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Abstract —In data warehousing and OLAP applications, scalar-level predicates in SQL become increasingly inadequate to support
a class of operations that require set-level comparison semantics, i.e., comparing a group of tuples with multiple values. Currently,
complex SQL queries composed by scalar-level operations are often formed to obtain even very simple set-level semantics. Such
queries are not only difficult to write but also challenging for a database engine to optimize, thus can result in costly evaluation. This
paper proposes to augment SQL with set predicate, to bring out otherwise obscured set-level semantics. We studied two approaches
to processing set predicates— an aggregate function-based approach and a bitmap index-based approach. Moreover, we designed
a histogram-based probabilistic method of set predicate selectivity estimation, for optimizing queries with multiple predicates. The
experiments verified its accuracy and effectiveness in optimizing queries.
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1 INTRODUCTION Example 2: In business decision making, an executive may
want to find the departments whose monthly average ratings

With data warehousing and OLAP applications becomirfgr customer service in 2009 have always been poor (assuming

more sophisticated, there is a high demand of querying datdings are from 1 to 5). Suppose the table schemBais

with the semantics ofet-level comparisond-or instance, a ings(department, avg_rating, month, year). The following

company may search its resume database for job candidajgsry uses CONTAINED BY for the set-level condition.
with a set of mandatory skills. Here the skills of each candig, department  FROM Ratings WHERE year=2009

date, as a set of values, are compared against the mandagetyr BY depart ment
skills. Such sets are often dynamically formed. For examplAVING  SET(avg_rating) CONTAINED BY {1, 2}

suppose a tabl®esume_Skills (id, skill) connects skills 10 gyample 3: Set predicates can be defined across multiple
job candidates. A GROUP BY clause dynamically groups thgyipytes. Consider an online advertisement examplep@agp
tuples in it byid, with the values on attributkill in each group e taple schema isite_Statistics(website, advertiser, C-
forming a set. The problem is that the current GROUP BYR) A marketing strategist uses the following query to find
clause can only do scalar value comparison by an accompajpsites that publish ads for ING with more than 1% and less

ing HAVING clause. For instance., aggregate .functions S.U'Wnan 2% click-through rate (CTR) and do not publish ads for
COUNT/ AVG/ MAX produce a single numeric value whichyggc yet:

is compared to a literal or another single aggregate value.
P . 9 ggreg . SELECT website FROM Site_Statistics
Observing the demand for complex and dynamic set-le P BY website  HAVI NG
comparisons in databases, we propose a conceggtqgiredi- SET(advertiser, CTR) CONTAIN {('ING ,[0.01,0.02])}
cate Below are several example queries with set predicate§\P NOT (SET(advertiser) CONTAIN {" HSBC })

" ancln this example, the first_set predicate involves two attebu
and the second set predicate uses the negation of CONTAIN.
%iote that we usd 0. 01, 0. 02] to represent a range-based
condition 0.0KCTR<0.02.

The semantics of set-level comparisons in many cases can
be expressed using current SQL syntax without the proposed
SELECT id FROM Resume_Skills GROUP BY id extension. However, resulting queries would be more corple
HAVING SET(skill) CONTAIN {’Java’,’\Veb services’} than necessary. One consequence is that complex queries

are difficult for users to formulate. More importantly, such

Ui and N i the b . Scienas complex queries are difficult for DBMS to optimize, leading
"G N1 are i e Dt o Campuer Seke® *Ho unnecessarily costly evaluation. The resulting queas
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a student at UT-Arlington. also facilitates efficient support of such queries. We dzyed
two approaches to process set predicates:

Example 1: To find those candidates with skills “Java
“Web services”, our query can be as follows. After groupin
a dynamic set of values on attributkill is formed for
each uniquead, and groups whose corresponding SE&Kil()
contains both “Java” and “Web services” are returned.




Aggregate function-based approadhis approach process-studied [14], [27], [18], [19]. Although set-valued attuiles
es set predicates in a way similar to processing convertiotreggether with set containment joins can support set-level
aggregate functions. Given a query with set predicateteads comparisons, set predicates have several critical adyesita
of decomposing the query into multiple subqueries, this ap-(1) Unlike set-valued attributes, which bring hassles in
proach only needs one pass of table scan. redesigning database storage for the special set data type,
Bitmap index-based approachhis approach processes seset predicates require no change in data representation and
predicates by using bitmap indices on individual attrisuié storage, and thus can be incorporated into standard RDBMS.
is efficient because it can focus on only the tuples from those(2) In real-world applications, groups and corresponding
groups that satisfy query conditions and only the bitmaps feets are often dynamically formed according to query needs.
relevant columns. State-of-the-art bitmap compressiothimeFor instance, in Example 2, the monthly ratings of each
ods [33], [2], [16] and encoding strategies [5], [34], [23Me department form a set. In a different query, sets may be
made it affordable to build bitmap index on many attribute$ormed by ratings of individual employees. With set predi-
This index structure is also applicable on many differemiates, users can dynamically form set-level comparisotts wi
types of attributes. The bitmap index-based approach psese no limitation caused by database schema. On the contrary,
general queries (with joins, selections, multi-attribgteup- set-valued attributes cannot support dynamic set formatio
ing and multiple set predicates) by utilizing single-&tfiie because they are pre-defined at schema definition phase and
indices. Hence it does not require pre-computed index for joset-level comparisons can only be issued on such attributes
results or combination of attributes. (3) Set predicates allow cross-attribute set-level coispar
We further developed an optimization strategy to handkor instance, sets are defined owavertiser and CTR
queries with multiple set predicates connected by logic ofegether in Example 3. On the contrary, a set-valued atg&ibu
erations (AND, OR, NOT). A useful optimization rule iscan only be defined on a single attribute in many imple-
to prune unnecessary set predicates during query evaluatimentations, thus cannot capture cross-attribute assmtsat
Given a query witm conjunctive set predicates, the predicatdmplementations such as nested table in Oracle allow sets
can be sequentially evaluated. If no group qualifies after over multiple attributes but do not easily support setdleve
predicates are processed, we can terminate query evaluatiomparisons on such attributes.
without processing the remaining predicates. The number ofSet predicate is also related to universal quantificatiah an
“necessary” predicates before we can step, depends on relational division [12], which are powerful for analyzing
the evaluation order of predicates. We designed a methodntany-to-many relationships. An example universal quaatifi
select a good order of predicate evaluation, i.e, an ordar thion query is to find the students that have taken all computer
results in smalln, thus cheap evaluation cost. Our idea is tecience courses required to graduate. It is a special typetof
evaluate conjunctive (disjunctive) predicates in the adsey predicates with CONTAIN operator over all the values of an
(descending) order of their selectivities, where the $riigg attribute in a table, e.gCourses. By contrast, the proposed
of a predicate is its number of qualified groups. We designedt predicates allow sets to be dynamically formed through
a probabilistic approach to estimating set predicate seigc GROUP BY and support CONTAINED BY and EQUAL, in
by database histograms. addition to CONTAIN.
In summary, this paper makes the following contributions: The SEQUEL 2 language (an extension of the original
e We proposed to extend SQL with set predicates for a#FQUEL) for SYSTEM R proposed a special SET function,
important class of analytical queries, which otherwise ldoufor comparing a set of attribute values with the result of
be difficult to write and optimize (Section 3). a subquery [4]. The proposed comparison operators include
e We designed two query evaluation approaches for SePNTAINS, =, and their negations. Furthermore, these oper-
predicates, including an aggregate function-based appro&tors can be used in comparing the results of two subqueries.
(Section 5) and a bitmap index-based approach (Section &fi€ proposal was brief, by several example queries. The SET
o We developed a histogram-based probabilistic method fighction is only on one attribute and does not allow range-
estimate the selectivity of a set predicate, for optimizingased values or bag semantics. No suggestion for implementa
queries with multiple predicates (Section 8). tion techniques was made. The SET function and CONTAINS
e We conducted extensive experiments to evaluate propo§dtgrator were later dropped from the SQL language, possibly

approaches over both real and synthetic data (Section 9pecause of the difficulty in implementing it efficiently [11]
In [8], [9], [7], [10] the concept ofgrouping variableand

associated setvas introduced as an SQL extension to allow
2 RELATED WORK comparisons of multiple aggregates over the same grouping
Set-valued attributes provide a concise and natural way dondition. That line of work only considered regular aggre-
model complex data concepts such as sets [24], [29]. Maggtes such as SUM and COUNT. Combining the concepts of
DBMSs nowadays support the definition of attributes invadvi set predicate and grouping variable can allow simpler synta
a set of values, e.gnested tablén Oracle andSET data type for complex queries. We provide more detailed discussidns o
in MySQL. For example, the “skill” attribute in Example 1 carthis in the supplemental materials to this paper.

be defined as a set data type. Set operations can be nativeljhis paper focuses on relational data model and architctur
supported on such attributes. Query processing on se¢dalisome data analytics systems today are built on top of massive
attributes and set containment joins have been extensivphrallel computing architecture. The query languagesdohs



Table: SC [JSSmesier|susenty [ couse | orae ] a superset relationshipe., the set variable SET§urse) is a

Faloy | May | CS101 4 superset of ‘CS101’, ‘CS102}.
Fallog Mary CS102 2
Fallog Tom Cs102 P Ql: SELECT st udent FROM SC GROUP BY student

: HAVING  SET(course) CONTAIN {’ CS101’, 'CS102’}
Spring10 Tom CS103 3
Fallog John | cCSf01 4 A query can include WHERE clause and regular aggregate
Falloa dohn cst02 4 functions in HAVING. In Q2: vy yaent,count(s) course 2
Spring?0 | John | CS103 8 {'CS101, ‘'CS102} A AVG(grade) > 3.5 @ semester— 1 Faiios (SC)) WE

look for those students that had average grade higher tikan 3.
in FALLO9 and took both CS101 and CS102 in that semester.

) . _ Italso returns the number of courses they took in that sesnest
systems (e.g., Pig Latin [21], Dremel [20], Jagl [1]) dealiwi e yse CONTAINED BY for the reverse of CONTAIN,

complex data models such as set-valued attributes, mags, P8, the subset relationship. Query Q.4 grade C{4.3}(SC)

nested data. Due to the fundamental architectural difteenseects all the students whose grades are never below 3. The
supporting set predicates in such systems, although a VR lts are Tom and John.

interesting future topic, is beyond the scope of this paper.

Fig. 1. A classic student and course example.

To select the students that have only taken CS101 and C-
S102, we use EQUAL to represent the equal relationship in set
3 SET PREDICATES theory. The query is Q4iyiugent course ={'CS101’,'CS102}(SC).

) i Its result contains only Mary.
We extend SQL syntax to support set predicates. Since a S§fy aphove queries we assumed set predicates follow set

predicate compares a group of tuples to a set of values, it fi{Santics. Therefore John's gradéd,4,3, are subsumed
well into GROUP BY and HAVING clauses. Specifically in 8y {4,3). The syntax also allows bag semantics for set
HAVING clause there is a Boolean expression over mumpl&redicates, WHEr8,ugens course D{'CS101, CS101CS1021(SC)
regular aggregate predicates and set predicates, codn@ttefinjs students who took CS101 twice and CS102 once, and

logic operators ANDs, ORs, and NOTs. The syntax of a S%tmdem grade C{4,4,3(SC) selects students who have obtained

predicate is: grade 4 in at most 2 courses and grade 3 in at most 1 course
SET(1, .., vm) and have no other grades in record.
CONTAIN | CONTAINED BY | EQUAL Note that the set/bag semantics of set predicates are erthog
{1, oy v0)y e OF, o)} onal to the set/bag semantics of regular SQL constructetIf s

wherev; € Dom(v;), i.e., eachu] is a literal value (integer, semantics is applied for a set predicate, only distinct eslu
floating point number, etc.) in the domain of attrlbutlg on the set predicate attribute from the tuples in a group are
Succinctly we denote a set predicate by, (..., v;;) op {(v1, used in determining if the group satisfies the set predicate.

s Up)s s @, - v7)}, whereop can beD, C, and=, However, if (the default) bag semantics is applied for ragul
corresponding to set operator CONTAIN, CONTAINED BYsQL operations, all the tuples in the group are included in
and EQUAL, respectively. calculating aggregates. FOr eXampi€u.aent. av (grade) grade

The syntax can be extended to allow set-level comparisens 4 3 (sc) calculates GPA for students with at least two 4s
with not only literal values, but also another dynamicallgnd one 3, and all their grades are included in GPA calcuiatio
formed group or the result of a subquery. We focus on literal For simplicity of presentation, in the following sectiong w
values in the following sections and discuss such exterisionfocus on the simplest querysg q v 0p {v', ..., v" }(R), i.e., a
the supplemental materials. query with one grouping attributg), one aggregate for output

We further use relational algebra to concisely represeftq), and one set predicate defined by a set opemo,
queries with set predicates. Given a relati@ngrouping and C, or =) over a single attributevj. Moreover set semantics
aggregation are represented by the following operator:  is assumed for set predicates. In Section 7 we discuss the

6. 4C(R) syntax of expressing more general queries and the methods of
G processing general queries.
where G is a set of grouping attributesd is a set of
aggregates (e.g., COUNT(*)), and is a Boolean expres- 4 DRAWBACKS OF SET-LEVEL COMPARISONS
sion over set predicates and conditions on aggregates (e& REGULAR SQL

AVG(grade)>3). The aggregates id andC may overlap.

We now provide example queries over the classic studeW—ithOUt the p_roposed S?t predicate, we fall ,baCk to current
course table (Figure 1). We use full SQL for the first query a%QL, syntax n expreslsmlg S(Iet-level _compansc])ctns. ﬁcnlromplex
we did in Section 1. For remaining queries, we will show m-théqger]es containing sca ?r— evel optleratlons are oSenh fto |
only set predicates or succinct relational algebra expmass 0 tal_n even very simpie set-level semantics. Such complex

The following Q1L: vupuens course D{CS101' Cs102}(SC) i- AUENIes are difficult for users to formulate. A more severe

dentifies the students who took both CS101 and CSigpe consequence is that set-level semantics becomes obscure.

results are Mary and John. The keyword CONTAIN represeﬁf?nce a DBMS may choose unnecessarily costly evaluation
plans for such queries.

1. To be rigorous, it should bedurse) D {(CS101), (CS102’), based The semantics of_ set predicates can often be gxpressed_by
on the aforementioned syntax. standard SQL queries. In fact, there can be multiple ways in



402.468 ms 1956.832 ms
Hash Aggregate SELECT g, SUM(a) -
roupAggregate
SELECT R.g, sum(a) on R.v=S.v

FROM R LEFT OUTER JOIN S
402.067 ms 1669.966 ms
FROM R, @ GROUPBY ¢

(SELECT g 368.190 ms 14.791 ms HAVING ~ COUNT(DISTINCT S.v)=4 646.813 ms

FROM R Hash Left Join

EXCEPT
(SELECT ¢ 289.600 ms 0.102 ms

FROM R
WHERE v <>1
AND V<2
AND v <>3)
) AS TMP 39.063 ms
WHERE R.g=TMPg 38.950 ms
GROUPBY R.g

Fig. 3. SQL query and plan for v, siar(a)v2{1.2,3,4}(R)
over 1M tuples, 10K groups, and 10 qualified groups.

icate. The plan uses a temporary one-attribute teblhat
contains values 1, 2, 3, and 4. It performs a left outer join
Fig. 2. SQL query and plan for v, sy vS{1,2,3}(R) betweenz andS, followed by grouping ory. For each group,
over 100K tuples, 1K groups, and 10 qualified groups. it checks if the group contains all four values by COUNT. The
join and sorting operators are expensive. On the contrary, i
writing queries corresponding to even a single set preglicais sufficient to use a one-pass grouping and aggregation, as
For instance, for a CONTAIN predicate witty values, the Section 5 will show.
query can usen-1 INTERSECT operations. Or, we can build We also executed the above two queries in a single-
a temporary table5' containing them values, left outer join node installation of IBM DB2 V8. Interestingly DB2 chose
R (the table being queried) witly, and process a sequencessentially the same query plans, except that the EXCEPT
of duplicate elimination, grouping, and group selection bgperator in Figure 2 was replaced by a pair of grouping and
COUNT. As another example, a CONTAINED BY can be exfiltering operators. This helps to show that PostgreSQL was
pressed by EXCEPT or CASE condition control. For multiplaot necessarily doing a bad job in optimizing the provided
set predicates, we can use the queries for individual paésiic regular SQL queries.
as building blocks and connect them by logic relationships.
Our experience is that no matter how we express t
semantics of a set predicate using regular SQL, the quety AGGREGATE FUNCTION-BASED APPROACH
often inevitably involves a combination of multiple opéoas With the new syntax in Section 3, which brings forward the
such as join, union, intersection, set difference, dufdicasemantics of set predicates, a set predicate-aware quamy pl
elimination, grouping, etc. The performance of the resglti could potentially be much more efficient by just scanning
query is usually unsatisfactory. Although one cannot eghawa table and processing its tuples sequentially. The key to
all possible gueries in expressing a set predicate, the jgleam such a direct approach is to perform grouping and set-level
below illustrate this observation by using two differenttme comparison together, through a one-pass iteration of suple
ods of writing queries. Section 9 empirically compares ourhe idea resembles how regular aggregate functions can be
proposed methods with the method of expressing set predicgirocessed together with grouping. Hence we design a method
by regular SQL queries. We discuss the details of such regutlhat handles set predicates as aggregate functions.
SQL queries in the supplemental materials to this paper. The sketch of the method is in Algorithm 1. It covers all
Figure 2 shows a PostgreSQL query plan for a regulttiree kinds of set operator®{ C, =). It uses the standard
SQL query corresponding t9, suvara) v € {1,2,3/(R). The iterator interface GetNext() to go through the tuplediinmay
plan was executed overl@0K-tuple table R(g,a,v) with 1K it be from a sequential scan over taliteor the sub-plan over
groups ong, resulting in10 qualified groups. The plan wassub-queryR. Following common implementation of aggregate
hand-picked and the most efficient one among the plans fumctions in database systems, a set predicate is defined by a
investigated. Figure 2 also shows the time spent on eadcitial state (Line 3), a state transition stage (Line 4;¥4d a
operator, which recursively includes the time spent on dihal calculation stage (Line 16-18). A hash tablemaintains
operators in the sub-plan tree rooted at the given operatarmask value for each unique group. The bits in the binary
due to the effect of iterators’ GetNext() interfaces. Thal rerepresentation of a mask value indicate which of the vaides
PostgreSQL plan had more detailed operators. We combinev™ in the set predicate are contained in the corresponding
them and give the combined operators more intuitive namegpup. If the mask value for a group equals—1, the group
for simplicity of presentation. Figure 2 indicates that theery contains alln valuesv?, ..., v™. A hash tableG' maintains a
obscures the semantics of set-level comparison, as theg quBoolean value for each group, indicating if it is a qualified
plan unnecessarily involves a set difference operatioc€p® group. The values in G were initialized tBrue for every
and a join. The set difference is betweRritself (100K tuples) group if the set operator iS or = (Line 3), otherwiseF'alse.
and a subset o (98998 tuples that do not havg 2, or 3 on A hash tabled maintains the aggregated values for the groups.
attribute v). Both sets are large, making the Except operatorIn detail, a tuple is skipped if the corresponding group is
cost much more than a simple sequential scan. already disqualified and the operatordsor = (Line 4). It
Figure 3 shows a plan for queryy, sya) v 2 Is also skipped if the group is already identified as qualified
{1,2,3,4(R). The tableR has 1M tuples. Among thel0OK and the operator i®, except that we need to accumulate the
groups formed by attribute, 10 groups satisfy the set pred-aggregate (Line 6). For a non-skipped tuple, if its value on

Seq Scan
R

38.950 ms



Algorithm 1 Aggregate Function-Based Approach OR()), XOR("), and NOT¢)) over bit vectors. Moreover,
Input: Table R(g, a,v), QUENYQ = Yg.0a v 0P {01, ... v }(R) bitmap indices enable efficient computation of aggregates, (

Output: Qualifying groupsg and their aggregate valuesa SUM and COUNT) [23].
I* g:grouping attributej:aggregate attribute;set predicate at-  The idea of using bitmap index to process set predicates
tribute */ is in line with the aforementioned intuition of processiral-s

[* A: hash table for aggregate values */
[* M: hash table for value masks */
[* G: hash table for Boolean indicators of qualifying groups

level comparison by a one-pass iteration of tuples (i.eirth
«/corresponding bits in bit vectors). On this aspect, it isilginto

1: while r(g,a,v)<GETNEXT( ) != End of Tabledo the aggregate function-based approach. However, thisadeth
2. if groupg is not in hash tabled,M,G then brings several advantages by leveraging the distingugshin
3 Mlg] < 0; Glg]<=(op € {C,=}); also initialize A[g] ~characteristics of bitmap index. (1) We only need to access

according to the aggregate function.
if (op € {C,=}) A (! Gg]) then continue to next tuple
[* Aggregate the value: for groupg. */

. the bitmap indices on columns involved in a query. Hence the
5:
6: Alg] € Alg]® a
7.
8

method’s query performance is independent of the undeylyin
table’s width. (2) The data structure of bit vector is effidiéor

if (op is D) A (G[g]) then continue to next tuple basic operations such as membership checking (for matching

: if v == ¢’ for somej then v with values in set predicates). Bitmap index gives us thktabi
o: I*In Mlg], set the mask for”. */ to skip irrelevant tuples. Chunks of Os in a bit vector can be
12 5;4([%]4[;:] ]:W:[%]nl_wl) A (0p is D) then Glg] < True skipped together due to effective bitmap encoding. (3) The
12: dse simple data format and bitmap operations make it convenient
13: I*For C, =, if v ¢ {v', ...,v"}, g does not qualify. */ to integrate various operations in a query, including dyicam
14: if op € {C,=} then Glg] < False grouping of tuples and set-level comparisons. It also &bl
15: /* Output qualified groups and their aggregates. */ efficient and seamless integration with conventional sielBs,
16: for every groupg in hash table) do joins, and aggregations. (4) It allows straightforwardeext

17: if (opis =) A (M[g] = 2" — 1) then Gg] < False

18 if Glg] then output(g, Alg]) sions to handle otherwise complex features, such as multi-

attribute set predicates and multiple set predicates.
As an efficient index for decision support queries, bitmap in
attributev matches some’ in v!, ..., v™, we set thejth-bit dex has gained broad popularity. State-of-the-art bitrap-c
of the group’s mask value i/ to 1, indicating the existence pression methods [33], [2], [16] and encoding strategigs [5
of v7 in the group. This is done by the bitwise OR operatiof84], [23] allow bitmap index to be applied on all types
in Line 10. If the mask value becom@8—1, we mark the of attributes (e.g., high-cardinality categorical attitis [32],
group as qualified if the operator i3 (Line 11). On the other [33], numeric attributes [32], [23] and text attributes JR8
hand, if the tuple’sv value does not match any sueh, we Bitmap index is now supported in major commercial database
mark the group as disqualified if the operatodor = (Line systems (e.g, Oracle, SQL Server), and it is often the defaul
14). If the operator is=, we also check if the mask value(or only) index option in column-oriented database systems
equals2™—1 at the final calculation stage. If not, it means thée.g., Vertica, C-Store [30], LucidDB). In applicationstkvi
group does not contain all the values ..., v". Therefore we read-mostly or append-only data, such as OLAP and data
mark the group as disqualified (Line 17). warehouses, it is common that bitmap indices are created for
Algorithm 1 is a one-pass algorithm where memory igany attributes. Moreover, index selection based on query
available for storing the hash tables for all groups. We oniyorkload allows a system to selectively create indices on
implemented and experimented with such one-pass algarithattributes that are more likely to be used in queries.
given that the number of groups is seldom extremely large.The bitmap index-based approach only needs bitmap indices
Should the number of groups become so large that the hashindividual attributes. Based on single-attribute imdicit
tables cannot fit in memory, we can adopt standard twoepes with general queries, dynamic groups, joins, selecti
pass hashing-based or sorting-based aggregation methoaanditions, multi-attribute grouping and multiple set dlire
DBMSs. In the first pass the input table is sorted or partéthn cates. It does not require pre-computed index for joinfsiele
by a hash function. In the second pass tuples in the samesults or combination of attributes. (Details in Section 7
group are loaded into memory and aggregates over differenSome systems (e.g., DB2, PostgreSQL) only build bitmap
groups are handled independently. Such two-pass method tatices on the fly at query-time. We do not consider such
be further improved by early aggregation strategies [17]. scenario. We focus on bitmap indices built before query time
The particular type of bitmap index we use h#-sliced
6 B | B A index (BSI) [28]. Given a numeric attribute on integers or
ITMAP INDEX-BASED APPROACH floating-point numbers, BSI directly captures the binaryree
Our second approach is based on bitmap index [22], [23]. sentations of attribute values. The tuples’ values on aitate
a vanilla bitmap index on an attribute, there exists a bitmape represented in binary format and keptsirbit vectors
(a vector of hits) for each unique attribute value. The vect@.e., sliceg, which represent?® different values. Categorial
length equals the number of tuples in the indexed relation. attributes can be also indexed by BSI, with a mapping from
the vector for valuer of attributew, its ith bit is set tol if the distinct categorical values to integers.
ith tuple has value on attributev. Complex selection queries The approach requires bit-sliced indicesg@{BSI(¢)) anda
can be efficiently answered by bitwise operations (AND,( (BSl(a)) and a bitmap index on (Bl(v)), which can be a BSI




student course grade

Algorithm 2 Bitmap Index-Based Approach B, | By | Boowor | Bocros | Booroa | By [ B [ Bo
Input: Table R(g, a,v) with ¢ tuples; 0|0 1 0 0 1/0/0 f |
QueryQ = v4,@a v 0p {v°, ..., 0" (R); 0|0 0 1 0 0 | 1 | 0 |Mapping from values in
bit-sliced index BSH), {BS|(a), an(}j bitmap index Bif). o[ 1] 0 [ 1 0 | 1[0 o |studenttonumbers:
Output: Qualified groupsy and their aggregate valuesa 0j1] 0 0 1 Jo 1t Mary=>0 (00)
I* gID: array of sizet, storing the group ID of each tuple */ rjo] 1 0 O (1]o0)0 Tom=>1 (01)
/* A: hash table for aggregate values */ 110 0 L 0 |1]0]0 John=>2 (10)
[* M: hash table for value masks */ 1]0 0 0 ! 0j1]1

[* G hash table for Boolean indicators of qualified groups
[* Step 1. get the vector for each’ in the predicate */
1: for eachv’ do

i Fig. 4. Bitmap indices for the data in Figure 1.

2. wec,; < QUERYBI (BI(v), v’) on attributev. Given valuev?, function QueryBI in Line 2
/* Step 2. get the group ID for each tuple */ queries the bitmap index an Bl(v), and obtains a bit vector
3 Initialize 1D to all zero _ vec,;, where thekth bit is set (i.e., having valu#) if the kth
g for %?Cga?:lr: Ss“e('iebBiii),:ninBlilt(?/Ze’gtc]I%T ((j)oto s-1 do tuple of R has values’ on attributev. This is a basic bitmap
6: gID[k| < gID[k] + 2! index functionality.
7+ for eachk from 0 to -1 do Step 2 gets group IDs, i.e., values of for tuples in
8: if groupgID[k] is not in hash tabled,M,G then R, by querying BSI§). The group IDs are calculated by
o: M[gID[k]]<=0; G[gIDI[k]] < False; also initialize iterating through the slices of BS( and summing up the
AlgID[K]] according to the aggregate function. corresponding values for tuples with bits set in these vscto
_[* Step 3. find qualified groups */ (See BSI(student) in Example 4.)
12 i O]E)Of e{a%h:b%t tvhee:tomecvj do Step 3 gets the groups that satisfy .the §et p_redicate, based
12: for each set biby, in vec,; do on the vectors from Step 1. Its logic is fairly similar to that
13: M[gIDI[k]] < M[gID[k]] | 27! of Algorithm 1. The algorithm outline covers all three set
14:  for each groupy in hash tableM do operators, although the details differ, as explained below
15: Glg] <= (M[g] ==2" - 1) Step 4 gets the aggregates for qualified groups from Step
16: if op € {C, =} then 3 by using BSI§). It aggregates the value of attributefrom
17: for each set bib,. in ~(vec,1 | ... | vec,n) do each tuple into the tuple’s corresponding group if the grisup
18: GlgID[k]] += False . qualified. The value of attribute for the kth tuple is obtained
_I* Step 4. aggregate the values affor qualified groups */ by assembling the valuex—! from slicesB; when theirkth
19: for eachk from 0 to ¢-1 do : . . o
20.  if G[gID[K]] then bits are set. Thg algorithm ogt.hne checks all bit shces_e‘mh.
21 agg <0 k. Note that this can be efficiently implemented by iterating
22: for each sliceB; in BSl(a) do _ through the bitsX from 0 to ¢t—1) of the slices simultaneously.
23: if by is set in bit vectorB; then agg < agg +2' We do not show such implementation details.
24: AlgIDIk]] < AlgID[k]] ® agg

CONTAIN (2): In Step 3, a hash tabl® maintains a mask
value M|g] for each groupg. The mask value has bits,
corresponding to the values ¢!, ..., v™) in a set predicate.
A bit is set to1 if at least one tuple in groug has the
or other type of bitmap index. Note that the algorithm beloworresponding value on attribute Therefore for each set bit
will also work if we have other types of bitmap indices gn b, in vectorvec,;, the jth bit of M[gID[k]] will be set by
anda, with modifications that we omit. The advantage of BS4 bitwise OR operation (Line 13 of Algorithm 2). §/|g]
is that it indexes high-cardinality attributes with smallmber equals2”—1 at the end, i.e., all the bits are set, the group
of bit vectors, thus improves query performance if grouping contains tuples matching every, ..., v™ and thus satisfies
or aggregation is on such high-cardinality attributes. the query (Line 15). We use another hash tafl¢o record

Example 4: Given the data in Figure 1 and querythe Boolean indicators for qualified groups. The valuegsin

etudemt AV Glorade) COUTsE Op {'CS101'CS102}(SC), Figure 4 were initialized toFalse for every group (L|.ne 9). _
shows the bitmap indices o (studen}, v (coursd, anda CONTAINED BY (C): If the set operator i, Step 3 will
(grade. BSI(studen} has two slices. For instance, the fourtfiot use hash tablé/. Instead, for a set biby, in ~(vec,:
bits in By and B, of BSI(studen} are 0 and 1, respectively. | - | vec,n) (i.e., thekth tuple not matching any’), the
Thus the fourth tuple has valueon attributestudent which ~ corresponding groupD[k] is disqualified (Line 18).
represents ‘Tom’ according to the mapping from the origin@QUAL (=): Step 3 for EQUAL &) is naturally a combina-
values to numbers. There is also a Bfs#de) on grade The tion of that forD and C. It first marks a group as qualified if
bitmap index orcourseis not a BSI, but a regular one whereD is satisfied (Line 15), then disqualifies a groupCifis not
each distinct attribute value has a corresponding bit veEtw  satisfied (Line 18).

instance, the bit vectaBog101 is 1000100, indicating that the
1st and thesth tuples have ‘CS101’ as the value afurse

25: for every groupg in hash tableM do
26: if G[g] then output (g, Alg])

Example 5: Suppose the query i§;udent, AV G (grade) COUTSE
= {'CS101','CS102}(SC). Use the bitmap indices in Fig-
The outline of this approach is in Algorithm 2. It takes fouure 4. After the 1st bit ofveccsior (i.e., v'='"CS101") is

steps. Step 1 is to get the tuples having valués..., v encountered in Line 12/[0]=2°=1 since the 1st tuple isC



belongs to group (Mary). After the 2nd bit ofveccsige A (e.9., SUMG) in Figure 2) andC (e.g., AVG(grade)>3.5
(the 1st set bit) is encounteretif[0]=1]|2!=3. ThereforeG[0] in Q2). In the aggregation function-based method, all these
becomesTrue. Similarly G[2] (for John) becomes'rue aggregates are accumulated at Line 6 of Algorithn? 1n
after the 6th bit ofveccg102 IS encountered. However, sincethe bitmap index-based method, they are handled by regeatin
~(vecosior | vecesioz) is 0001001, G[2] becomesFalse Line 21-24 of Algorithm 2 for multiple aggregates. We remove
after the last bit 0f0001001 is encountered in Line 17 (i.e.,a group from query result if a condition on a regular aggregat
John has an extra course ‘CS103’). (e.g., AVG(grade)>3.5) is not satisfied.

(E) Set Predicates under Bag Semantics: In Algorithm 1
7 GENERAL SET PREDICATE QUERIES and 2, in addition to hash tabl&/, we maintain an extra
Our discussion so far has focused on simple queries thash table that stores arrays of integers. For each groap, th
have one grouping attribute, one aggregate for output, agerresponding array records how many times eavhlue has
one single-attribute set predicate, under set semantictof been encountered in the group. For CONTAIN/CONTAINED
predicates. As introduced in Section 3, more general queryBY/EQUAL, the count of each value should be no less than/no
denoted byyg 4C(R), whereg is a set of grouping attributes more than/equal to the corresponding count in a set predicat
(appear in GROUP BY clause), is a set of regular aggregatestherwise the group does not satisfy the predicate.
for output (appear in SELECT), and is a Boolean expres-
sion over set predicates and conditions on regular aggeg
(appear in HAVING). In this section we discuss how to exte
our algorithms for general queries.

) Integration and Interaction with Conventional SQL
perations: In a general queryyg 4C(R), relation R could
nbe the result of other operations such as selections ansgl. join
Logical bit vector operations allow us to integrate the faigm
(A) Multi-Attribute Grouping: Given a query with multiple index-based method for set predicates with bitmap index-
grouping attributesy,, 4.4 C(R), we can treat the groupingbased solutions for selection conditions [5], [34], [23]dan
attributes as a single combined attribyteThat is, the con- join queries [22]. This approach only requires bitmap iedic
catenation of the bit slices of BS$#(), ..., BSl{g;) becomes on underlying tables instead of join and/or selection tesul
the bit slices of BSK). For example, given Figure 4, if With regard toselectionconditions, suppose our query has
the grouping condition iSGROUP BY student, grade, the a set of conjunctive/disjunctive selection conditians .. cx,
BSI of the conceptual combined attribute has 5 slices, where eachc; can be either a point condition;=b; or a
which are B;(studen}, By(studen}, Bo(grade), Bi(gradg, range condition;<a;<u,;. We first obtain a vectovecr that
and By(grade. Thus the binary value of the combined groupepresents the result of the selection conditions. If actaiples

g of the first tuple is00100. not belong to relatiork, we set its corresponding bit irecr

(B) Multi-Attribute Set Predicate: The query syntax to 0. After querying bitmap indices to obtain the vectots,;

also allows comparing sets defined on multiple attributef%r tthe vaIue_stln a S?t dpre_?;:ateb(sftep %hz of Al%m'ttr:]m 2, tdh
e.g., SET(course, grade) OONTAIN {(’ CS101',4), véctors are intersected witrecr before they are further use

(' Cs102', 2) } finds all the students who received grade q later stages of the algorithm.

in CS101 and 2 in CS102. In general, for a query with aTher(_e is much previogs work (e:g., [5]_' [34]’,[23]) on
set predicate defined on multiple attributeg, 4 (v1, ... vm) answering selection queries using bitmap index, i.e.,rgett

op {(v}, s 1), oy @D, ..., ™) }(R), We replace Step 1 of vecr. The essence is to compute one veaiet., for each

Algorithm 2 as follows. We first obtain vectorsec,, ..., condition ¢; :fuchb.tha}tve'gﬁDigrgams the bits fﬁr tuples
vec,; by querying Bl¢1), ..., Bl(vy,). Then their intersection satisfyingc;. After bitwise operations on the vectors

(bitwise AND), vec,; = vec,, & .. & vee,, , gives us the of all conditions, the resulting vector iscr. The bit vector

. ) . , vec,, iS computed using bitmap operations over the bitmap

tuples that match the multi-attribute valueg ( ..., v7,). index on attributez; in conditionc;.
(C) Multi-Predicate Set Operation: A query with mul- With regard tojoin conditionsin a query, our technique can
tiple set predicates can be supported by using Booleb@ easily extended, by using bitmap join index [22]. Conside
operators,i.e, AND, OR, and NOT. For instance, to i-two tablesS andT. Attribute j1 is a key ofT" and ;2 is the
dentify all the students whose grades are never bel@®rresponding foreign key ifi. Due to foreign key constraint,
3, except those who took both CS101 and CS102, kere exists one and only one tuple Thjoining with each
can use querySET(grade) CONTAINED BY {4,3} AND and every tuples € S. Hence for a join conditiofl’.j1=5.52,
NOT ( SET(course) CONTAIN {' CS101', ’'(CS102’'}). virtually all join results are in5, with some attributes stored in

With regard to the aggregation function-based method fnand other attributes iff’. Therefore, for each attributein
Algorithm 1, during a one-pass scan of tuples, multiple séie schema of’ except;j1 (sinceT.;j1=5.j2 and we already
predicates are processed by simply repeating the same stgée;j2 in S), we can construct a bitmap index anfor the
for each predicate. With regard to the bitmap index-basé¢ples inS, even thoughu is not an attribute of. In general,

method, we defer the discussion of optimizing the evaluatiove can follow this way to construct bitmap indices for tuples
of multiple set predicates to Section 8. in a tableS, on all relevant attributes in other tables referenced

(D) Regular Aggregate_ Expron: A general qu_ery . 2. Note that Line 6 of Algorithm 1 only shows the state traoaitof .
~g,4C(R) may have multiple regular aggregate expressions e initialization and final calculation steps are omitted.



through foreign keys ir$. Thus selection conditions involving Such good order hinges on the “selectivities” of predicates
these attributes can be viewed as being applied @nly. A Suppose a query has predicags.. ., which are in either
join query can then be processed like a single table query.conjunctive form (connected by AND) or disjunctive form
(OR). Each predicate can have a preceding N@ur opti-
mization rule is to evaluate conjunctive (disjunctive)gioates
8 OPTIMIZING QUERIES WITH MULTIPLE SET in ascending (descending) order of selectivities, wheee th
PREDICATES: SELECTIVITY ESTIMATION BY selectivity of a predicate is its number of qualified groups.
HISTOGRAM Hence the key challenge in optimizing multi-predicate dpger
is to estimate predicate selectivity.
Given a query with multiple set predicates, the straighteod 1o optimize an SQL query with multiple selection pred-
approach is to evaluate individual predicates indepemylengates that have different selectivities and costs, tha ide
and follow the logic operations between predicates (ANDyredicate migration{13] is to evaluate the most selective and
OR, NOT) to perform intersection, union, and differencgnheapest predicates first. The intuition of our method islaim
operations over qualified groups. However, this approach cgowever, we focus on set predicates, instead of the tupse-wi
be an overkill. In this _Section we present strategies to @rugelection predicates studied in [13]. Consequently theeph
unnecessary set predicates. of “selectivity” in our setting stands for the number of dtiat
If multiple predicates are defined on the same set gfoups, instead of the typical definition based on the number
attributes, we can eliminate the evaluation of redundant gf satisfying tuples.
contradicting predicates based on set-containment orahkutu Oyr method to estimating set predicate selectivity is a
exclusion between the predicates’ value sets. One exampigpabilistic approach that exploits histograms in dasabaA
is queryyyea v2{1}(R) AND v2{1,2}(R). The value set histogram on an attribute partitions the attribute valuesnf
of the first predicate is a subset of the second value sgftuples into disjoint sets calldalickets Different histograms
Evaluating the first predicate is unnecessary because s qyary by partitioning schemes. Some schemes partition by
ified groups always subsume the second predicate’s qualifigfyes. In anequi-width histogram the range of values in
groups. Similarly the second predicate can be pruned if tBgch bucket has equal length. In eaqui-depthor equi-height
query uses OR instead of AND. Another exampleyijSsa  histogram each bucket has the same number of tuples. Some
vC{1}(R) AND v2{2,3}(R). The two value sets are disjoint.other schemes partition by value frequencies. One exaraple i
Without evaluating either predicate, we can report emp{optimalhistogram [25].
result. We do not elaborate on such logical optimizatioessin e histogram on attribute, h(z), consists of a number
query minimization and equivalence [6] is a well-known topi ¢ bucketsb; (z), ..., bs(z). For each buckeb;(z), the his-
The above logical optimization is applied without evalogti togram provides its number of distinct values(z) and its
the predicates because it is based on algebraic equivalenggpth d;(z), i.e., the number of tuples in the bucket. The
that are data-independent. A more general optimization fi%quency of each value is typically approximated ‘63@
to prune unnecessary set predicates during query evaluatigased on theuniform distribution assumptiorf15]. if the
The _idea is as follows. Suppose a query has conjuncti\_/e ﬁ‘i’étogram partitions by frequency (e.g., v-optimal histoyg),
predicate, ..., p,. We evaluate the predicates sequentiallgach pucket directly records;(z) and all distinct values in
obtain the qualified groups for each predicate, and thusrobtg |t the histogram partitions by sortable values (e.g.vieq
the groups that satisfy all the evaluated predicates séffao. \y;igtn or equi-depth histogram), the number of distinct eslu
satisfying group is left aftep,, ..., pn, (m<n) are processed, () is estimated as the width of bucket(z), based on
we terminate query evaluation, without processing remgini e continuous value assumptighs]. That is, w; (z)=u;(z)-
predicates._ Similarly, if the predic.ates are disjunctive,stop l;(z), where [;(z),u;(z)] is the value range of the bucket.
the evaluation if all the groups satisfy at least on@f... pr.  \When the attribute domain is an uncountably infinite set.(e.g
In general smallern leads to cheaper evaluation cost. (Weea| numbers)w;(z) can only mean the range size of bucket
assume equal predicate cost for simplicity. Optimizatign tbi(x), instead of the number of distinct valueslif{z).
predicate-specific cost estimation warrants further sjudy Given a query with multiple set predicates, we assume his-
The number of “necessary” predicates before we can stQggrams are available on the grouping attributes, the set-pr
m, depends on predicate evaluation order. For instance, sie attributes, and attributes involved in selectionditions
pose a query has three conjunctive predicates,, ps, which  \wHERE clause). Moreover, we also assume all attributes
are satisfied by 10%, 50%, and 90% of all groups, respectivelye independent of each other. For simplicity of discussion
Consider two different orders of predicate evaluatiom:ps  from now on we assume single-attribute grouping and single-
andpspop1. The former order may have a much larger chancgyripyte set predicate and focus on selectivity estimatio
than _the latter or(_jgr to terminate after 2 predicates, i.g4 groups. Selectivity estimation for tuples (i.e., seilett
reaching zero qualified groups after andp, are evaluated. conditions) can be incorporated by multiplying bucket size
Hence different predicate evaluation orders can potéytiale|ow by such selectivity. Multi-dimensional histograrssch
resultin much different costs. Givenpredicates, by randomly 3¢ MHIST [26], can extend the techniques developed in
selecting an order out of! possible orders, the chance of

hitting _an efficient one is slim. Qur goal is to select a gOOd 3. Therefore our technique does not extend to queries that tath AND
order, i.e, an order that results in a small and OR in connecting the multiple set predicates.



this section to multi-attribute grouping and multi-attrib set ~ When M >T, i.e., the number of values iV is larger than
predicate, as well as correlated attributes. the number of tuples iR;;, P(N, M,T)=0.
Suppose the grouping attribute gs The selectivity of an ~ When M =1, i.e., there is only one value ilf;, since there
individual set predicate = v op {v',...v"}, i.e., the number are N distinct values in bucket;(v), each tuple in group;
of groups satisfying, is estimated by the following formula: has probability]lV to have that value on attribute With totally
T tuples in groupy;, the probability that at least one tuple has

#g .
sel(p) = ZP(gﬂ') 1) that value is:
=1 Po(N.LT) =1~ (1 - <) ©)
where#g is the number of distinct groups, which is estimated . N )
by #9=3", wi(g). P(g;) is the probability of groupy; satis- When M>_1, ie., tr!ere are at qust two values W in
fying p, assuming the groups are independent of each othef °1PJi the first tuple’s value on attribute has a probability
The histogram onv partitions the tuples in a group intoOf 7 to be one of the values ili;. If it indeed belongs td’;,
disjoint subgroups. We usk; to denote the tuples that belong'® Problem becomes deriving the probability B 1 tupI!’{es
to groupg;, i.e., R;={r|reR, r.g=g;}. We useR;; to denote containing M —1 values. O_tr_lerW|se, with p_r_obab|I|t — X
the tuples in group; whose values on fall into bucketh;(v), "€ Problem becomes deriving the probability©i-1 tuples
i.e., Ri;={r|[reR;,r.v € b;(v)}. Similarly the histogramh(v) CONtainingl values. Hence:
divides the valued’={v!,...,v"} in predicatep into disjoint M
subsets{V1, ..., V. }, whereV;={v'|v/ €b;(v),v'€V'}. P> (N, M, T) = N2 (N, M=1,T—1)
A group g, satisfies a set predicate on valugs, ...,v"}
if and only if eachR;; satisfies the same set predicatelgn

Thus we estimaté’(g;), the probability that group; satisfies By solving the above recursive formula, we get:
the predicate, by the following formula:

+(1—%)P2(N,M,T—1) (6)

1 & M .

; Po(N. M, T) = — S (=1)" N—r 7
P(g,) = [] Po(bs(0). Vi ) o POMD=g e (Y )w-nt o

=1 CONTAINED BY (op is ):
Fop(bi(v), Vi, Rij) is the probability thatR;; satisfies the — \whenT = 1, straightforwardlyP(N, M, 1) = X
same predicate orl;, based on information in bucket \whenT > 1, every tuple inR;; must have one of the values
bi(v). Specifically,P> (b;(v), Vi, Ri;), Pc(bi(v), Vi, Rij), and in V; on attributev, for the group to satisfy the predicate.
P=(bi(v), Vi, Ri;) are the probabilities thak;; subsumes/;, Each tuple has the probability df to have one such value

R;; is contained byV;, and R;; equalsV;, respectively, by set on attributev. Therefore we can derive the following formula:
semantics.

Pop(bi(v), Vi, R;j) is estimated based on the number of Pc(N,M,T) = (%)T (8)
distinct values irb;(v), i.e.,w;(v), according to the aforemen- N

tioned continuous value assumption, the number of valuesﬁﬁ?SLf'A!— rs'?fp is 23” PON.LT) = < and PN, M, T)=0 i
: raightforwardlyP(N,1,T) = < an LM, T)=0 i
Vi, and the number of tuples ift;;, i.e., M>T. For1<M<T, we can drive the following equation:

Pop(bi(v)v‘/;vRij) :Pop(wi(v),|‘/;|7|Rij|) (3)

P_(N,M,T) = %[P:(N, M,T—1)
For the gbove .formulawi(v) is stored in buckeb;(v) itself FP_(N,M —1,T —1)] ©)
and |V;] is straightforward fromV’ and b;(v). Based on the

attribute independence assumption betwgaand v, the size ~ That is, for the group to satisfy the predicate, if the first
of R;; can be estimated by the following formula, wheréuple in R;; has one of the values ili; on attributev (with
dr(g) and wy(g) are the depth and width of buckét(g) probability of &), the remainingl’—1 tuples should contain

that contains valug;: either the M or the remainingM —1 values. Solving this

_ w equation, we get:

|Rij| = di(v) x % = d;(v) x 7dk(g)|é| x(9) 4 | XM M
PT) = g o (A Jar- a7 ao)
r=0

We do not need to literally calculate(g;) for every group
in formula (1). If two groupsg;, and g;, are in the same
bucket ofg, R;;, and R;;, will be of equal size, and thus9 EXPERIMENTS

P(g;,)=P(g;,)- 9.1 Overview and Implementation Details

We now describe how to estimatéo(N,M,T) (ie., We conducted experiments on both query processing algo-
w;(v)=N, |V;| = M, |R;;|=T), for each operator. Apparently . . P query pr g ag
! . rithms (Section 9.2 (A)-(C)) and query optimization teajues
Pop(N, M,0)=0. Moreover, M <N, by the fashionV was ;
- ; U (Section 9.2 (D)). We compared the performance of three
partitioned into{V4, ..., Vs }. Note that the estimation is only ; . )
for set semantics of set predicates methpds in evaluating set-lev_el comparisons— the aggregat
' function-based method, the bitmap index-based method, and
CONTAIN (op is D): the method of using regular SQL queries. They are compared
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Fig. 5. Overall comparison of the methods, O=C, C'=10. (Execution time is in logarithmic scale.)
parameter] meaning [ values |

on three different datasets— (1) Our own synthetic data-(Sec|

tion 9.2 (A)), for studying the effect of various parameters| 9 set operators _ 2 & =

in the performance of these methods, including the numbef ¢ nplajrr:clj)ii;tgf values in sefl, 2’166" 10, 20,
of tuples, the number of groups, the number of values in T number of tuples 0K 100K IM
set predicate, the number of qualified groups, and so on; (2 G number of groups 10,100,... 1
TPC-H benchmark database (Section 9.2 (B)), for studying S number of qualified groups 1,10,... G

the performance of these methods on general queries with joi TABLE 1

conditions and on benchmark data capturing the charatitsris Configuration parameters of synthetic data experiments.
of decision support applications; (3) WorldCup98 dataSet(

tion 9.2 (C)), for evaluating the performance of the methodsy, he performance oBitmap Hence the results verify
on real and big data. that using regular SQL queries obscures the semantics -of set
The aggregate function-based method, denotedA@§ |evel comparisons and leads to costly plans. The resultslcou

is implemented in C++. The bitmap index-based methognpcoyrage vendors to incorporate the proposed approatbes i
denoted a®itmap is also implemented in C++ and leverageg gatabase engine.

FastBit* for bit-sliced index implementation. The compres-

sion scheme of FastBit, Word-Aligned Hybrid (WAH) code > Results

makes the compressed bitmap indices efficient even for high-

cardinality attributes [33]. The experim.ents.were performed on a Dell PowerEdge 2900
The method of using regular SQL to express set-levB| server with Linux kernel 2.6.27, dual quad-core Xeon

comparisons is denoted &ewrt We used PostgreSQL 8.3.72:0GHz processors, 2x4MB cache, 8GB RAM, and three

to store data and execute regular SQL queries. In the sdﬁ-GGB 10K-RPM SCSI hard drivers in RAIDS5. The reported

plemental materials to this paper, we describe how to rewrfiesults are the averages of 10 runs. All performance data wer

queries with set predicate into regular SQL. It is not a confbtained with cold buffer.

plete enumeration of all possible query rewritings becanse (a) Comparison over synthetic data:

practice there will be infinite possible rewritings. We made ] ]

best effort to express each query by an appropriate regQ@ar SQ_uer_mﬁ We evaluated the three methods ur_1der various com-

query and obtain an efficient query plan for the query. This wRinations of parameters, which are summarized in Tabte 1.

done by manually investigating alternative queries anagplac@n be one of the 3 set operators €,=). C'is the number of

and turning on/off various physical query operators. BeloWp!Ues in a predicate, varying from 1 to 10, then 10 to 100. The

we report the numbers obtained by these hand-picked pla¥lues always start from 1 and increase by 1, i.e., the values

Nevertheless, the queries we often used for CONTAINED B¥€ {1, .., C}. Altogether we have 819 (O, C) pairs. Each

are in the form of the rewriting in Figure 2. For a CONTAINP&Ir corresponds to a unique query with a single set preglicat

predicate withm values, we often used a query that intersecfO" instance(2,2) corresponds t@=y, svu@v2{1,2}(F).

the results ofn selection queries on the individual values. Thidlote that we assume SUM is the aggregate function since its

rewriting approach can be found in the supplemental mageri§valuation is not our focus and Algorithm 1 and 2 process all
to this paper. aggregate functions in the same way.

Note thatRewrtuses a full-fledged database engine Pogbata: For each of the 319 single-predicate queries, we
greSQL, while bothAgg and Bitmap are implemented ex- generated 61 data tables, each corresponding to a different
ternally. AlthoughRewrt would incur extra overhead from combination of (T, G, S) values in Table 1. Given query
query optimizer, tuple formatting, etc., we believe thisneo (O, () and data statistic&T’, G, S), we correspondingly gen-
parison is still insightful. Our results show th&ewrt is erated a table that satisfies the statistics for the quesytdliie
often one or more orders of magnitude less efficient. It isas schemak(a, v, g), for queryy, sumv O {1, ..., CHR).
unlikely that all the slowness comes from extra overheads.Each column is a 4-byte integer. The values of column
Moreover the query plans resulting from regular SQL queriege randomly generated. The values in colurare generated
discussed in Section 4 ultimately perform one-pass gra@upipy following a uniform distribution, to make sure there &re
and aggregation upon the results of (multiple) other upstre groups,i.e., there are abouf/G tuples in each group. We
operations. Therefore the performanceAafg which is also randomly chooseS out of the G groups to be qualifying
implemented externally, serves as a yardstick in comparisgroups. For the tuples in each qualifying group, we generate

their values on columrv in a way such that the group

4. https://sdm.lbl.gov/fastbit. satisfies the set predicate. Thealues for the7-S disqualified
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groups are similarly generated, by making sure the grouB¥. The execution time ofRwrt decreased when qualified
cannot satisfy the set predicate. For example, if the quegyoups are largeHxpl). Based on the way the skewed data
iS vg,suM@v2{1,2}(R), for a qualified group, we randomly was generated, the larger the qualified groups are, the more
select 2 tuples and set thairvalues to 1 and 2, respectively.tuples matching the values in set predicates. Therefore the
The v values for remaining tuples in the group are generateditput cardinality of the Filter operation in Figure 2 was
randomly. Given a group to be disqualified, we randomisubstantially reduced und&xpl In contrast, when qualified
decide if 1, 2, or both should be missing from the groumroups are smallExp2, the Filter operation produced large
and generate the values randomly from a pool of numbarstput, which increased the cost of the query method in this
excluding the missing values. case. For EQUAL operation, the performance can also be
Results: We measured wall-clock execution time Bewrt gnaly;ed dsr']m'larlé b_?_f]ed in the quefry plan g-enecrjgdted, V\r']h'Ch
Agg and Bitmap over the aforementioned 61 data tables for omitted here. (2) The skewness of group size did not have

each of the 19 queries. The comparison of these methoénUCh effect on the performance Agg This is becaus&gg

under different queries are fairly similar. Hence we onlgwh a?ways_ sequentially scans the whole tabl_e, regardiesseafeh
the results for one query for data table 0-60 in Figure gperatlon gnd the skewness of group size. (3) Th_e skewness
YosUM(@v C {1 10}(R). For instance, data table 54 inof group size had some impact on the performancdgitrhap

g, a)V = Yo . ,

9 . . although not as much as oRewrt Consider CONTAIN
Figure 5 represents results of the three methods With mil- operation. Step 3 and Step 4 (and thus the wHaitma
lion, G=100K, S=100K, under queryO=C, C=10. Note that P ' P P P

the purpose of the figure is not to compare the performan@eethOd) in Algorithm 2 are more expensive when there are

on different data tables. (Such detailed comparison isigealv more tuples matchmg the values in set. predwaEaep@. It
.becomes the opposite case when qualified groups are small

in Figure?? in the supplemental materials to this paper.) It i :
rather to show the performance gap between several algurith?Esz' For all the methods, the performanceRandomis not

i . ; . much different from that otuniform, because the numbers of

that is consistently observed in all data tables under wuario : . . . .

queries. _tuples matching the values in set predicates only diffghsly
Figure 5 shows thaBitmap is often several times more " the two data tables.

efficient than Agg and is usually one order of magnitudgB) Experiments over TPC-H data:

faster thanRewrt The low efficiency ofRewrtis due to the  Two of the advantages ditmap mentioned in Section 6

awkwardness of expressing set-level comparisons by regutauld not be demonstrated by the above experiment. First,

SQL and the difficulty in optimizing such queries. The perit only needs to process necessary columns, whiyg and

formance advantage &fgg over Rewrtshows that the simple Rewrt have to scan the full table before irrelevant columns

query algorithm could improve efficiency significantly. Thecan be projected out. The tables used in the experiments for

shown advantage dBitmap over Agg is due to fast bit-wise Figure 5 have schem&(a, v, g) which does not include other

operations and skipping enabled by bitmap index, comparealumns. We can expect the costdRéwrtandAggto increase

to the verbatim comparisons used Agg by table width, whileBitmap will stay unaffected. Second,

. . . Bitmapenables seamless integration with selections and joins,
Impact of the Skewness of Group Sizes: Since the grouping while tphe above experiment isgon a single table. J
i

attribute values in the synthetic data were generated by un
form distributions, the groups in a table have about the sa@eieries. We thus designed six queries (TPCH-1 below,
size (i.e., number of tuples). To further study the impact @fPCH-2 to TPCH-6 in the supplemental materials to this pa-
skewness of group sizes on the several methods’ performarmer) on the TPC-H benchmark database [31] and compared the
we generated more data tables. Given a combination of fixgdrformance of the three methods. In these queries, groupin
values on the four configuration parametétsT, GG, andS, and set predicates are defined over the join result of meltipl
we generated 4 different data tables, by varying group sitables. Note that the joins are key-foreign key joins. Rewvrt
distribution— (1)Uniform, where the grouping attribute valuesand Agg, we first joined the tables to generate a single joined
follow a uniform distribution, thus the sizes of differembgps table, and then executed the algorithms over that joinelé.tab
tend to be equal. Note that this is the same as the data UBEScH-1)Get the total sales of each brand that has business in both
in Figure 5. (2)Random where the group size is a randonUSA and Canada.
variable in a given range. (BxplandExp2 where the sizes CREATE VIEWRL AS
of groups follow an exponential distributigqni /2)™, in which ~SELECT P_BRAND, L_QUANTITY, N _NAVE

. : : . FROM LINEITEM ORDERS, CUSTOMER PART, NATI ON
n is the variable for group size. A small constant is used Whelere | ORDERKEY=0 ORDERKEY
a group size generated by the distribution is smaller than 1. AND O_CUSTKEY=C_CUSTKEY
ExplandExp2are two opposite cases, in which the sizes of AND C_NATI ONKEY=N_NATI ONKEY

" . AND L_PARTKEY=P_PARTKEY;

qualified groups are all large and small, respectively.

Figure 6 shows the results of this experiment un@erl, SELECT P_BRAND, SUM L_QUANTITY) FROM Rl
T=1M, G=1K, and S=10, for which theUniform data table %EGB;EFF’(-ERQEBE) CONTAI N {* ni ted States' .’ Canada'}
corresponds to data table 40 in Figure 5. We can make the - ’
following observations. (1) The skewness of group size h&hta: The data tables were generated by the TPC-H data
large impact on the performance Rivrt, especially for CON- generator, with scale factors 0.1, 1, and 10, respectively.
TAINED BY and EQUAL operations. Consider CONTAINED Table 2 shows the sizes of the original TPC-H tables under
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M contain M contained by @equal ‘ ‘ M contain M contained by @ equal | ‘ W contain M contained by @equal
— 8000 — 700 — 400
§ 7000 § 600 § 350
Q6000 @ 500 & 300
E 5000 E 200 E 2% |
@ 4000 P @ 200 -
E 3000 E 30 E 150 -
= 2000 = 200 = 100 |
S 1000 5§ 100 § 50
g o 5 o 5 o
g Uniform Expl Exp2 Random g Uniform Expl Exp2 Random g Uniform Expl Exp2 Random
] Distribution 5 Distribution o] Distribution
Rewrt Agg Bitmap
Fig. 6. Execution time of three methods over different skewness of group size.
[ TPC-H table [ Size [[ Joined table [ Size | [ Query [Rewrt-Join [ Agg+Join [ Bitmap |
PART 200000 R1 6001215 scale factor = 0.1
PARTSUPP | 800000 R2 800000 TPCH-1 | 0.71+14.50 secs. 0.30+14.50 secs. 0.11 secs.
SUPPLIER | 10000 R3 800000 TPCH-2 | 0.30+0.13 secs. 0.09+0.13 secs. 0.07 secs.
CUSTOMER | 150000 R 800000 TPCH-3 | 0.10+0.09 secs. 0.04+0.09 secs. 0.02 secs.
NATION | 25 R5 800000 TPCH-4 | 0.08+0.09 secs. 0.06+0.09 secs. 0.03 secs.
LINEITEM | 6001215 R6 6001215 TPCH-5 | 0.20+0.09 secs. 0.07+0.09 secs. 0.03 secs.
ORDERS | 1500000 TPCH-6 | 0.19+1.85 secs. 0.36+1.85 secs. 0.15 secs.
scale factor = 1
) ) TABLE 2 ) TPCH-1 | 10.64+31.64 secs. 2.65+31.64 secs. 0.83 secs.
Sizes of tables in TPC-H data with scale factor=1. TPCH-2 | 4.37+1.51 secs. 0.77+1.51 secs. 0.19 secs.
TPCH-3 | 1.20+1.76 secs. 0.37+1.76 secs. 0.23 secs.
TPCH-4 | 0.92+0.95 secs. 0.36+0.95 secs. 0.23 secs.
H H e TPCH-5 | 3.28+0.94 secs. 0.41+0.94 secs. 0.23 secs.
scale factor 1 and _the S|ze§ of the corresp_ondlng _Jome@stabl ToCH e T oh 08T 00 sees 31577 05 soce T3 ccce
used in our experiments, i.e., R1 to R6 in queries TPCH- ~caleTacor= 10
to TPCH-6, respectively. The sizes of data tables undeescal TPCH-1 [ 110.89+710.76 secs. | 28.07+710.76 secs. | 8.43 secs.
. : TPCH-2 | 60.71+22.52 secs. 8.17+22.52 secs. 2.64 secs.
factor 0.1 (10) are 10 times smaller (larger) than the sifes tpcha L oa 0820 cone. e e
the tables under scale factor 1. TPCH-4 | 28.75+25.15 secs. 4.29+25.15 secs. 2.55 secs.
TPCH-5 | 92.85+30.92 secs. 5.01+30.92 secs. 2.58 secs.
Results: The results are shown in Table 3. Regular B+-tree TPCH-6 | 287.82+566.24 secs. | 33.71+566.24 secs. | 16.06 secs.

indices were created on both individual tables and the gbine

the costs oRewrtand Agg together with the cost of join. For

TABLE 3
table, to improve query efficiency. Hence in Table 3 we report Results on TPC-H data with different scale factors.

Bitmap we created bitmap join index [22] according to key- —2¥ L¢ L5 L& [T [ Tuples n§_|
. .. . . . WC98-1 | 3 1.4K 2.8M 1.4B 77.0M

foreign key joins, based on the description in Section 7KB}. WC982 |3 168K |B80.0K | 1.4B 21.2K

example, we index tuples in tabld NEI TEMon the values WC98-3 |3 761K [28M 148 3.9M

of attributeN_NAME which is from a different tabl&ATI ON. TABLE 4

With such a bitmap join index, given query TPCH-1 and othetharacteristics of the WorldCup98 dataset with regard to
queries WC98-1, WC98-2, and WC98-3.

queries, theBitmap method works in the same way as for a
single table, without pre-computing joined tables.

Table 3 shows that, even if the tables are already joined fg{

Rewrtand Agg, Bitmapis still often 3-4 times faster thafgg

ample, 88.16% of the requests were images, 44.5% of the

requests were handled by servers in Plano, TX, and more than

and more than 10 times faster thRewrt If we consider the rﬁ% of all requests were made on a single day, June 30th [3].

cost of join, the performance gain is even more significa

For all three methods (except the join result materialirati Queries: We designed three queries on this dataset, as follows.
fo_r RewrtandAgg), the execution time grows almost III'":"""rly(WCQS-l) Find the total traffics for clients who had visited in three
with scale factor from 0.1 to 10. consecutive days— July 24th, July 25th, and July 26th.
SELECT clientl D, SUMbytes) GROUP BY clientlD
HAVI NG SET(date) CONTAIN {0724, 0725, 0726}
C98-2)Find the total traffics for files that had only been retrieved
m US servers #1, #2, and #3.

SELECT obj ect| D, SUM bytes) GROUP BY objectID

. HAVI NG SET(server) CONTAINED by {1, 2, 3}

Data: The WorldCup98 dataset contains 1,352,804,107 tuples, ] ] ) ]
98-3)Find the total traffics of clients who had accessed file types

which correspond to all the access requests made to the 1 L(1). JPG(2), and GIF(3), but nothing else
World Cup Website between April 30, 1998 and July 26, 1998¢, £cT c1ient 1D, SUM bytes) GROUP BY client|D
Each tuple records information such as the timestamp of thevi NG SET(type) EQUAL {1, 2, 3}

request, the type of the requested file, the file size, theesery _
that handled the request, the client identifier (which magst ReUIts: The results on the WorldCup98 dataset are shown

IP address), and so on. This dataset by nature is skewed. ill__qq;l'able 5. We_ observed that whileewrt feq””e‘_’ hours to_
finish a queryBitmapandAggonly used several minutes. This

clearly shows the enlarged performance gains of our methods
on billion-tuple dataset.

(C) Experiments over WordCup98 data:

To measure the performance of the three methods un
large and skewed data in the real world, we conducted ex
iments over the WorldCup98 dataset.

5. The WorldCup98 dataset is collected from http://itdbégov/html/
contrib/WorldCup.html.
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[ Query [Rewrt [ Agg [ Bitmap | estimated selectivity] real selectivity
WC98-1 | 16061 secs. 569 secs. 427 secs. P11 99-38;% 95-71;%
WC98-2 | 20692 secs. 698 secs. 380 secs. MPQi [ p12 62.88% 80.32%
WC08-3 | 15571 secs. 589 secs. 768 secs. P13 25.75% 15.79%

P21 99.99% 95.56%
TABLE 5 MPQz [ p22 69.54% 83.81%
P23 13.16% 9.61%
Results on the WorldCup98 dataset. Par 99.95% 90.09%
MPQs | p32 73.51% 35.61%
0, 0,
©-WC98-1 SWC98-2 AWC983 | | <-WC98-1 SWC98-2 -AWC98-3 | P33 13.87% 20.13%
— 500 — 600 TABLE 6
w 450 “
i - ,ﬁg Comparison of estimated and real selectivity.
£ £ wop
g 3?3 g 300
L 200 MPQ, (=1) | MPQ; (i=2) | MPQ; (i=3)
S S 10 plan: piipizpis 0.69 0.79 0.68
g% 3 plan:: pi1pispiz 0.69 0.79 0.68
S 2% 50% 75% 100% & 25% 50% 75% 100% plans: pi2pi1pis 0.69 0.79 0.68
T C plam: Pi2Pi3Pil 0.31 0.33 0.16
. . . . pIar};: Pi3PilPi2 0.69 0.79 0.68
Fig. 7. Execution time of Bitmap on the WorldCup98 plarg: pispizpi1 0.32 0.33 0.16
dataset under different data sizes and query complexities.
TABLE 7

Execution time of different plans (in seconds).

We further investigated hoBitmap performs under differ-
ent table sizes and query complexities. We varied number (@) Selectivity estimation and predicate ordering:
tuples (") by using 20%, 50%, 75%, and 100% of the originalVe also conducted experiments to verify the accuracy and
dataset. We varied number of values in set predic@lely effectiveness of the selectivity estimation method in Bec8.
using 20%, 50%, 75%, and 100% of the distinct attributdere we use the results of three queries (MP®IPQ;,
values in the original dataset as the values in set predith®e MPQ;), each on a different synthetic data table, to demon-
results are shown in Figure 7. The execution timeéBdmap strate. The values of grouping attributeand set predicate at-
grew linearly by the data size and grew very slowly by thgibutev are independently generated, each following a normal
guery complexity. distribution. Each MPQhas three conjunctive set predicates,

Below we explain the results in Table 5. For better undep;1, p;2, andp;s. The predicates are manually chosen so that
standing of the results, we list in Table 4 the charactegstf they have different selectivities, shown in the real séldgt
the dataset with regard to the three queries. In additiohdo tcolumn of Table 6. Predicate; is most selective, with 10%
four variables—number of values in set predicd®, (humber to 20% qualified groupsp;; is least selective, with around
of qualified groups.§), number of groups®), and number of 90% qualified groupsp;> has a selectivity in between.
tuples (")—Table 4 also shows the number of tuples in qualified To estimate set predicate selectivity, we employed two
groups (Tuples ir6). Note that the focus of the analysis is tchistograms ovely and v, respectively. The data tables have
understand the individual results. It is not to say whichrgi® about 406-60 distinct values inv and 10000 distinct values
more efficient than others. The three queries are differes¢i in g. We built 10 and 100 equi-width buckets, enand g,
operations (i.e. CONTAIN, CONTAINED BY, and EQUAL), respectively. Table 6 shows that the estimated seleetivdie
set predicate attributes, and grouping attributes. Herisddss sufficiently accurate to capture the order of different jratks
meaningful to compare the three queries against each othmr,selectivity.
as the performance of a query can be highly dependent on th&able 7 shows that our method is effective in choosing
parameter<, S, G, Tand skewness of data. efficient query plans. As discussed in Section 8, based on

For Rewrt the performance difference between WC98-1 arektimated selectivity, our optimization method choosetaa p
WC98-3 was small. WC98-2 was considerably less efficierihat evaluates conjunctive predicates in the ascendingr afd
From Figure 2, we can see that the query plan needs to perfaatectivity. The execution terminates early when the euald
a set difference operation between the original table aed thredicates result in empty qualified groups. Given eachyquer
set of tuples that do not match any set predicate values.NHPQ;, there are 6 possible orders in evaluating three predi-
guery WC98-2, many tuples did not match the set predicatates, shown as planplans in Table 7. Since the order of
values. That made the set difference operation expensiestimated selectivity i9;3 < pi2 < p;1, our method chooses
For Agg query WC98-1 took less time than the other twplans over other plans, based on the speculation that it has a
queries. This can be explained by our observation Miagis  better chance to stop the evaluation earlier. Plaraluate;s
sensitive to data siz& and less sensitive to other parameteffirst, followed byp;2, and finallyp;; if necessary.
and under the same data size CONTAIN operation is moreln all three queries, the chosen platerminated after
efficient than CONTAINED BY and EQUAL with regard top;3 and p;2, because no group satisfies both predicates. By
Agg (cf. Figure 6 and supplemental materials). Ritmap contrast, other plans (except plarevaluated all predicates.
guery WC98-2 had the best performance since it had mu€herefore their execution time is 3 to 4 times of that of glan
fewer groups and tuples in qualified groups, in comparisdipte that plap saves the cost by about 60%, by just avoiding
with WC98-1 and WC98-3 (cf. Table 4). This is also consistenpt; out of 3 predicates. This is due to different evaluation€ost
with the observation in Section 9.2 (A). of predicates. The least selective predicatg, naturally is
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also the most expensive one. This indicates that, selgctivii7]
and cardinality will be the basis of cost-model in a costeohs
guery optimizer for set predicates, consistent with the room
practice in DBMSs. We also note that plas equally efficient [19]
as plag for these queries, because they both terminate af[%]
pi2 andp;s and no plan can stop after only one predicate.

P.-A. Larso. Grouping and duplicate elimination: Beiseof early
aggregation. Technical report, 1997.

N. Mamoulis. Efficient processing of joins on set-valuattributes. In
SIGMOD pages 157-168, 2003.

S. Melnik and H. Garcia-Molina. Adaptive algorithmsr feet contain-
ment joins. ACM Trans. Database Sys28(1):56—99, 2003.

S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakyriva Tolton,
and T. Vassilakis. Dremel: interactive analysis of weblesdatasets.
Commun. ACM54:114-123, June 2011.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tameki Pig

10 CoNCLUSION latin: a not-so-foreign language for data processingSIBMOD, pages
1099-1110, 2008.

We propose _tO extend SQL b.y set predlcgtes to_support iﬁ ] P. E. O'Neil and G. Graefe. Multi-table joins throughtrbapped join
level comparisons. Such predicates, combined with graypi indices. SIGMOD Record24(3):8-11, 1995.
allow selection of dynamically formed groups by comparisa@3] P. E. O'Neil and D. Quass. Improved query performancthwariant
indexes. INSIGMOD, pages 38-49, 1997.
betwee.n a group and a set of Values_' We presented tfg G. Ozsoyoglu, Z. M.Ozsoyoglu, and V. Matos. Extending relational
evalu"_mon methods to process set predicates. Compr@/hen I~ algebra and relational calculus with set-valued attriburd aggregate
experiments on synthetic and TPC-H data show the effective- functions. ACM TODS 12(4), 1987. _
ness of both the aggregate function-based approach and [#Rk Y: Poosala, P. J. Haas, Y. E. loannidis, and E. J. Shekitaproved
bitmap index-based approach For optimizing multi prath'c histograms for selectivity estimation of range predica®S&MOD Reg.
- . - 25(2):294-305, 1996.
gueries, we designed a histogram-based probabilistic adethi26] V. Poosala and Y. E. loannidis. ~Selectivity estimatiaithout the
; i ; ; ; attribute value independence assumptionVUDB, 1997.
to estimate the SeI?CtIVIty of set predlcates_. The eSchatl[ZY] K. Ramasamy, J. Patel, R. Kaushik, and J. Naughton. &#hmment
governs the evaluation order of multiple predicates, pcoty joins: The good, the bad and the ugly. W.DB, 2000.
efficient query plans. [28] D. Rinfret, P. O'Neil, and E. O'Neil. Bit-sliced indexrithmetic.
SIGMOD pages 47-57, 2001.
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Supplemental Materials to “Set Predicates in SQL: FROM SC,

Enabling Set-Level Comparisons for Dynamically Formed (ISEI'II-'E%Egl'Udem FROM SC WHERE course = * CS101°
Groups SELECT student FROM SC WHERE course = ' CS102’
) as TMP

WHERE SC. st udent = TMP. st udent
A DETAILS OF THE QUERY REWRITING AP- GrowP BY st udent

PROACH . . -
_ ~Alternatively a subquery instead of join can be used to
We can formally prove by relational algebra that a query Withptain the aggregate values:

set predicates can be translated into standard SQL queries.
There could be multiple ways in rewriting a query. We wiIEE‘(—)'aC;CSt udent, GOUNT(*)

not enumerate all of them. VHERE st udent | N
First, it is easy to show (SELECT student FROM SC WHERE course = ' CS101’
76,4C(R) = 7g, (R > 16C(R)). LN TERSECT

. - - SELECT student FROM SC WHERE = ' CS102’
1gC(R) selects the qualified groups. Joining the qualified ) g T,\,Ps ueen course

groups with R on grouping attributes and then computin@grROUP BY st udent

tes wil te th ¢ ts. .
aggregates wit genera'e fhe Corect query rests Rewriting CONTAINED BY : The CONTAINED BY pred-

Now we consider the rewriting ofygC(R). Given two . . . .
predicates, i.e.C = C; AND|OR Cg \?Vge ie\?vrite for each icate can be rewritten by using EXCEPT. For instance, the
L ! 2 pwritten query for Q3 in Section 3 is:

set predicate separately and then put them together, byg udi

INTERSECT for AND and UNION for OR. @’ : SELECT student FROM SC
7gC1 AND Cs (R) = 7gC1 (R) N vgC2 (R) EXCEPT
SELECT student FROM SC
'Vg_cl ORC; (_R) = 79_61 (R) U 79_62 (R) ) WHERE gfagee2> 4 AND grade <> 3
Given a predicate with a preceding NOT, i.€. NOT (’,
we rewrite by using set difference operation. Rewriting EQUAL : The rewriting of EQUAL predicates
v NOT C’ (R) = mg(R) — vg C' (R) naturally combines that of CONTAIN and CONTAINED BY,

If C contains multiple predicates; ... C,, connected by Since two setsS; =5, if and only if 5, € 5> and Sy 2 Ss.
Boolean operators (AND, OR, NOT), we rewrite by keefor instance, Q4 in Section 3 can be rewritten as:

applying the above algebraic rules. Q': (SELECT student FROM SC WHERE course = ' CS101

Now we focus on how to rewrite a single set predicate. | NTERSECT
CONTAIN predicateC 2O {ci, ..., cp} can be rewritten by: SELECT student FROM SC WHERE course = ' CS102')
_ EXCEPT
76C 2 {c1, wos en}(R) = mgoc—c,(R) N ... N MgoCc=c, (R) (SELECT student FROM SC
A CONTAINED BY predicateC - {Cl, ceey Cn} can be WHERE course <> 'CS101' AND course <> 'CS102')
rewritten by: Rewriting G | o T . | .
16C C {c1y v n}(R) = 1G(R) - Tg0Csern...ncte,(R) ewriting General Queries To rewrite more complex queries

An EQUAL predicateC = {c, .., ¢}, which is a combi- with multiple predicates, we use the rewriting of indivitlua

nation of CONTAIN and CONTAINED BY, is rewritten by: predicates as the building blocks and connect them together
16C = {c1, o cnM(R) = ' by their logical relationships. For instance, given thédwing

(tgoc—c, (R) N ... N TG0c—c, (R)) - TGOCsern.. . ncste,(R)  AUEY:
Below are some examples to show how to apply the aboge ect st udent, AV grade) FROM SC b BY st udent

algebraic rules in query rewriting. HAVI NG MAX(grade) = 4
R SET(course) CONTAIN {’ CS101', ' CS102'}

Rewriting CONTAIN : Consider the query Q1 in Section 3R SET(course) CONTAIN {’CS101", ’'CS103'}
which has a CONTAIN predicate. It can be rewritten using
INTERSECT, as shown in the following Q1'. In general, a
CONTAIN predicate withm constant values can be rewritterBELECT student, AV grade)

. i ; FROM SC,
using m-1 INTERSECT operations. Note that INTERSECT,; ((SELECT student FROMSC GROUP BY student

The rewritten query is:

UNION, and EXCEPT in SQL operate by set semantics HAVI NG MAX(gr ade) = 4)
instead of bag semantics, unless they are followed by ALLUNI ON ( SELECT st udent FROM SC WHERE cour se=' CS101’
| NTERSECT
Ql': SELECT student FROM SC WHERE course = ' CS101’ SELECT student FROM SC WHERE cour se=" CS102’)
| NTERSECT UNI ON ( SELECT student FROM SC WHERE cour se=’ CS101’
SELECT student FROM SC WHERE course = ' CS102’ | NTERSECT

. . SELECT student FROM SC WHERE cour se=" CS103’)
If the SELECT clause in the query contains aggregate ) as Twp

values, the rewritten query needs to be joined with the oalgi WHERE SC. student = TMP. st udent

table on the grouping attributes. For instance, suppose {f&P BY student

SELECT clause in Q1 isSELECT student, COUNT(*),  Moreover, as mentioned in Section 3, the grouping and set
i.e., we want to identify the qualifying students and the bem egicates can be defined over a relatrthat is the result

of courses that they have taken, the rewritten query will begs 5 subquery. Even though our examples only use a single
SELECT student, COUNT(*) table, the general applicability is straightforward.



B GENERAL SET PREDICATE QUERIES (SEC- VHERE ~ SCL. cour se=SC. cour se AND

) SC1. st udent =S. nanme AND
TION 7 CONT’'D) SC1. year 22010 )

(G) Range-Based Set PredicateSet predicates on data types

such as numeric attributes and dates can use range—baséa [8]. [9], [7], [10] the concept ofgrouping varlableyvas
infroduced as an SQL extension to allow comparisons of

values (e.g., Example 3 in Section 1), in two different ways. itiol i th . diti That
(1) The operand is a set and a value in this set c?ﬁu Iple aggregales over the same grouping conaition.. 1ha

be a range. For example, predicaeT(si ze) CONTAIN ine of work only considered regular aggregates such as SUM
([1, 10] [2£.3 30) } requireéagroupto have at least tyice and COUNT. Combining the concepts of set predicate and

values such that the first one is within range [1,10] and tee s&rouping \_/arlable_— set pred|cate_s for set-le_vel COMPABSO
ond one is within range [25,30). A group such{&s4,15,27 a.nd grouping variable for group-wise comparisons— camallo
would qualify because 3 (4 too) satisfies the first range and EL;aner syntax for complex queries. For example, the above

satisfies the second range. Similafl$,15} does not satisfy sj[udent diversity query can be _simplified as f.OIIOWS' The
SET(si ze) CONTAINED BY {[1,10], [25,30)} because simpler query syntax can potentially ease the job of query

15 is not in either [1’10] or [25’30). optimization In producmg more efficient query evaluation

With regard to the bitmap index-based method, we modi@}::fc'm':grégﬁt%récz’d;h?ezgg(?:ft?r??ggnr;]b?? eI((je Zﬂplr[()ea(;tes
Line 1 and 2 of Algorithm 2. Th&ueryBI function returns ' P ntal uitiple aggreg

a bit vector for each range, which is naturally supported bdyurmg one-pass iteration over tuples.

both bit-sliced index and regular bitmap indices [28], [32)r SELECT ~ SC.course FROM SC, Students AS S
tending the aggregate function-based method, we replace wc SC. student =5 nare

extending ggregate \ ' p GROUP BY SC.course : X, Y

v==vJ by v € range’ in Line 8 of Algorithm 1. SUCHTHAT X.year=2010 AND Y.year=2011 AND

(2) The whole operand itself is a range. For example, SET(X nationality) CONTAIN SET(Y.nationality)
predicateSET(si ze) CONTAINED BY [1, 10] requires the  Tpe syntax can also be extended to allow partial

values ofsi ze in a qualified group to be subsumed bY, 2, gatisfaction of set predicates. For example, set pred-
..., 10}. Another example iSET(si ze) CONTAIN [1,10] jcate SET(skill) CONTAIN 3 OF { Java', ' Python',

which requires a group to subsunf, 2, ..., 1¢. Note that . ... - M/SQL', ' Vb services'} finds the job can-
such a CONTAIN predicate is not meaningful on attribute Qfijates that have at least 3 of the 5 skills. and
floating point numbers. predicate SET( cour se) CONTAI NED BY 2 of {' CS101’,

With regard to the bitmap index-based method, we replacggigor ' cs103' . ' €S104° } identifies the students that
Line 1 and 2 of Algorithm 2 by aQueryBI function t0  haye taken no more than 2 of the 4 courses and nothing else.
obtain a bit vector for the range. For extending the aggee9dfcorporating partial satisfaction into Algorithm 2 (aniths
function-based method, we replace-= v’ by v € range in  |a1ly Algorithm 1) is quite straightforward. For CONTAINY i
Line 8 of Algorithm 1. would need to check ik of the n bits in M[g] are set (Line

between Multiple Groups, and with Partial Satisfaction G and disqualifies a groupwhen either some unwanted value
The syntax in Section 3 can be extended to alloi¢ encountered (i.e., current Line 17) or more thaof the n
comparison with not only literal values, but also th&its in M(g] are set.

result of a subquery. An example querySELECT st udent

FROM SC GROUP BY student HAVI NG SET (course) C DETAILED ANALYSIS OF SYNTHETIC DATA
CONTAI NED BY ( SELECT course_id FROM Cour ses RESULTS

VHERE dept =" CS' ) . (Finding those students that have Onhﬁ'o better understand the performance difference between th

taken CS courses.) The impact of such extension on thefee methods, we looked at detailed breakdown of their

proposed evaluation approaches is minimal— The subquery IS cution time. Based on the results ot T® queries and

A : o exe
evaluated first by conventional methods and the original sﬁ tables for each query mentioned in Section 9.2(A), we
predicate operand is replaced by the subquery’s resulesalu query ' ’

investigated how execution time scales under various group
Furthermore, the subquery can be correlated. For examp ? .
. of tonfiguration parameters, T', G, andS. In each group, we

the following query returns those courses that have more ' .S

. ) . aried one parameter value and fixed the remaining three. We
diverse students in 2011 than in 2010. Note that, although t .

: compared all three methods for all three different opesator

syntax can allow correlated subqueries, our proposed risth

. : i . (0={D,C,=)}). i i
are not suitable for such extension. In order to find quaiiyi ?O .{—’—’ })- In gene_ral, the trend of curve remains fairly

. . imilar when we use different values for three fixed paramnsete
groups, our algorithms produce bitmap vectors for set pregl

. ~and vary the values of the fourth parameter. Hence we only
cate operand (returned values from correlated subquehjsn t ) ; .
S e lotted the result for four representative configuratioougs.
case), which in turn depend on correlated qualifying group

SELECT  SC. course FROM SC, Students AS S Detailed Anal_yS|s c_>f Bitmap: Figure 8 is for Bitmap un-
WHERE SC. st udent =S. name AND SC. year =2011 der four configuration groups. For each group, the upper
GROUP BY SC. course. . and lower figures show the execution time and its detailed
HAVING  SET(S.nationality) CONTAIN b kd Each ical b h . .

( SELECT S.nationality reakdown. Each vertical bar represents the execution time

FROM SC AS SCl1, Students AS S for one particular query (O,C) and the stacked components
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Fig. 8. Execution time of Bitmap and its breakdown.

in the bar represent percentages of the costs of all indvidulivided into three major steps: Step 1— scan the table (gkever
steps.Bitmaphas four major steps, as shown in Algorithm 2times); Step 2— find qualifying groups that satisfy the query
The figures show that no single component dominates. Teenditions; Step 3— calculate the required aggregatesaici e
breakdown varies as configuration parameters change. Hequalifying group. ForAgg we divide the cost into table scan
we shall analyze it in detail while we investigate the effett and the rest.
parameters below. Figure 10(a) shows that the execution timeRafwrt similar
Figure 8(a) shows that the execution timeBaimapincreas- o that ofBitmap increases linearly witl’ (number of values
es linearly withC' (number of values in set predicate). Thisn a set predicate). The breakdown also change< byFor
can be explained by the detailed breakdown in Figure 8(akample, the Step 3 (calculate aggregates) for CONTAIN (
The costs of Step 1 and Step 3 increase’aisicreases, thus gets smaller and smaller percentage. We can understand this
get higher and higher percentages in the breakdown. Thispig analyzing the plan for the rewritten query Of sUM(a)
because the method needs to obtain the corresponding vegtot (1,2 31(R), shown in Figure 9. It performs multiple
for each value and find qualified groups by considering aidex scans in Step 1 and intersects the scan results in
values. On the other hand, the costs of Step 2 and 4 hayep 2. Therefore these two steps become more costly as
little to do with C', thus get decreasing percentages. increases. The last step, calculating aggregates, dossithe
Figure 8(b) shows the execution time Bitmap increases amount of work, since the aggregating is independent’of
slowly with S (number of qualified groups). With more andrigure 10(a) also shows large performance difference twe
more qualified groups, the costs of Step 1-3 increase oRiiferent operators whe@' increases. Givefi'=100K, G=1K,
moderately sinceC' and G do not change, while Step 4and S=10, the number of tuples wittk.v being1, 2, ..., or
becomes dominating because it has to calculate aggregatesf is small, in order to have only0 out of 1,000 groups
more and more qualified groups. satisfying the query condition. Therefore for CONTAIN, the
As Figure 8(c) shows, the cost 8itmapdoes not change set intersect operator in Figure 9 involves small cost. Hawe
significantly with G (number of groups). However, the curvesor CONTAINED BY, the Filter operator in Figure 2 produces
do show that the method is least efficient when there are vefiich more result tuples, making the set difference (Except)
many or very few groups. Whe@ increases, with' (number operator more costly.

of qualified groups) unchanged, less tuples match the valueqcigure 11(a) shows that the execution timeAgfg different

in predicate, resulting in cheaper cost of bit vector openat ¢, " that of Rewrt and Bitmap is not affected byC. As

in Step 1. The number of tuples per group decreases, thusm orithm 1 shows, the only cost component related tds
cost of Step 4 decreases. These two factors lower the ovey, checking of a tuple’s value against the gived' values
cost, although the cost of Step 2 increases due to more secigr, predicate (line 8 and 11 of Algorithm 1), which is much
in BSI(g). WhenG reaches a large value suchld), 000, the cheaper than other components.

cost of Step 2 dominates, making overall cost higher again. _. L :
Figure 8(d) shows thasitmapscales linearly with” (num- Figure 11(b) shows that the execution timeAgfgincreases

ber of tuples). Whe” increases, Step 1 gets less dominatingIth S (numbzr of ?;]Jahﬁed %r?hupsz]under some cl)pe:-atlf)ﬂrf atr:d
and Step 4 becomes more significant, ecreases under others, and the changes are only slighthin bo

cases. Figure 10(b) shows that the behavidrReifvrtis similar
Detailed Analysis ofRewrt and Agg: We divided theBitmap to that of Agg with regard toS in that the execution time
algorithm into four steps in Algorithm 2. Similarly, bokewrt increases under some operators and decreases under others.
andAggalgorithms could also be divided into several steps fdthe variations are small for some operators and larger for
detailed study. IlRewrt the PostgreSQL plans can be roughlpthers. For example, the cost of CONTAINED BY decreases
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SELECT sum(a)
FROM R,
(( SELECT DISTINCT ¢
FROM R
WHERE v=1)
INTERSECT
( SELECT DISTINCT g
FROM R
WHERE v=2)
INTERSECT
( SELECT DISTINCT ¢
FROM R 2.643 ms
WHERE v=3)
) AS TMP
WHERE R.g=TMPg
GROUP BY R.g

R.v= R.v=

Fig. 9. Rewrt Query Plan for CONTAIN, 100K tuples, 1K
groups, 10 qualified groups.

G increases, with the number of qualified groups unchanged,
the number of tuples matching the constants becomes smaller
resulting in more result tuples from the Filter operator in
Figure 2, making the set difference (Except) operator more
costly. Figure 11(c) shows that the execution time Axfg
increases slowly withz, for the reason similar to why the
execution time is not affected much lgy.

Figure 10(d) and Figure 11(d) show that, unsurprisingly,
Rewrt and Agg scale linearly withT (number of tuples),
similar to Rewrt

D OTHER QUERIES USED IN TPC-H EXPERI-
MENTS

Due to the space limit, we only showed one of the six TPC-H
gueries in the paper. The other five queries together witin the
guery semantics are given below.

by S. Use Figure 2 to explain again. When more groups satisfyPCH-2)Get the available quantity for each part that is only
the query condition, the output cardinality of operatottéfil available from suppliers in member nations of G8:
becomes smaller, resulting in smaller cost of set diffeeen€REATE VI EWR2 AS

(Except) operation.

SELECT P_PARTKEY, PS_AVAILQTY, N_NAME
FROM PARTSUPP, SUPPLIER, PART, NATI ON

Figure 10(c) shows that, & (number of groups) in the dataWHERE PS_PARTKEY=P_PARTKEY

increases, the execution time Bewrtincreases substantially
for CONTAINED BY and EQUAL, but does not change much

AND PS_SUPPKEY=S_SUPPKEY
AND S _NATI ONKEY=N_NATI ONKEY;

for CONTAIN. Use CONTAINED BY as an example. WhensSELECT PS_PARTKEY, SUM PS_AVAI LQTY)



FROM R2

GROUP BY PS_PARTKEY

HAVI NG SET(N_NAME) CONTAI NED BY {' France, Gernany’,
"Japan’, 'United Kingdom, 'United States’,
"Canada’, 'Russia’, 'ltaly'}

(TPCH-3)Get the available quantity of parts for each supplier

which provides parts of brand #13 and brand #42 :
CREATE VIEWR3 AS

SELECT PS_SUPPKEY, PS_AVAILQTY, P_BRAND

FROM PARTSUPP, PART

WHERE PS_PARTKEY=P_PARTKEY;

SELECT PS_SUPPKEY, SUM PS_AVAI LQTY)
FROM R3

GROUP BY PS_SUPPKEY

HAVI NG SET (P_BRAND) CONTAI N {’ Brand#13’, ' Brand#42’}

(TPCH-4)Get the available quantity of parts for each supplier

which provides parts of size 30, 31, and 32:
CREATE VIEWR4 AS

SELECT PS_SUPPKEY, PS_AVAILQIY, P_SIZE
FROM PARTSUPP, PART

WHERE PS_PARTKEY=P_PARTKEY;

SELECT PS_SUPPKEY, SUM PS_AVAI LQTY)

FROM R4

GROUP BY PS_SUPPKEY

HAVI NG SET (P_SI ZE) CONTAIN {’30’,’31',’ 32’}

(TPCH-5)Get the available quantity of parts for each supplier

which only provides parts manufactured by MFGR#1-#5:
CREATE VIEWR5 AS

SELECT PS_SUPPKEY, PS_AVAILQTY, P_MFGR

FROM PARTSUPP, PART

WHERE PS_PARTKEY=P_PARTKEY;

SELECT PS_SUPPKEY, SUM PS_AVAI LQTY)

FROM R5

GROUP BY PS_SUPPKEY

HAVI NG SET (P_MFGR) CONTAI NED BY {’ MFGRH#1',’ MFGR#2' ,
" MFGRH3' , ' MEGRHA™ |’ NFGRH5' }

(TPCH-6) Get the total price of orders for each lineitem that
has orders with exactly 5 different priorities, from low to

urgent:

CREATE VI EW R6

SELECT L_LI NENUMBER, O TOTALPRI CE, O ORDERPRI ORI TY
FROM LI NEIl TEM ORDERS

WHERE L_ORDERKEY=0_ORDERKEY;

SELECT L_LI NENUMBER, SUM O TOTALPRI CE)
FROM R6
GROUP BY L_LI NENUMBER
HAVI NG SET (O ORDERPRI ORI TY) EQUAL {’ 1- URGENT',
*2-HI GH',’ 3- MEDI UM , ' 4- NOT SPECI FIED',’ 5-LOW}
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