
iCheck: Computationally Combating
“Lies, D—ned Lies, and Statistics”

You Wu† Brett Walenz† Peggy Li† Andrew Shim† Emre Sonmez†
Pankaj K. Agarwal† Chengkai Li‡ Jun Yang† Cong Yu§
†Duke University, ‡University of Texas at Arlington, §Google Research

ABSTRACT
Are you fed up with “lies, d—ned lies, and statistics” made up from
data in our media? For claims based on structured data, we present
a system to automatically assess the quality of claims (beyond their
correctness) and counter misleading claims that cherry-pick data to
advance their conclusions. The key insight is to model such claims
as parameterized queries and consider how parameter perturbations
affect their results. We demonstrate our system on claims drawn
from U.S. congressional voting records, sports statistics, and pub-
lication records of database researchers.

1 Introduction
Claims of “fact” are made from data constantly—by journalists,
politicians, lobbyists, public relations specialists, sports fans, etc.
Wherever numbers and data are involved, they can be laden with
so-called “lies, d—ed lies, and statistics.” Consider the following.

Example 1 (drawn from [5, 6]). Giuliani’s adoption claim (from
factcheck.org). During a Republican presidential candidates’ de-
bate in 2007, Giuliani claimed that “adoptions went up 65 to 70
percent” in the New York City “when he was the mayor.” More
precisely, the comparison is between the total number of adoptions
during 1996-2001 and that during 1990-1995 (he was in office
1994-2001). The claim “checks out” according to data, but why
does it compare these two particular periods? As it turns out, the
underlying data actually show that adoption began to slow down in
1998, a trend that continued through 2006. Lumping data into the
two six-year periods masks this trend. Comparing the beginning
and the end of his tenure would have yielded only a 17% increase.

One-of-the-few NBA players claim. “Only 10 players in NBA
history had more points, more rebounds, and more assists per game
than Sam Lacey in their career.” There are nearly 4000 players in
NBA history, so “one of the 11” sounds impressive. However, we
can claim the exact same or stronger for 112 other players (that no
more than 10 players dominate them in these three stats).

Vote correlation claim (from factcheck.org). A TV ad in the 2010
elections claimed that Jim Marshall, a Democratic incumbent from
Georgia, “is a long way from Nancy Pelosi,” as he “voted the same
as Republican leaders 65 percent of the time.” This comparison

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594522.

was made with Republican Leader John Boehner over the votes in
2010. If we start the comparison from 2007, however, the number
would have been only 56 percent, which is not very high consider-
ing that even the Democratic Whip, Jim Clyburn, voted 44 percent
of the time with Boehner during that period.

Today’s highly connected world has made it ever easier to perpet-
uate lies; at the same time, the movement of “democratizing data”
has also made it possible to counter these lies with an increasing
array of publicly available data. Thus, there is pressing demand for
data-driven fact-checking today. But checking claims—even those
based on clean, structured data—is challenging. For example, all
claims above are actually “correct,” but they present rather mis-
leading views of data. Thus, we must go beyond correctness to find
better measures of claim quality to catch lies. Even before we can
check a claim, however, we may have to clarify it: many claims,
such as Giuliani’s and Marshall’s above, are stated vaguely (often
intentionally). Finally, to help explain to the public why a claim
has a low quality, we need “counterarguments”: e.g., for Giuliani’s
claim, we highlighted that “Comparing the beginning and the end
of his tenure would have yielded only a 17% increase.”

Organizations such as factcheck.org and PolitiFact.com rely on
their expert editorial staff to check claims. However, manual ap-
proaches are difficult to scale because of the demand on human
expertise and effort. FactMinder [4] is a tool that assists fact-
checkers in annotating text, extracting entities, linking sources, and
collaboratively building a knowledge base. Truth Goggles (truth-
goggl.es/demo.html) and Dispute Finder [3] detect claims on the
Web that have already been checked or refuted by authoritative
sources. However, computational tools for checking claims directly
using data are still sorely lacking.

To fill this void, we present a system called iCheck, which demon-
strates that we can, in fact, cast the problem of checking claims
based structured data as a computational one. With a general mod-
eling framework and an extensible system, iCheck rates claims of
various kinds using quality measures that capture the intuition be-
hind the type of analysis seen in Example 1. iCheck can also au-
tomatically “reverse-engineer” a vague claim to recover missing
details, and come up with counterarguments to low-quality claims.
Interestingly, the same machinery that allows iCheck to combat lies
can also be used to generate “interesting” claims including lies. In
the demonstration, we will pit iCheck against itself over U.S. con-
gressional voting records, sports statistics, and publication records
of database researchers, letting users generate claims in these do-
mains, and then offering a healthy dose of reality check.

2 Modeling Overview
The key intuition behind our approach is remarkably simple. Think
of a claim as a parameterized query—we can learn a lot about it by

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12 t

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
d

−0.78

−0.39

0.00

0.16

0.32
(t0, d0)

(a) Relative result strength

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12 t

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
d (t0, d0)

(b) Parameter sensibility
Figure 1: (From [6].) Perturbing t and d in Giuliani’s claim while fixing
w = 6. The data became available in 1989, so t− d− w ≥ 1988.

“perturbing” its parameters.1 To illustrate, Giuliani’s claim in Ex-
ample 1 is parameterized by (w, t, d), where w = 6 is the length of
the aggregation window (in years), t = 2001 is the end of the sec-
ond window, and d = 6 is the distance between the two windows
being compared. Perturbing the parameter setting to (1, 2001, 8),
for example, changes the increase to merely 17%. As another ex-
ample, the one-of-the-few claim in Example 1 is parameterized by
the player (Sam Lacey for the original claim). Perturbing this pa-
rameter to other players reveals how unique Sam Lacey is. Finally,
the vote correlation claim in Example 1 is parameterized by both
the period of comparison and the legislators being compared.
The QRS Framework We proposed this framework in [6] to for-
malize various claim quality measures and formulate problems in
finding and checking claims. Briefly, we model a claim template
withm parameters as a function q : P→ R (given a fixed database
instance). Here, P ⊆ P1×· · ·×Pm is the parameter space, where
Pi is the domain of the i-th parameter. Given a parameter setting
~p = (p1, . . . , pm), q(~p) denotes the result of the query instantiated
with ~p. R is the domain of results. The points {(~p, q(~p)) | ~p ∈ P}
in P× R form q’s query response surface (QRS).

Intuitively, a fact-checker explores the QRS by trying various
perturbations to see how they weaken or strengthen the original
claim. Not all perturbations are equally useful to investigation—
useful perturbations should be “relevant” (i.e., they stay within the
context of the claim) and “natural” (e.g., changing “58 months” to
“5 years” makes the claim more concise), and should significantly
“weaken” the original claim. With this intuition, we introduce two
scoring functions as helpers (see [6] for additional details):

• A (relative) result strength function SR : R×R→ R. SR(r; r0)
captures how much r ∈ R (result for a perturbed claim) deviates
from a reference result r0 ∈ R (usually the result of the original
claim). Negative SR(r; r0) means the claim is weakened.
• A (relative) parameter sensibility function SP : P × P → R.

SP(~p; ~p0) captures how “sensible” a parameter setting ~p ∈ P

is with respect to a reference setting ~p0 ∈ P. High SP(~p; ~p0)
means ~p is natural and relevant to the original claim context.

As an example, consider again Giuliani’s claim. Since the full
space of (w, t, d) is difficult to visualize, Figure 1a fixes w = 6
and plots the result strength function over (t, d) relative to the orig-
inal claim at (t0, d0). While some perturbations (near the diagonal,
shown in greener colors) strengthen the original claim, most pertur-
bations (shown in redder colors) weaken it. However, not all per-
turbations are equally sensible. Figure 1b plots the relative param-
eter sensibility function; a darker color indicates higher sensibility.

1In fact, we can also consider perturbing the data over which the query
is evaluated, or even consider parameter and data perturbations jointly. Our
current system, however, focuses only on perturbing parameters. Therefore,
we will present our framework only in terms of parameter perturbations.

Sensibility scores generally drop around the original parameter set-
ting (they become less relevant), but bumps occur at d = 4 and 8
(they are more natural because a mayor’s term is four years). High-
sensibility regions of P are more useful in checking the claim.

Measures of Claim Quality With the QRS framework, we can
now define claim quality measures formally. As examples, we
present the two measures used in our demonstration scenarios. We
assume a finite and discrete P (generalization to the infinite and
continuous case is straightforward).

• Robustness is defined as
exp(−

∑
~p∈P SP(~p; ~p0) · (min(0, SR(q(~p); r0)))2).

Intuitively, it is based on the mean squared deviation of ran-
domly perturbed claims (we consider the deviation to be 0 if the
perturbed claim is stronger than the original). Robustness of 1
means all perturbations result in claims that are at least equally
strong; robustness close to 0 means the original claim can be
easily weakened. Giuliani’s claim has low robustness.

• Uniqueness is defined as
∑

~p∈P
1
|P| · 1(SR(q(~p); r0) < 0),

where 1(·) is the indicator function. Intuitively, uniqueness is
the fraction of parameter settings that yield results weaker than
the original claim. Low uniqueness means it is easy to find per-
turbed claims at least as strong as the original. The one-of-the-
few claim in Example 1 about Sam Lacey has low uniqueness.

Finding Counterarguments Besides quantifying claim quality,
we can, with the help of QRS, cast the task of finding best coun-
terarguments also as a computational problem. To counter a low-
uniqueness claim, we show a (large enough) sample of the param-
eter settings that yield claims at least as strong as the original.
To counter a low-robustness claim, we find the best counterargu-
ments by bi-criteria optimization over the QRS: given a bound −δ
on the deviation from the original claim result r0, find the per-
turbed parameter setting ~p from the original setting ~p0 such that
SR(q(~p); r0) ≤ −δ and SP(~p; ~p0) is maximized. The dual and
Pareto-optimal formulations are also plausible.

Reverse-Engineering Vague Claims With QRS, we can also cast
the problem of reverse-engineering vague claims as finding the
“isoline” of the QRS that contains the original claim result. With
the help of parameter sensibility function SP, we can find the re-
covered claim that is the most sensible. More precisely, suppose
the original claim has result r0, and let ~p0 be a reasonable param-
eter setting capturing the claim context (without worrying about
whether q(~p0) = r0). For example, Giuliani’s adoption claim
specifies none of the three parameter values; we simply pick ~p0 =
(w0, t0, d0) = (1, 2001, 8), reflecting that Giuliani was in office
1994–2001. Then, the most sensible recovered parameter setting ~p
is the one that maximizes SP(~p; ~p0) while satisfying SR(q(~p); r0) ≈
0 (with an error bound allowing for the case when the original claim
states its result vaguely).

Making Claims The QRS framework also allows us to formu-
late the task of making claims as computational problems. Given
a claim template and a dataset, we can find all claims with high
quality measures (such as uniqueness); we tackled this problem for
one-of-the-few claims in [5]. Alternatively, further given an object
of interest, we can find all parameter settings involving this object
with high parameter sensibility and high result strength. This latter
problem is the same as finding counterarguments to low-robustness
claims discussed earlier, except it reverses the sign of the objective
function for result strength. Note that the optimization criteria in
this case do not include any quality measures, so we can generate
“lies,” which are useful to our demo (see Section 4 for details).

3 System Overview
Having seen how to model fact-checking tasks as computational
problems, we now discuss how to implement this computational
approach. A main challenge is the diversity of claims and domains.
Such diversity manifests itself in both computation and modeling—
different claim templates may require different algorithms to pro-
cess efficiently, and knowledge about different domains needs to be
captured by domain-specific scoring functions. Implementing each
new claim template or applying it to each new domain completely
from scratch will be too labor-intensive. Thus, our overarching de-
sign goal is to make the iCheck architecture general and extensible.

iCheck offers “pay-as-you-go” extensibility. The idea is that new
claim templates and domains can be added with little effort to en-
able basic support, but if needed, better modeling and algorithms
can be achieved with extra effort. We implement this idea by fac-
toring out common domain properties, model components, and al-
gorithmic ideas, and providing reasonable “defaults” that can be
overridden by more sophisticated “plugins.” In the following, we
highlight how various aspects of iCheck implement this idea.

Algorithmic Framework In [6], we developed an algorithmic
framework consisting of a suite of “meta” algorithms with plug-
gable low-level building blocks. The baseline meta algorithms are
the most general and assume no special building blocks. More ef-
ficient meta algorithms assume building blocks that enable enu-
meration of points in the parameter space P in the order of sensi-
bility. The most efficient meta algorithms use building blocks that
enable a divide-and-conquer approach over P. Thus, new templates
are supported by the baseline algorithms with little effort upfront;
higher efficiency can be achieved with more sophisticated building
blocks, without re-implementing the high-level algorithms.

As an example, for Giuliani’s claim in Example 1, consider the
problem of finding the strongest counterarguments given a sensi-
bility threshold. The baseline algorithm simply examines the 3-d
parameter space P and tries every (w, t, d) setting. This algorithm
is acceptable for this particular claim, because the time series of
adoption numbers is small and the number of parameter settings is
limited. In general, however, faster algorithms may be needed.

The algorithm based on ordered enumeration enumerates pa-
rameter settings in decreasing order of sensibility, and stops as
soon as it reaches the sensibility threshold. For Giuliani’s claim,
the parameter sensibility function is a monotone combination of
three per-dimension scores (for w, t, and d). Therefore, we only
need to provide a building block for each dimension that enumer-
ates the parameter values in this dimension in decreasing order of
per-dimension score. The meta algorithm combines these building
blocks to enable ordered enumeration in P.

Finally, the divide-and-conquer meta algorithm works by divid-
ing the parameter space into a number of zones, and solving the
optimization problem in each zone. To enable this approach for
Giuliani’s claim, we provide a building block that divides the sub-
set of P above the sensibility threshold into a series of zones, where
each zone is a 2-d eclipse of possible (t, d) values (further bounded
by linear constraints) with a given w value. Within each such
zone, we can find the strongest counterargument (the parameter
setting minimizing the relative strength with respect to the origi-
nal claim) efficiently by reducing this problem to the well-studied
range-maximum query over a static sequence; see [6] for details.

In sum, faster algorithms can be enabled by more sophisticated
building blocks that are increasingly specialized for the claim tem-
plate and domain. For the example above, if we assume that all
parameter settings meeting the sensibility threshold fall within a
sphere of radius r̃, then ordered enumeration takes O(r̃3 log r̃)

time; divide-and-conquer only takes O(r̃2) time. In comparison,
baseline always takes O(|P|) time, regardless of how small r̃ is.

Domain Knowledge Toolbox Various functions in our modeling
and algorithmic frameworks capture domain knowledge needed to
assess claim quality and enable efficient computation. As an exam-
ple, for Giuliani’s claim, the parameter sensibility function SP is
the product of three scores, one for each of (w, t, d). The score for
d, the distance between the two windows begin compared, further
consists of two components: 1) relevance, which measures how
relevant a perturbed d is to the context of the original claim; and
2) naturalness, which captures how intrinsically natural the per-
turbed d value is. We model relevance of d by exp(−(d−d0

σd
)2),

where d0 is the setting used in the original claim, and σd is used to
control the weight of d’s relevance relative to its naturalness and to
the scores of other parameters. Intuitively, this relevance function
penalizes big perturbations in d to favor counterarguments that are
“close” to the original claim in their parameter settings. As for d’s
naturalness, because the New York City mayor has four-year terms,
it is more natural to compare with windows that are multiples of 4
years apart; therefore, we assign higher naturalness to d values that
are divisible by 4. For details, see [6].

Setting up such functions is not trivial, and we cannot afford to
repeat this process for every parameter of every claim template for
every dataset. Fortunately, for most of claims that we have exam-
ined, a handful of functional forms work well. For example, most
parameters can be scored by a relative relevance term and an abso-
lute naturalness term, like the parameter d discussed above. As an-
other example, most numeric parameters have periodic naturalness
scores, though their periods vary (e.g., quantities that are multiples
of thousands, hundreds, or tens appear more natural in claims than
those are not; numbers of months in the multiples of 12 are more
natural). Therefore, iCheck implements a toolbox of such function
forms, which user can choose and instantiate for the problem at
hand. For the supported forms of sensibility functions, the toolbox
also provides the enumeration functions required to enable meta
algorithms based on ordered enumeration.

To simplify the task of encoding domain knowledge, iCheck pro-
vides a learning-based tool, which presents the user with a series of
questions, such as asking the user to judge an alternative claim’s
strength and sensibility relative to the original claim. The tool then
uses the answers to select appropriate function forms for SP and
SR, and to train their parameters automatically.

Claim Template Library The same claim template are often ap-
plicable to many different scenarios. To avoid re-implementing the
same template for different datasets and domains, iCheck main-
tains an extensible library of generic claim templates, which allow
different datasets and SP/SR functions to be plugged in.

A generic claim template assumes that essential data are avail-
able through a canonical schema, which includes relational tables,
and, in some cases, user-defined functions. The canonical schema
hides the complexities of the actual datasets to which this template
may be applied. For example, the vote correlation claim in Exam-
ple 1 is an instance of the generic TSS (time series similarity) claim
template. The TSS template assumes a table series(id, t, v),
where id identifies an object of interest (e.g., a legislator), t is a
timestamp, and v is the value associated the object at t. The tem-
plate also assumes a user-defined function match(v1, v2) that tests
whether two values match. A TSS claim states that two objects’
values match for some fraction of the time over a period.

Applying a generic claim template to a particular dataset requires
us to define the mapping of actual data to tables defined by the
canonical schema, and to supply the required user-defined func-

tions. For example, given a database of the U.S. congressional
voting records, to check claims about Representatives, we would
define series as a view returning all relevant votes in the House;
we would also define match(v1, v2) to compare recorded votes ap-
propriately (with attention to special values such as “present” or
“not voting”). In addition, we need to provide functions to convert
a TSS query with parameter values and result to a more human-
readable form tailored toward the domain. For example, instead of
making generic TSS counterarguments showing raw t’s and id’s,
iCheck will invoke the conversion functions to show sentences talk-
ing about vote correlations over periods of dates, with full names of
Representatives and URLs for additional information about them.

Generic claim template code specifies default choices of func-
tions used by our modeling and algorithmic frameworks. It can
also implement optimizations and algorithmic building blocks spe-
cific to this claim template. When applying the claim template to
a specific scenario, we may find the defaults supplied by the tem-
plate code already adequate; if so, this new application takes min-
imal effort. Otherwise, we need to override the defaults, with help
from the domain knowledge toolbox described earlier, including
the learning-based tool for setting up SP and SR. In any case, based
on the functions available, the template code will invoke the most
efficient meta algorithm that is enabled.

4 Demo Scenarios and User Interface
We will demonstrate most functionalities of iCheck through a web-
site. This website has been customized for several domains (de-
scribed further at the end of this section), but the underlying ma-
chinery for finding and checking facts remains the same.

The website provides an object-centric view that consolidates in-
formation about an object of interest, e.g., a U.S. legislator. On this
view, a user can browse the list of claims known to iCheck about
this object. These claims can be sorted by template, quality (us-
ing the measures defined in Section 2), and popularity (based on
the level of user activities), allowing the user to spot interesting
claims easily. From the object-centric view, the user can manually
enter a claim about the object (e.g., from an attack ad against an
incumbent) by selecting the claim template and filling out a form.
Alternatively, the user can ask the system to come up some claims
about this object that are correct, though possibly misleading. For
example, the user can ask for claims implying that a legislator is
too liberal (by citing vote correlation with well-known liberals).

The claim-centric view is where iCheck scrutinizes a claim. This
view shows applicable quality measures, the list of counterargu-
ments, as well as a list of “related” claims (whose definition de-
pends on the domain). For vague claims, e.g., the vote correlation
claim in Example 1, this view shows the list of possible reversed-
engineered claims, each with its own view. Users can comment on
the claim-centric views and share claims via social media. We will
set up a Twitter hash tag so that conference followers not present at
our demo will also be able to get a taste of it.

Besides comments, users can provide feedback in a number of
ways. They can vote for the best counterarguments and reversed-
engineered claims. We randomly challenge user to gauge the qual-
ity of a claim before showing our verdict and evidence; they will
then be asked to judge the effectiveness of our fact-checking. User
feedbacks will be summarized and shown on relevant views to-
gether with measures computed automatically by iCheck.

For those interested in the inner workings of iCheck, we will
demonstrate, on a command-line interface, the process of making
a new claim template, and applying an existing template to a new
dataset (including using the tool that learns appropriate SP and SR
through user feedbacks discussed in Section 3).

Domains We have prepared three domains: U.S. congressional
voting records, sports statistics, and publication records of database
researchers. The congressional voting records from govtrack.us
contain more than 22 millions votes cast since May 1789 and are
updated daily. We focus on vote correlation claims such as the one
in Example 1, but additionally consider perturbing the subset of
bills on which comparison is made. One useful subset is that of
“controversial” bills, on which votes are largely divided between
party lines. We also define subsets by legislative topics (e.g., gun
control and health care), allowing users to explore “related” claims
that zoom in on issues they care about.

For sports, we use NBA and MLB player statistics. From a pop-
ular EPSN blog (espn.go.com/espn/elias) by Elias Sports Bureau,
we have chosen a few frequently used claim templates about play-
ers, including the “one-of-the-few” template in Example 1.

Interested in neither politics nor sports? We have a domain just
for the SIGMOD audience. Using the DBLP (dblp.uni-trier.de)
dataset, we allow a user to find impressive-sounding snippets to in-
clude in c.v. or tenure and promotion letters, and, if so desired, have
a reality check on these snippets. For example, iCheck finds that
one of the authors of this paper had a great year of publications—
only 8 other researchers have ever managed to publish as much
as (or more than) him in one year in all three venues: SIGMOD,
VLDB, and ICDE. Of course, iCheck then readily points out that
the same claim can be made for 89 other researchers!

5 Conclusion
This work falls under the general theme of computational journal-
ism [2, 1], a nascent discipline that harnesses computing to help
journalism cope with the challenges and opportunities of the digi-
tal age. iCheck is only a first step toward a computational approach
to fact-checking. We have not addressed a number of related is-
sues, such as continuously monitoring media for checkable claims,
and automatically mapping natural-language claims to known tem-
plates. Furthermore, not all lies can be detected automatically by
inspecting data and numbers alone; fact-checking in general needs
to leverage collective human intelligence. Nonetheless, our demon-
stration illustrates the potential of computational techniques—in
reducing cost and increasing effectiveness—for certain types of in-
vestigation tasks with growing importance today, as more struc-
tured datasets become available either directly or by information
extraction. There has been some work already on computer-aided
fact-checking (e.g., [3, 4]) complementing ours; we hope more will
join us in tackling this problem of significant societal importance.

Acknowledgments The authors are supported by NSF grants IIS-09-16027,
CCF-09-40671, IIS-10-18865, CCF-10-12254, CCF-11-17369, CCF-11-61359, and
IIS-13-20357. Addition support comes from ERDC Contract W9132V-11-C-0003,
ARO Contract W911NF-13-P-0018, Grant 2012/229 from the U.S.-Israel Binational
Science Foundation, HP Labs Innovation Research Awards, and a Google Faculty Re-
search Award. Any opinions, findings, and conclusions in this publication are those of
the author(s) and do not necessarily reflect the views of the funding agencies.

References
[1] Sarah Cohen, James T. Hamilton, and Fred Turner. Computational journalism.

Communications of the ACM, 54(10):66–71, 2011.
[2] Sarah Cohen, Chengkai Li, Jun Yang, and Cong Yu. Computational journalism:

A call to arms to database researchers. In CIDR 2011.
[3] Rob Ennals, Beth Trushkowsky, and John Mark Agosta. Highlighting disputed

claims on the Web. In WWW 2010.
[4] François Goasdoué, Konstantinos Karanasos, Yannis Katsis, Julien Leblay, Ioana

Manolescu, and Stamatis Zampetakis. Fact checking and analyzing the Web. In
SIGMOD 2013.

[5] You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. On “one of
the few” objects. In KDD 2012.

[6] You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. Toward
computational fact-checking. PVLDB, 7(7), 2014.

