
GQBE: Querying Knowledge Graphs by

Example Entity Tuples∗

Nandish Jayaram† Mahesh Gupta† Arijit Khan§ Chengkai Li† Xifeng Yan§ Ramez Elmasri†

†University of Texas at Arlington, §University of California, Santa Barbara

Abstract—We present GQBE, a system that presents a simple
and intuitive mechanism to query large knowledge graphs. An-
swers to tasks such as “list university professors who have designed
some programming languages and also won an award in Computer
Science” are best found in knowledge graphs that record entities
and their relationships. Real-world knowledge graphs are difficult
to use due to their sheer size and complexity and the challenging
task of writing complex structured graph queries. Toward better
usability of query systems over knowledge graphs, GQBE allows
users to query knowledge graphs by example entity tuples without
writing complex queries. In this demo we present: 1) a detailed
description of the various features and user-friendly GUI of
GQBE, 2) a brief description of the system architecture, and
3) a demonstration scenario that we intend to show the audience.

I. INTRODUCTION

Consider the scenario where a computer historian is in-
terested in preparing an article on university professors who
have designed a programming language and also won an
award in Computer Science. If the historian only knows of
a few professor-university-award triples, to start writing the
article she must have a more comprehensive list of such
triples. In general, users are interested in finding entities of
various types (e.g., persons, products, organizations) that are
related in certain ways. Tasks like the above one are becoming
increasingly common in several applications, including search,
recommendation systems, and business intelligence.

The historian may have several means to get the professor-
university-award list, including using a search engine and
querying a knowledge base. Particularly, the historian may
tap into knowledge graphs, which capture entities and their
relationships. For example, Fig. 1 is an excerpt of a knowledge
graph, in which the edge labeled award from node Donald Knuth

to another node Turing Award captures the fact that the person
has won the award. Instances of real-world knowledge graphs
include DBpedia [2], YAGO [6], Probase [8] and Freebase [3]
which powers Google’s knowledge graph.1

Both users and application developers are often over-
whelmed by the daunting task of understanding and using
knowledge graphs, due to the sheer size and complexity of

*This work of Li is partially supported by NSF IIS-1018865, CCF-1117369,
2011 and 2012 HP Labs Innovation Research Awards, and the National Natural
Science Foundation of China Grant 61370019. The work of Yan was partially
supported by the Army Research Laboratory under cooperative agreement
W911NF-09-2-0053 (NSCTA). Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the author(s)
and do not necessarily reflect the views of the funding agencies. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notice herein.

1http://www.google.com/insidesearch/features/search/knowledge.html

Fig. 1: An Excerpt of a Knowledge Graph

such data. Given its schema-less nature, a knowledge graph
is typically represented as a set of (subject, property, object)
triples. The Linking Open Data community has interlinked
billions of RDF triples spanning over several hundred datasets,
and these are stored in relational databases, graph databases
and triplestores.2. In retrieving data from these databases, the
norm is often to use structured query languages such as SQL,
SPARQL and those alike. However, writing structured queries
requires extensive experiences in query language and data
model and good understanding of particular datasets [4].

We present GQBE, a system that allows users to query
large knowledge graphs by example tuples of entities without
having to write complex structured queries. For instance,
suppose the aforementioned computer historian knows a few
professor-university-award triples that satisfy her requirement,
e.g., 〈Donald Knuth, Stanford University, Turing Award〉. She can use them
as example tuples to GQBE which will find similar answer
tuples. Given the knowledge graph in Fig.1, GQBE may find
answers such as 〈John McCarthy, Stanford University, Turing Award〉 and
〈Alan Perlis, Yale, Turing Award〉.

Query by example has a long positive history in relational
databases. Some user-friendly querying paradigms for graphs
include keyword-based, interactive and visual interfaces, but
require patterns, query graphs [9] or meta-paths [7] to be
presented as input to the system. GQBE proposes to query
knowledge graphs by example entity tuples, where the users
do not have to construct any query graph. Instead, GQBE

automatically discovers a hidden weighted query graph to
capture the query intent. To find approximate answer graphs,

2http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/Linking
OpenData



Fig. 2: GQBE’s Input Interface Fig. 3: Interface Displaying Answer Tuples

GQBE models the solution space as a query lattice, which can
be prohibitively large. An efficient top-k lattice exploration
algorithm is thus used to evaluate the lattice and find similar
answer tuples. GQBE obtains high accuracy and good execu-
tion time as shown by the extensive experiments in [5].

In this paper, we focus on presenting the functionality
and user interface of GQBE (Section II) and demonstrating
its usage scenarios (Section IV). Section III provides a brief
overview of its underlying query processor, which is detailed
in [5]. Its query processor can be used to query different
knowledge graphs.

II. GQBE’S USER INTERFACE AND FUNCTIONALITY

GQBE provides several functions that aid in convenient
query experience: 1) a simple search box for entering example
entity tuple, 2) auto completion of entity names that helps
a user find the exact entity she is typing for, 3) provision to
provide multiple example tuples, 4) display of the query graph
discovered by the system for capturing user intent, 5) display of
a ranked list of answer tuples with their corresponding answer
graphs that justify the ranking, and 6) an option of explanatory
mode that further helps users understand the rationale behind
the results. The rest of this section provides the details.

GQBE features a simple keyword-based input interface
(Fig.2), in which a user enters example tuples of entities known
to her. For instance, in Fig.2, the user is in the middle of
typing John McCarthy. GQBE offers auto completion, powered
by Freebase API. Specifically, when the user partially enters
the name of an entity (“john mcc” in Fig.2), GQBE shows a
list of suggested entities whose names match the keywords.
Hovering the mouse pointer over one suggested entity (John

McCarthy in Fig.2) will bring out a summary of the entity from
its corresponding Freebase page. This summary can be used to
resolve ambiguity among multiple entities with similar names.

Deriving user intent based on a single example entity
tuple is a hard task. GQBE allows multiple example tuples to
better capture the user intent. As shown in Fig.2, the user has
entered the first tuple 〈Donald Knuth, Stanford University, Turing Award〉
and is in the middle of entering the second tuple
〈John McCarthy, Stanford University, Turing Award〉. More example tuples

can be entered by clicking the ‘+‘ sign preceding the first
entered tuple. Entered example tuples can be removed by
clicking the individual ‘−’ signs preceding them. Entered
tuples can also be altered by directly changing the keywords
in the corresponding search boxes.

Once the user provides example tuples and clicks the
“Search” button, GQBE’s back-end query processor kicks
in. It discovers a hidden weighted query graph, termed the
maximal query graph (MQG), to capture the user’s query
intent. GQBE evaluates the MQG to find similar answer graphs
and corresponding answer tuples, and ranks them by how well
they match the input tuples (details in Section III). Fig.3 shows
the result interface displaying the ranked answer tuples. The
user can further explore the entities in the answer tuples by
clicking on them which opens their corresponding Freebase
pages in new Web browser windows.

GQBE assists an advanced user who may be interested in
understanding the rationale behind the answer tuples and their
ranking. To this end, if the user clicks the “View Maximal
Query Graph” button beside the first example tuple’s search
box (Fig.3), GQBE displays the MQG in a pop-up window.
This helps the user find out if her query intent was captured
or not. For example, the left graph in Fig.4 is the MQG
for input tuple 〈Donald Knuth, Stanford University, Turing Award〉. If the
user clicks the “View Answer Graph” button to the right of
an answer tuple (Fig.3), GQBE displays the corresponding
answer graph in another pop-up window. For example, the
right graph in Fig.4 shows the answer graph for answer tu-
ple 〈Robin Miller, Stanford University, Turing Award〉. The nodes in these
graphs can be rearranged for better readability. A user can
compare the two graphs to better understand the matching.

If an user is interested in knowing the weights of edges in
an MQG and the scores of its answer tuples, the “Explanatory
Mode” check-box above the search box (see Fig.2 and Fig.3)
can be selected. As shown in Fig.4, this displays a new column
in the result interface to show the score of each answer tuple.
It also displays the edge weights of the two graphs.

III. GQBE’S QUERY PROCESSOR

The architecture of GQBE’s underlying query processor is
shown in Fig.5. The input to GQBE is a query tuple t instead of



Fig. 4: Interface Displaying a Maximal Query Graph and an Answer Graph

Fig. 5: The Components of GQBE’s Query Processor

an explicit query graph. The query graph discovery component
of GQBE derives a maximal query graph (MQGt) to capture
the user’s query intent. GQBE further supports multiple query
tuples as input which collectively better capture the user intent.
There can be a large space of approximate answer graphs
since it is unlikely to find answer graphs exactly matching
MQGt. The answer space modeling component of GQBE

models the space of answer graphs by a query lattice formed
by the subsumption relation between all possible subgraphs
of MQGt. For efficiently evaluating the large lattice, the
query processing module employs a top-k lattice exploration
algorithm that only partially evaluates the lattice nodes in the
order of their corresponding query graphs’ upper-bound scores.
Various algorithms and other details of the query processor can
be found in [5], while we only provide a brief overview here.

A. Maximal Query Graph Discovery

Consider the knowledge graph in Fig.1 and let
〈Donald Knuth, Stanford University〉 be the input query tuple.
Neighbors of query entities up to length d are captured to
form a neighborhood graph (Ht), from which unimportant
edges are removed as a preprocessing step. In Fig.1, edge
e1=(Donald Knuth, USA) labeled nationality represents an important
relationship between USA and query entity Donald Knuth. But
other edges labeled nationality and incident on USA (edges e2
and e3 in Fig.1) are deemed unimportant (and thus removed)
with regard to query entity Donald Knuth since there can be
many citizens of the USA in the knowledge graph. Ht can still
be large and its edges must thus be further pruned. We hence

rank the remaining edges by weighting them using several
distance-based and frequency-based heuristics:

w(e) = ief(e) / (p(e)× d2(e)) (1)

The weight w(e) of an edge e=(u, v) is 1) directly proportional
to its inverse edge frequency, ief(e), that captures how rare
a relationship is globally in the data graph, 2) inversely
proportional to its participation, p(e), that determines the
number of edges in the data graph that share the same label and
one of e’s end nodes (u or v), and 3) inversely proportional to
the distance, d(e), that captures the distance of edge e from the
query entities. A greedy heuristic is used to choose the MQGt

(example MQGt in Fig. 5), that is an m-edged subgraph of
Ht containing all query entities, while maximizing the total
edge weight.

B. Answer Space Modeling

We model the space of possible query graphs by a lattice.
The lattice in Fig. 5 corresponds to the maximal query graph of
query tuple 〈Donald Knuth, Stanford University〉. Each query graph in
the lattice is a connected subgraph of MQGt and contains all
query entities. The bottom-most nodes in the lattice are called
the minimal query trees (nodes F and HL in Fig. 5) which
together capture all relationships between the input entities.
The top-most node (FGHLP in Fig. 5) is the MQGt, and other
lattice nodes have exactly one edge more than its children.
Answer graphs to these query graphs are also subgraphs of the
data graph and are structurally isomorphic to the query graph.
The score of a query graph Q is equal to the sum of all its



edges’ weights. Given an answer graph, nodes corresponding
to the query tuple entities are projected as its answer tuple.
Thus the answer tuples are approximate answers to MQGt.

C. Query Processing

The data graph can be represented as a set of RDF
triples (source, property, object). We use relational database
techniques to store and query them. We particularly adopt
the vertical partitioning method [1] and maintain a table for
each property with two columns (subj, obj), for the edges’
source and destination nodes, respectively. For efficient query
processing, two in-memory hash tables are created on each
table, using subj and obj as the hash keys, respectively.

A query graph can be evaluated using a multi-way join
query. For instance, the MQGt in 5 corresponds to SELECT

F.subj, F.obj FROM F,G,H,L,P WHERE F.subj=G.sbj AND F.obj=H.obj

AND F.subj=L.subj AND F.obj=P.obj AND H.subj=L.obj. We use right-
deep hash-joins to process such a query. Consider the topmost
join operator in a join tree for query graph Q. Its left operand
is the build relation which is one of the two in-memory hash
tables for an edge e. Its right operand is the probe relation
which is a hash table for another edge or a join subtree for
Q′=Q−e (i.e., the resulting graph of removing e from Q).
GQBE uses a best-first exploration strategy of the lattice to
obtain top-k answers. It explores the query lattice in a bottom-
up way, starting with the minimal query trees. After a query
graph is processed, its answers are materialized in files. To
process a query Q, at least one of its children Q′=Q−e must
have been processed. The materialized results for Q′ form the
probe relation and a hash table on e is the build relation.
The best-first strategy always chooses to evaluate the most
promising lattice node Qbest from a set of candidate nodes.
Qbest is the candidate with the highest upper-bound score. If
processing Qbest does not yield any answer graph, Qbest and
all its ancestors are pruned and the upper-bound scores of other
candidate nodes are recalculated. The algorithm terminates
when it has obtained at least k answer tuples with scores
higher than the highest possible upper-bound score among all
unevaluated nodes.

IV. DEMONSTRATION PLAN

We use the running example of the computer his-
torian to demonstrate the system. In this demo we fo-
cus on Freebase as the knowledge graph that contains
around 28M nodes, 47M edges and 5,428 distinct edge
labels. A demonstration video of GQBE can be found at
http://www.youtube.com/watch?v=4QfcV-OrGmQ .

Scenario A The historian only knows the name of a professor
but not the professor’s university and award. Thus she uses a
single-entity example tuple 〈Donald Knuth〉 as the input:
(A1) Type in Donald Knuth in the search box. As she starts typing,
the auto completion feature displays the plausible options.
(A2) Choose the correct entity by clicking the mouse on the
presented entity after reading through the summary.
(A3) Click the “Search” button to see the ranked answer tuples.

Scenario B The historian knows of a more complex ex-
ample tuple with two entities—a professor-university tuple
〈Donald Knuth, Stanford University〉:

(B1) Click the “Clear” button to clear out the input and output
of the previous search.
(B2) Repeat steps (A1)-(A2) for the two entities Donald Knuth

and Stanford University, in turn.
(B3) Click the “Search” button to see the ranked answer tuples.

Scenario C This scenario shows how to provide a three-
entity example tuple, 〈Donald Knuth, Stanford University, Turing Award〉,
that tries to better capture the user intent by explicitly listing
the award won too:
(C1) Click the “Clear” button next to the first search box to
clear out the previous search scenario.
(C2) Repeat steps similar to (A1)-(A2) for the three entities
Donald Knuth, Stanford University and Turing Award, in turn.
(C3) Click the “Search” button to see the ranked answer tuples.

Scenario D If 〈John McCarthy, Stanford University, Turing Award〉 is an-
other known example tuple satisfying her query requirement,
the historian can provide multiple example tuples as the input:
(D1) Click the “Clear” button next to the first search box to
clear out the previous search scenario.
(D2) Enter 〈Donald Knuth, Stanford University, Turing Award〉, the first
tuple, by following steps (C1)-(C2).
(D3) Click the ‘+’ button to the left of the first search box. A
new search box is created below it.
(D4) Enter tuple 〈John McCarthy, Stanford University, Turing Award〉 in
the second search box by following steps similar to (C1)-(C2).
(D5) Click the “Search” button to see the ranked answer tuples.

Viewing Results Users can check the rationale behind the
answer tuples and their ranking by performing the following
steps after any of the previous 4 scenarios.
(E1) Click the “View Maximal Query Graph” button. The
maximal query graph discovered by the system is displayed.
(E2) Click the “View Answer Graph” button next to any
answer tuple to see its answer graph. The degree of matching
can be observed by comparing the maximal query graph and
the answer graph.
(E3) Select the “Explanatory Mode” check-box to view the
details of edge weights and answer tuple scores.
(E4) Click any answer entity to find out more details about it
from its Freebase page.

REFERENCES

[1] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable
semantic web data management using vertical partitioning. In VLDB’07.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, , and Z. Ives.
DBpedia: A nucleus for a Web of open data. In ISWC, 2007.

[3] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge.
In SIGMOD, pages 1247–1250, 2008.

[4] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi,
and C. Yu. Making database systems usable. In SIGMOD, 2007.

[5] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying knowledge
graphs by example entity tuples. CoRR, abs/1311.2100, 2013.

[6] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: a core of semantic
knowledge unifying WordNet and Wikipedia. In WWW, 2007.

[7] Y. Sun, J. Han, X. Yan, P. S. Yu, , and T. Wu. PathSim: Meta path-based
top-k similarity search in heterogeneous information networks. VLDB’11.

[8] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a probabilistic
taxonomy for text understanding. In SIGMOD, pages 481–492, 2012.

[9] X. Yu, Y. Sun, P. Zhao, and J. Han. Query-driven discovery of seman-
tically similar substructures in heterogeneous networks. In KDD’12.


