to as a null
node. If Qpest (node GHL) turns out to be a null node after evalua-
tion, all its ancestors are also null nodes as shown in Fig. 3(b). Such
null nodes are pruned and thus the lattice changes dynamically. For
nodes in LF that have at least one upper boundary node among the
pruned ones, the change of /F leads to changes in their upper
boundaries and, sometimes, their upper-bound scores too. The
UF changes to nodes FHLP, FGLP and FGHP in Fig. 3(b). The
new upper boundaries and upper-bound scores can efficiently re-
computed, the details of which can be found in [10].

The algorithm terminates when the current score of the k&'" best
answer tuple so far is greater than the upper-bound score of the next
Qvest chosen by the algorithm. This termination condition guaran-
tees that we cannot get any answer tuple better than the current
top-k by executing any other unevaluated node in the lattice.

Finally, given a query graph from the query lattice, we discuss
the method to find all edge-isomorphic embeddings of that query
graph. A query graph can be represented as a set of RDF triples
(source, property, object). We adopt the vertical partitioning method
[1] and maintain a table for each property with two columns (subj,
oby), for the edges’ source and destination nodes, respectively. For
efficient query processing, two in-memory hash tables are created
on each table, using subj and obj as the hash keys, respectively.
Multi-way join query is used to evaluate a minimal query tree. For
instance, lattice node HL in the lattice in Fig. 3(a) corresponds to
the following query:

SELECT F.subj as ni, F.obj as n2, L.obj as ns
FROM F, L
WHERE F.subj=L.subj

After a query graph is processed, its answers are materialized into
a file (say file HL in this case) and used to process any of its parent
nodes. For instance, lattice node GHL is evaluated using the fol-
lowing join query:

SELECT HL.*, G.obj as na
FROM G, HL
WHERE G. subj=HL.n

4. WORK IN PROGRESS

There are multiple optimizations and improvements that can be
made to the system. For instance, as we can notice, the edge weight-
ing function described in Eq. 2 is a best-effort based method of
guessing what might be the important relationships to include. The
MAQG thus obtained tries to include edges that are important based
on the data graph statistics and not on user query logs. The query
processing method described in Section 3.2 performs multiple sub-
graph matching on a single machine. This method does not try to
utilize various distributed computing platforms that can potentially
be used to process various parts of the lattice independently. Lastly,
obtaining the user feedback is of great importance for the system
to identify the exact user intent. The user feedback can be used to
learn and refine the original query graph.

4.1 Interactive and Iterative Query Suggestion

This approach treats user’s example tuple as a partial query graph
(or as anchor nodes A) and produces a complete query graph through
interactions with user. It iteratively makes suggestions for new
edges to be added to the partial query graph, which are either ac-
cepted or rejected by the user. X is the set of suggested edges and
user responses to them such that Vz,; € X, x; = (ei7 n-), where e;
is the suggested edge and r; € {yes, no} is the user response. A
suggested edge has to be connected to the partial query graph.

Example 2 (Query Graph Completion): Consider Fig. 4(a) as
the user provided set of anchor nodes A and Fig. 4(b) as the target
graph Q:. Given the anchor nodes, if the system decided at iteration
t = 1 the best edge to recommend is es, this edge is presented to
the user. The user accepts this edge and 1 = (es,yes). If the
next edge suggested at t = 2, given X = ((es,yes)) is es, the
user response to this suggestion would be a no, and z2 = (es, no).
If the system decides that the next best edge suggestion at ¢t = 3,
given X = ((es,yes), (es,n0)) is e1, the user response to this
edge suggestion would be an yes, and x3 = (e1, yes). Given X =
((es,yes), (es,no), (e1,yes)), if the next edge suggested at ¢t = 4
is ez, the edge is accepted since it is in the target graph. The final
edge suggestion er leads to X = ((es, yes), (es, no), (e1,yes),
(e7,yes)), which is the desired target graph.

The key to this approach is to recommend the next edge based
on suggestions and user responses from previous m iterations, and
a user log (the first edge suggestion is based only on the latter).
Given data graph G and a set of possible user responses R =
{yes, no}, a sequence of pairs of (suggested edge, user response)
is X = x1,22,...2m where z; = (e;,7:) € E(G) x R for
¢ € [1,m]. The next pair of edge suggestion and user response,
ie, Tmt+1 = (€m+1,Tm+1), is conditioned on X, and we would
like to find the @, 41 that maximizes P(z|z1,. .. Zm), i.c.,

Tm41 = argmax P(z|z1, ... Zm) ()
z€EXR

Various models like naive Bayesian classifiers and Conditional
Random Fields (CRF) [14] can be used to solve Eq. 2. A user
query log that captures the edge suggestions and their correspond-
ing user responses will be helpful to estimate the probability value.

(a)

Figure 4: Query Graph Completion

Such a query log might not be easily available, since they are often
proprietary to a company or unavailable. We thus plan to simulate
such a query log, with the help of Wikipedia. Wikipedia sentences
are parsed and entities in them are identified and mapped to nodes
in the data graph. Edge labels between the mapped entities can be
approximated as occurring in the sentences. Edges co-occurring
in the neighboring sentences of a textual context can be viewed as
co-occurring edges in a query. Some properties that appear in one
set of sentences and not in another can be injected to simulate edge
suggestions that were rejected by users.

4.2 Distributed Query Processing

As mentioned earlier, several graphs in the lattice are evaluated
to find the top-k answer tuples. Popular distributed graph matching
systems like [21, 19] find all exact matches of a single query graph
efficiently. Since we must evaluate a lattice with several query
graphs to find the top-k answer tuples, we need a distributed lattice
traversal mechanism too.

One way to do this is to partition the lattice and process each
lattice partition in parallel. If one of the lattice nodes in a partition
is a null node, then this affects the number of lattice nodes to be
evaluated in other partitions. The main challenge to address here
is how to stop the lattice exploration once the top-k answer tuples
are obtained, while ensuring a lattice node which is a super-graph
of one of the null nodes of a different partition is not processed.

The other way of using a distributed framework for query pro-
cessing is to partition the data graph across the various machines
in the framework. Each lattice node may find matching answers
in different partitions of the data graph. We have to design clever
scheduling mechanisms to identify the various machines a single
lattice node must be executed in, and also efficient join strategies
if an answer graph is found across multiple partitions. Here we
can leverage on the various existing distributed processing systems
that partition the data graph, to evaluate a single lattice node. But,
this has the additional challenge of scheduling the best-first lattice
traversal method. Scheduling and processing various lattice nodes
in parallel is a problem to be addressed.

4.3 Refining MQG with User Feedback

The feedback about the quality of the answer tuples can be used
to indicate three different kinds of information. First, the user
can mark the relevant answer tuples, which would provide positive
example tuples to the system. Second, the user can mark irrelevant
answer tuples, which would provide negative example tuples to the
system. Third, the user can also re-rank the top-k£ answer tuples
presented which can be used to indicate the degree of the impact
each positive example tuple has.

Given a set of query tuples 7' (both positive and negative exam-
ples along with the ranking information) obtained through the feed-
back mechanism, our approach is to search for the optimal query
graph under a clear optimization goal-the positive query tuples in
T should be ranked as high as possible, adhering to the user given
ranking, while the negative query tuples must be omitted.

Suppose M is the set of all possible MQGs (under a size con-
straint) given T'. Thus we look for arg max, ¢ s, f(M), where

10 15 20 25 10 15 20 25 10 15 20 25
Top-K Top-K Top-K
GQBE -} NESS =¥ GQBE [} NESS ¥ GQBE -} NESS

(a) P@E (b) MAP (c) nDCG

Figure 5: Accuracy of GQBE and NESS on Freebase Queries

f is the optimization function. Given the optimization goal, f can
naturally be a commonly used function for evaluating ranked re-
trieval results, e.g., Precision-at-k (P@Fk), Mean Average Precision
(MAP) and Normalized Discounted Cumulative Gain (nDCG). A
fundamental challenge to this approach of course is the potentially
huge space of M. We thus shall look for randomized or approxi-
mation algorithms. Another challenge lies in the cost of calculating
f for various queries in Mr , which in the most straightforward
sense entails evaluating the queries themselves. To deal with this,
we need to design efficient index structures and multi-query opti-
mization methods for sharing the costs in evaluating queries.

A simple heuristics-based approach to accommodate multiple
positive example tuples is to discover individual MQG My,, for
each example tuple ¢;, and produce a merged and re-weighted MQG
that captures the importance of edges with respect to their presence
across multiple MQGs. The intuition here is that users will most
likely mark answer tuples that have some relationships in common
as relevant answers. So more weight is given to edges that are
common across multiple MQGs. The edge weights of the final
combined MQG is re-computed based on the number of MQGs
a particular edge appears in. Corresponding query entities can be
merged to virtual nodes and edges occurring in multiple MQGs
can be merged only if they share both the end vertices too, and
not just the label. The increase in weight of such merged edges
is proportional to the number of MQGs the edge appears in. The
weights of all edges that are not common this way are kept as is.

5. EXPERIMENTS

This section presents our initial experiment results on the accu-
racy and efficiency of GQBE. The experiments were conducted on
a double quad-core 24 GB Memory 2.0 GHz Xeon server.

Dataset The experiments were conducted over a large real-world
knowledge graph, the Freebase [4] dataset. We preprocessed the
graph so that the kept nodes are all named entities (e.g., Yahoo!) and
abstract concepts (e.g., Jewish people). The resulting Freebase graph
contains 28M nodes, 47M edges, and 5, 428 distinct edge labels.

Methods Compared GQBE was compared with a Baseline and
NESS [13]. NESS is a graph querying framework that finds ap-
proximate matches of query graphs with unlabeled nodes which
correspond to query entity nodes in MQG. Note that, like other
systems, NESS must take a query graph (instead of a query tuple)
as input. Hence, we feed the MQG discovered by GQBE as the
query graph to NESS. Since, NESS does not consider edge-labeled
graphs, we adapted it by requiring each candidate node v’ of v to
have at least one incident edge in the data graph bearing the same
label of an edge incident on v in the query graph. Baseline explores
a query lattice in a bottom-up manner and prunes ancestors of null
nodes. However, differently, it evaluates the lattice by breadth-first
traversal instead of in the order of upper-bound scores. Baseline
terminates when every node is either evaluated or pruned.

Queries and Ground Truth Queries covering diverse domains,
including people, companies, movies, sports, awards, religions, uni-
versities and automobiles were chosen. Twenty Freebase queries

F1—Fyg are based on Freebase tables such as http:// www.freebase.com/
view/computer/programming_language_designer?instances, except F; and
Fg which are from Wikipedia tables such as http://en.wikipedia.org/wiki/
List_of_English_football_club_owners. Each such table is a collection of
tuples, in which each tuple consists of one, two, or three entities.
For each table, we used one or more tuples as query tuples and the
remaining tuples as the ground truth for query answers.

Accuracy Based on Ground Truth

We measured the accuracy of GQBE and NESS by comparing
their query results with the ground truth. The accuracy on a set
of queries is the average of accuracy on individual queries. The
accuracy on a single query is captured by three widely-used mea-
sures [16], P@k, MAP and nDCG.

Fig.5 shows these measures for different values of k on the Free-
base queries. GQBE has high accuracy. For instance, its P@25 is
over 0.8 and nDCG at top-25 is over 0.9. The absolute value of
MAP is not high, merely because Fig.5(b) only shows the MAP
for at most top-25 results, while the ground truth size (i.e., the
denominator in calculating MAP) for many queries is much larger.
Moreover, GQBE outperforms NESS substantially, as its accuracy
in all three measures is almost always twice as better. This is
because GQBE gives priority to query entities and important edges
in MQG, while NESS gives equal importance to all nodes and
edges except the pivot. Furthermore, the way NESS handles edge
labels does not explicitly require answer entities to be connected by
the same paths between query entities.

Efficiency Results

We compared the efficiency of GQBE, NESS and Baseline on
Freebase queries. Fig.6 compares the three methods’ query pro-
cessing time, in logarithmic scale. The figure shows the query
processing time for each of the 20 Freebase queries, and the edge
cardinality of the MQG for each of those is shown below the cor-
responding query id. The query cost does not appear to increase
by edge cardinality, regardless of the query method. For GQBE
and Baseline, this is because query graphs are evaluated by joins
and join selectivity plays a more significant role in evaluation cost
than number of edges. NESS finds answers by intersecting postings
lists on feature vectors. Hence, in evaluation cost, intersection size
matters more than edge cardinality. GQBE outperformed NESS
on 17 of the 20 queries and was more than 3 times faster in 10 of
them. Baseline clearly suffered, due to its inferior pruning power
compared to the best-first exploration employed by GQBE.

6. RELATED WORK

[17] also proposes the new querying paradigm of querying knowl-
edge graphs by example tuples. But there are several features present
in GQBE and not in [17]. (1) they do not specify a concrete way
to discover the query graph, (2) they have no way to accept user
feedback to better understand the query intent and (3) their query
processing component mandates all answer graphs to be isomor-
phic to the initial query graph, thus precluding any approximate
matching answer graphs from being found.

Several works [12, 6] identify the best subgraphs/paths in a data
graph to describe how several input nodes are related. But the
paths discovered by their techniques only connect the input nodes
and have the further limitation of allowing only two input entities.
Finding matching answer graphs to the discovered query graph is
also not within the focus of the aforementioned works.

There are many studies on approximate/inexact subgraph match-
ing in large graphs, such as G-Ray [23] and TALE [22] GQBE’s
query processing component is different from them on several as-
pects. First, GQBE only requires to match edge labels and match-

1000

B GQBE

100

[N
o
L

Query Processing Time (secs.)
-

NESS & Baseline

F5 F6 F7 F8 F9

AN

F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

#edges 1, 13 18 10 8 10 8 12 8
in MQG

8 10 11 9 7 7 1 8 9 7 9

Query

Figure 6: Query Processing Time

ing node identifiers is not mandatory. Second, in GQBE, the top-k
query algorithm centers around query entities. More specifically,
the weighting function gives more importance to query entities and
the minimal query trees mandate the presence of entities corre-
sponding to query entities. On the contrary, previous methods give
equal importance to all nodes in a query graph, since the notion
of query entity does not exist there. Finally, although the query
relaxation DAG proposed in [2] is similar to GQBE’s query lattice,
the scoring mechanism of their relaxed queries is different and
depends on XML-based relaxations.

7. CONCLUSION

We introduced a framework to query knowledge graphs by exam-
ple entity tuples. As an initial step toward better usability of graph
query systems, GQBE saves users the burden of forming explicit
query graphs. If an example of what the user is looking for is fed
to the system, a hidden query graph corresponding to the query
tuple is automatically discovered. Top-k answer tuples are found
by the query processing module and feedback on the quality of the
answer tuples is solicited from the user. This feedback is used to
better understand the user intent and refine the query graph. Initial
experiments on Freebase dataset show that our proof of concept
system GQBE outperforms the state-of-the-art system NESS on
both accuracy and efficiency. Our future plan aims at finding better
ways to discover and process the query graph. Concrete plans to
improve the feedback mechanism to better capture the query intent
are also laid out.

8. ACKNOWLEDGEMENTS

This work of Li is partially supported by NSF IIS-1018865, CCF-
1117369, 2011 and 2012 HP Labs Innovation Research Awards,
and the National Natural Science Foundation of China Grant 61370-
019. The work of Yan was partially supported by the Army Re-
search Laboratory under cooperative agreement W911NF-09-2-0053
(NSCTA). Any opinions, findings, and conclusions or recommen-
dations expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the funding agencies. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notice herein.

9. REFERENCES

[1] D.J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable
semantic web data management using vertical partitioning. In
VLDB’07.

[2] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman.
Structure and content scoring for xml. In VLDB, 2005.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives. DBpedia: A nucleus for a Web of open data. In ISWC, 2007.

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for structuring
human knowledge. In SIGMOD, pages 1247-1250, 2008.

E. Demidova, X. Zhou, and W. Nejdl. FreeQ: an interactive query
interface for Freebase. In WWW, demo paper, 2012.

L. Fang, A. D. Sarma, C. Yu, and P. Bohannon. REX: explaining
relationships between entity pairs. In PVLDB, pages 241-252, 2011.
H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li,

A. Nandi, and C. Yu. Making database systems usable. In
SIGMOD’07.

M. Jarrar and M. D. Dikaiakos. A query formulation language for the
data web. TKDE, 24:783-798, 2012.

N. Jayaram, M. Gupta, A. Khan, C. Li, X. Yan, and R. Elmasri.
GQBE: Querying knowledge graphs by example entity tuples. In
ICDE (demo description), 2014.

N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying
knowledge graphs by example entity tuples. CoRR, abs/1311.2100,
2013.

M. Kargar and A. An. Keyword search in graphs: Finding r-cliques.
PVLDB, pages 681-692, 2011.

G. Kasneci, S. Elbassuoni, and G. Weikum. MING: mining
informative entity relationship subgraphs. In CIKM, 2009.

A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao.
Neighborhood based fast graph search in large networks. In
SIGMOD’11.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling
sequence data. In /CML.

Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query
in relational databases. In SIGMOD, 2007.

C. D. Manning, P. Raghavan, and H. Schtze. Introduction to
Information Retrieval. Cambridge University Press, NY, USA, 2008.
D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. Exemplar
queries: Give me an example of what you need. In VLDB, 2014 (to
appear).

J. Pound, L. F. Ilyas, and G. E. Weddell. Expressive and flexible
access to web-extracted data: a keyword-based structured query
language. In SIGMOD, pages 423-434, 2010.

B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine on a
memory cloud. SIGMOD 13, pages 505-516, 2013.

F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: a core of
semantic knowledge unifying WordNet and Wikipedia. In WWW’07.
Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph
matching on billion node graphs. PVLDB, pages 788-799, 2012.

Y. Tian and J. M. Patel. TALE: A tool for approximate large graph
matching. In ICDE, pages 963-972, 2008.

H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. KDD, 2007.
W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a probabilistic
taxonomy for text understanding. In SIGMOD, pages 481-492, 2012.
J. Yao, B. Cui, L. Hua, and Y. Huang. Keyword query reformulation
on structured data. /ICDE, pages 953-964, 2012.

M. M. Zloot. Query by example. In AFIPS, 1975.

(5]
(6]

[7

—

‘%
et

(91

[10]

[11]
[12]

[13]

[14]

[15]
[16]

(171

[18]

[19]
[20]
[21]
[22]
(23]
[24]
[25]

[26]

