
1

Set Predicates in SQL: Enabling Set-Level
Comparisons for Dynamically Formed Groups

Chengkai Li, Member, IEEE, Bin He, Ning Yan, Muhammad Assad Safiullah

Abstract —In data warehousing and OLAP applications, scalar-level predicates in SQL become increasingly inadequate to support
a class of operations that require set-level comparison semantics, i.e., comparing a group of tuples with multiple values. Currently,
complex SQL queries composed by scalar-level operations are often formed to obtain even very simple set-level semantics. Such
queries are not only difficult to write but also challenging for a database engine to optimize, thus can result in costly evaluation. This
paper proposes to augment SQL with set predicate, to bring out otherwise obscured set-level semantics. We studied two approaches
to processing set predicates– an aggregate function-based approach and a bitmap index-based approach. Moreover, we designed
a histogram-based probabilistic method of set predicate selectivity estimation, for optimizing queries with multiple predicates. The
experiments verified its accuracy and effectiveness in optimizing queries.

Index Terms —Set Predicates, Grouping, Data Warehousing, OLAP, Querying Processing and Optimization

✦

1 INTRODUCTION

With data warehousing and OLAP applications becoming
more sophisticated, there is a high demand of querying data
with the semantics ofset-level comparisons. For instance, a
company may search its resume database for job candidates
with a set of mandatory skills. Here the skills of each candi-
date, as a set of values, are compared against the mandatory
skills. Such sets are often dynamically formed. For example,
suppose a tableResume Skills (id, skill) connects skills to
job candidates. A GROUP BY clause dynamically groups the
tuples in it byid, with the values on attributeskill in each group
forming a set. The problem is that the current GROUP BY
clause can only do scalar value comparison by an accompany-
ing HAVING clause. For instance, aggregate functions SUM/
COUNT/ AVG/ MAX produce a single numeric value which
is compared to a literal or another single aggregate value.

Observing the demand for complex and dynamic set-level
comparisons in databases, we propose a concept ofset predi-
cate. Below are several example queries with set predicates.

Example 1: To find those candidates with skills “Java” and
“Web services”, our query can be as follows. After grouping,
a dynamic set of values on attributeskill is formed for
each uniqueid, and groups whose corresponding SET(skill)
contains both “Java” and “Web services” are returned.

SELECT id FROM Resume_Skills GROUP BY id
HAVING SET(skill) CONTAIN {’Java’,’Web services’}

• C. Li and N. Yan are with the Department of Computer Science and
Engineering, The University of Texas at Arlington, Arlington, TX 76019.
E-mail: cli@uta.edu, ning.yan@mavs.uta.edu

• B. He is with IBM Almaden Research Center, San Jose, CA 95120.E-mail:
binhe@us.ibm.com

• M. A. Safiullah is with Microsoft, Seattle, WA. E-mail:
assad.safiullah@live.com. The work was done while the author was
a student at UT-Arlington.

Example 2: In business decision making, an executive may
want to find the departments whose monthly average ratings
for customer service in 2009 have always been poor (assuming
ratings are from 1 to 5). Suppose the table schema isRat-
ings(department, avg rating, month, year). The following
query uses CONTAINED BY for the set-level condition.

SELECT department FROM Ratings WHERE year=2009
GROUP BY department
HAVING SET(avg_rating) CONTAINED BY {1,2}

Example 3: Set predicates can be defined across multiple
attributes. Consider an online advertisement example. Suppose
the table schema isSite Statistics(website, advertiser, C-
TR). A marketing strategist uses the following query to find
Websites that publish ads for ING with more than 1% and less
than 2% click-through rate (CTR) and do not publish ads for
HSBC yet:

SELECT website FROM Site_Statistics
GROUP BY website HAVING

SET(advertiser,CTR) CONTAIN {(’ING’,[0.01,0.02])}
AND NOT (SET(advertiser) CONTAIN {’HSBC’})

In this example, the first set predicate involves two attributes
and the second set predicate uses the negation of CONTAIN.
Note that we use[0.01,0.02] to represent a range-based
condition 0.01≤CTR≤0.02.

The semantics of set-level comparisons in many cases can
be expressed using current SQL syntax without the proposed
extension. However, resulting queries would be more complex
than necessary. One consequence is that complex queries
are difficult for users to formulate. More importantly, such
complex queries are difficult for DBMS to optimize, leading
to unnecessarily costly evaluation. The resulting query plans
could involve multiple subqueries with grouping and set op-
erations. On the contrary, the proposed concise syntax of set
predicates enables direct expression of set-level comparisons
in SQL, which not only makes query formulation simple but
also facilitates efficient support of such queries. We developed
two approaches to process set predicates:

2

Aggregate function-based approach: This approach process-
es set predicates in a way similar to processing conventional
aggregate functions. Given a query with set predicates, instead
of decomposing the query into multiple subqueries, this ap-
proach only needs one pass of table scan.

Bitmap index-based approach: This approach processes set
predicates by using bitmap indices on individual attributes. It
is efficient because it can focus on only the tuples from those
groups that satisfy query conditions and only the bitmaps for
relevant columns. State-of-the-art bitmap compression meth-
ods [33], [2], [16] and encoding strategies [5], [34], [23] have
made it affordable to build bitmap index on many attributes.
This index structure is also applicable on many different
types of attributes. The bitmap index-based approach processes
general queries (with joins, selections, multi-attributegroup-
ing and multiple set predicates) by utilizing single-attribute
indices. Hence it does not require pre-computed index for join
results or combination of attributes.

We further developed an optimization strategy to handle
queries with multiple set predicates connected by logic op-
erations (AND, OR, NOT). A useful optimization rule is
to prune unnecessary set predicates during query evaluation.
Given a query withn conjunctive set predicates, the predicates
can be sequentially evaluated. If no group qualifies afterm
predicates are processed, we can terminate query evaluation
without processing the remaining predicates. The number of
“necessary” predicates before we can stop,m, depends on
the evaluation order of predicates. We designed a method to
select a good order of predicate evaluation, i.e, an order that
results in smallm, thus cheap evaluation cost. Our idea is to
evaluate conjunctive (disjunctive) predicates in the ascending
(descending) order of their selectivities, where the selectivity
of a predicate is its number of qualified groups. We designed
a probabilistic approach to estimating set predicate selectivity
by database histograms.

In summary, this paper makes the following contributions:

• We proposed to extend SQL with set predicates for an
important class of analytical queries, which otherwise would
be difficult to write and optimize (Section 3).
• We designed two query evaluation approaches for set
predicates, including an aggregate function-based approach
(Section 5) and a bitmap index-based approach (Section 6).
• We developed a histogram-based probabilistic method to
estimate the selectivity of a set predicate, for optimizing
queries with multiple predicates (Section 8).
• We conducted extensive experiments to evaluate proposed
approaches over both real and synthetic data (Section 9).

2 RELATED WORK

Set-valued attributes provide a concise and natural way to
model complex data concepts such as sets [24], [29]. Many
DBMSs nowadays support the definition of attributes involving
a set of values, e.g.,nested tablein Oracle andSETdata type
in MySQL. For example, the “skill” attribute in Example 1 can
be defined as a set data type. Set operations can be natively
supported on such attributes. Query processing on set-valued
attributes and set containment joins have been extensively

studied [14], [27], [18], [19]. Although set-valued attributes
together with set containment joins can support set-level
comparisons, set predicates have several critical advantages:

(1) Unlike set-valued attributes, which bring hassles in
redesigning database storage for the special set data type,
set predicates require no change in data representation and
storage, and thus can be incorporated into standard RDBMS.

(2) In real-world applications, groups and corresponding
sets are often dynamically formed according to query needs.
For instance, in Example 2, the monthly ratings of each
department form a set. In a different query, sets may be
formed by ratings of individual employees. With set predi-
cates, users can dynamically form set-level comparisons with
no limitation caused by database schema. On the contrary,
set-valued attributes cannot support dynamic set formation
because they are pre-defined at schema definition phase and
set-level comparisons can only be issued on such attributes.

(3) Set predicates allow cross-attribute set-level comparison.
For instance, sets are defined overadvertiser and CTR
together in Example 3. On the contrary, a set-valued attribute
can only be defined on a single attribute in many imple-
mentations, thus cannot capture cross-attribute associations.
Implementations such as nested table in Oracle allow sets
over multiple attributes but do not easily support set-level
comparisons on such attributes.

Set predicate is also related to universal quantification and
relational division [12], which are powerful for analyzing
many-to-many relationships. An example universal quantifica-
tion query is to find the students that have taken all computer
science courses required to graduate. It is a special type ofset
predicates with CONTAIN operator over all the values of an
attribute in a table, e.g.,Courses. By contrast, the proposed
set predicates allow sets to be dynamically formed through
GROUP BY and support CONTAINED BY and EQUAL, in
addition to CONTAIN.

The SEQUEL 2 language (an extension of the original
SEQUEL) for SYSTEM R proposed a special SET function,
for comparing a set of attribute values with the result of
a subquery [4]. The proposed comparison operators include
CONTAINS, =, and their negations. Furthermore, these oper-
ators can be used in comparing the results of two subqueries.
The proposal was brief, by several example queries. The SET
function is only on one attribute and does not allow range-
based values or bag semantics. No suggestion for implementa-
tion techniques was made. The SET function and CONTAINS
operator were later dropped from the SQL language, possibly
because of the difficulty in implementing it efficiently [11].

In [8], [9], [7], [10] the concept ofgrouping variableand
associated setwas introduced as an SQL extension to allow
comparisons of multiple aggregates over the same grouping
condition. That line of work only considered regular aggre-
gates such as SUM and COUNT. Combining the concepts of
set predicate and grouping variable can allow simpler syntax
for complex queries. We provide more detailed discussions of
this in the supplemental materials to this paper.

This paper focuses on relational data model and architecture.
Some data analytics systems today are built on top of massive
parallel computing architecture. The query languages for such

3

semester student course grade

Fall09 Mary CS101 4

Fall09 Mary CS102 2

Fall09 Tom CS102 4

Spring10 Tom CS103 3

Fall09 John CS101 4

Fall09 John CS102 4

Spring10 John CS103 3

Table: SC

Fig. 1. A classic student and course example.

systems (e.g., Pig Latin [21], Dremel [20], Jaql [1]) deal with
complex data models such as set-valued attributes, maps, and
nested data. Due to the fundamental architectural difference,
supporting set predicates in such systems, although a very
interesting future topic, is beyond the scope of this paper.

3 SET PREDICATES

We extend SQL syntax to support set predicates. Since a set
predicate compares a group of tuples to a set of values, it fits
well into GROUP BY and HAVING clauses. Specifically in a
HAVING clause there is a Boolean expression over multiple
regular aggregate predicates and set predicates, connected by
logic operators ANDs, ORs, and NOTs. The syntax of a set
predicate is:

SET(v1, ..., vm)
CONTAIN | CONTAINED BY | EQUAL
{(v11 , ..., v1m), ..., (vn1 , ..., vnm)},

wherevji ∈ Dom(vi), i.e., eachvji is a literal value (integer,
floating point number, etc.) in the domain of attributevi.
Succinctly we denote a set predicate by (v1, ..., vm) op {(v11,
..., v1m), ..., (vn1 , ..., vnm)}, where op can be⊇, ⊆, and =,
corresponding to set operator CONTAIN, CONTAINED BY,
and EQUAL, respectively.

The syntax can be extended to allow set-level comparison
with not only literal values, but also another dynamically
formed group or the result of a subquery. We focus on literal
values in the following sections and discuss such extensionin
the supplemental materials.

We further use relational algebra to concisely represent
queries with set predicates. Given a relationR, grouping and
aggregation are represented by the following operator:

γG,AC(R)

where G is a set of grouping attributes,A is a set of
aggregates (e.g., COUNT(*)), andC is a Boolean expres-
sion over set predicates and conditions on aggregates (e.g.,
AVG(grade)>3). The aggregates inA andC may overlap.

We now provide example queries over the classic student-
course table (Figure 1). We use full SQL for the first query as
we did in Section 1. For remaining queries, we will show either
only set predicates or succinct relational algebra expressions.

The following Q1: γstudent course ⊇{‘CS101’,‘CS102’}(SC) i-
dentifies the students who took both CS101 and CS102.1 The
results are Mary and John. The keyword CONTAIN represents

1. To be rigorous, it should be (course) ⊇ {(‘CS101’), (‘CS102’)}, based
on the aforementioned syntax.

a superset relationship,i.e., the set variable SET(course) is a
superset of{‘CS101’, ‘CS102’}.

Q1: SELECT student FROM SC GROUP BY student
HAVING SET(course) CONTAIN {’CS101’, ’CS102’}

A query can include WHERE clause and regular aggregate
functions in HAVING. In Q2: γstudent,COUNT (∗) course ⊇

{‘CS101’, ‘CS102’}
∧

AVG(grade) > 3.5 (σsemester= ′Fall09′ (SC)), we
look for those students that had average grade higher than 3.5
in FALL09 and took both CS101 and CS102 in that semester.
It also returns the number of courses they took in that semester.

We use CONTAINED BY for the reverse of CONTAIN,
i.e., the subset relationship. Query Q3:γstudent grade⊆{4,3}(SC)

selects all the students whose grades are never below 3. The
results are Tom and John.

To select the students that have only taken CS101 and C-
S102, we use EQUAL to represent the equal relationship in set
theory. The query is Q4:γstudent course ={‘CS101’,‘CS102’}(SC).
Its result contains only Mary.

In above queries we assumed set predicates follow set
semantics. Therefore John’s grades,{4,4,3}, are subsumed
by {4,3}. The syntax also allows bag semantics for set
predicates, whereγstudent course ⊇{‘CS101’,‘CS101’,‘CS102’}(SC)

finds students who took CS101 twice and CS102 once, and
γstudent grade ⊆{4,4,3}(SC) selects students who have obtained
grade 4 in at most 2 courses and grade 3 in at most 1 course
and have no other grades in record.

Note that the set/bag semantics of set predicates are orthog-
onal to the set/bag semantics of regular SQL constructs. If set
semantics is applied for a set predicate, only distinct values
on the set predicate attribute from the tuples in a group are
used in determining if the group satisfies the set predicate.
However, if (the default) bag semantics is applied for regular
SQL operations, all the tuples in the group are included in
calculating aggregates. For example,γstudent,AV G(grade) grade

⊇{4,4,3}(SC) calculates GPA for students with at least two 4s
and one 3, and all their grades are included in GPA calculation.

For simplicity of presentation, in the following sections we
focus on the simplest query–γg,⊕a v op {v1, ...,vn}(R), i.e., a
query with one grouping attribute (g), one aggregate for output
(⊕a), and one set predicate defined by a set operatorop (⊇,
⊆, or =) over a single attribute (v). Moreover set semantics
is assumed for set predicates. In Section 7 we discuss the
syntax of expressing more general queries and the methods of
processing general queries.

4 DRAWBACKS OF SET-LEVEL COMPARISONS
BY REGULAR SQL
Without the proposed set predicate, we fall back to current
SQL syntax in expressing set-level comparisons. Complex
queries containing scalar-level operations are often formed to
obtain even very simple set-level semantics. Such complex
queries are difficult for users to formulate. A more severe
consequence is that set-level semantics becomes obscure.
Hence a DBMS may choose unnecessarily costly evaluation
plans for such queries.

The semantics of set predicates can often be expressed by
standard SQL queries. In fact, there can be multiple ways in

4

SELECT R.g, sum(a)
FROM R,

Seq Scan

39.063 ms

368.190 ms

FROM R,
(SELECT g
FROM R
EXCEPT
(SELECT g
FROM R
WHERE v <> 1
AND v <> 2
AND v <> 3)

) AS TMP
WHERE R.g = TMP.g

Seq Scan

R

WHERE R.g = TMP.g
GROUP BY R.g

Hash Join

Hash Aggregate

402.067 ms

402.468 ms

Seq Scan

Except

Project &

Sort on g

Append

Seq Scan

R

39.063 ms

161.989 ms

328.102 ms

368.190 ms 14.791 ms

Filter
38.950 ms

Seq Scan

Seq Scan

R
38.950 ms

Filter

v<> 1 && v<>2 && v<>3

Fig. 2. SQL query and plan for γg,SUM(a)v⊆{1,2,3}(R)
over 100K tuples, 1K groups, and 10 qualified groups.

writing queries corresponding to even a single set predicate.
For instance, for a CONTAIN predicate withm values, the
query can usem-1 INTERSECT operations. Or, we can build
a temporary tableS containing them values, left outer join
R (the table being queried) withS, and process a sequence
of duplicate elimination, grouping, and group selection by
COUNT. As another example, a CONTAINED BY can be ex-
pressed by EXCEPT or CASE condition control. For multiple
set predicates, we can use the queries for individual predicates
as building blocks and connect them by logic relationships.

Our experience is that no matter how we express the
semantics of a set predicate using regular SQL, the query
often inevitably involves a combination of multiple operations
such as join, union, intersection, set difference, duplicate
elimination, grouping, etc. The performance of the resulting
query is usually unsatisfactory. Although one cannot exhaust
all possible queries in expressing a set predicate, the examples
below illustrate this observation by using two different meth-
ods of writing queries. Section 9 empirically compares our
proposed methods with the method of expressing set predicates
by regular SQL queries. We discuss the details of such regular
SQL queries in the supplemental materials to this paper.

Figure 2 shows a PostgreSQL query plan for a regular
SQL query corresponding toγg,SUM(a) v ⊆ {1,2,3}(R). The
plan was executed over a100K-tuple tableR(g,a,v) with 1K
groups ong, resulting in10 qualified groups. The plan was
hand-picked and the most efficient one among the plans we
investigated. Figure 2 also shows the time spent on each
operator, which recursively includes the time spent on all
operators in the sub-plan tree rooted at the given operator,
due to the effect of iterators’ GetNext() interfaces. The real
PostgreSQL plan had more detailed operators. We combine
them and give the combined operators more intuitive names,
for simplicity of presentation. Figure 2 indicates that thequery
obscures the semantics of set-level comparison, as the query
plan unnecessarily involves a set difference operation (Except)
and a join. The set difference is betweenR itself (100K tuples)
and a subset ofR (98998 tuples that do not have1, 2, or 3 on
attributev). Both sets are large, making the Except operator
cost much more than a simple sequential scan.

Figure 3 shows a plan for queryγg,SUM(a) v ⊇
{1,2,3,4}(R). The tableR has 1M tuples. Among the10K
groups formed by attributeg, 10 groups satisfy the set pred-

SELECT g, SUM(a)
FROM R LEFT OUTER JOIN S

on R.v=S.v
GROUP BY g
HAVING COUNT(DISTINCT S.v)=4HAVING COUNT(DISTINCT S.v)=4

289.600 ms

FROM R LEFT OUTER JOIN S

HAVING COUNT(DISTINCT S.v)=4

Sort on g

GroupAggregate

646.813 ms

1669.966 ms

1956.832 ms

HAVING COUNT(DISTINCT S.v)=4

Seq Scan

R
Seq Scan

S

Hash Left Join

0.102 ms289.600 ms

646.813 ms

Fig. 3. SQL query and plan for γg,SUM(a)v⊇{1,2,3,4}(R)
over 1M tuples, 10K groups, and 10 qualified groups.

icate. The plan uses a temporary one-attribute tableS that
contains values 1, 2, 3, and 4. It performs a left outer join
betweenR andS, followed by grouping ong. For each group,
it checks if the group contains all four values by COUNT. The
join and sorting operators are expensive. On the contrary, it
is sufficient to use a one-pass grouping and aggregation, as
Section 5 will show.

We also executed the above two queries in a single-
node installation of IBM DB2 V8. Interestingly DB2 chose
essentially the same query plans, except that the EXCEPT
operator in Figure 2 was replaced by a pair of grouping and
filtering operators. This helps to show that PostgreSQL was
not necessarily doing a bad job in optimizing the provided
regular SQL queries.

5 AGGREGATE FUNCTION-BASED APPROACH

With the new syntax in Section 3, which brings forward the
semantics of set predicates, a set predicate-aware query plan
could potentially be much more efficient by just scanning
a table and processing its tuples sequentially. The key to
such a direct approach is to perform grouping and set-level
comparison together, through a one-pass iteration of tuples.
The idea resembles how regular aggregate functions can be
processed together with grouping. Hence we design a method
that handles set predicates as aggregate functions.

The sketch of the method is in Algorithm 1. It covers all
three kinds of set operators (⊇, ⊆, =). It uses the standard
iterator interface GetNext() to go through the tuples inR, may
it be from a sequential scan over tableR or the sub-plan over
sub-queryR. Following common implementation of aggregate
functions in database systems, a set predicate is defined by an
initial state (Line 3), a state transition stage (Line 4-14), and a
final calculation stage (Line 16-18). A hash tableM maintains
a mask value for each unique group. The bits in the binary
representation of a mask value indicate which of the valuesv1,
..., vn in the set predicate are contained in the corresponding
group. If the mask value for a group equals2n−1, the group
contains alln valuesv1, ..., vn. A hash tableG maintains a
Boolean value for each group, indicating if it is a qualified
group. The values in G were initialized toTrue for every
group if the set operator is⊆ or = (Line 3), otherwiseFalse.
A hash tableA maintains the aggregated values for the groups.

In detail, a tuple is skipped if the corresponding group is
already disqualified and the operator is⊆ or = (Line 4). It
is also skipped if the group is already identified as qualified
and the operator is⊇, except that we need to accumulate the
aggregate (Line 6). For a non-skipped tuple, if its value on

5

Algorithm 1 Aggregate Function-Based Approach

Input: TableR(g, a, v), QueryQ = γg,⊕a v op {v1, ..., vn}(R)
Output: Qualifying groupsg and their aggregate values⊕a

/* g:grouping attribute;a:aggregate attribute;v:set predicate at-
tribute */
/* A: hash table for aggregate values */
/* M : hash table for value masks */
/* G: hash table for Boolean indicators of qualifying groups */

1: while r(g,a,v)⇐GETNEXT() != End of Tabledo
2: if groupg is not in hash tableA,M ,G then
3: M [g] ⇐ 0; G[g]⇐(op ∈ {⊆,=}); also initialize A[g]

according to the aggregate function.
4: if (op ∈ {⊆,=}) ∧ (! G[g]) then continue to next tuple
5: /* Aggregate the valuea for groupg. */
6: A[g] ⇐ A[g]⊕ a
7: if (op is ⊇) ∧ (G[g]) then continue to next tuple
8: if v == vj for somej then
9: /* In M [g], set the mask forvj . */

10: M [g] ⇐ M [g] | 2j−1

11: if (M [g] == 2n − 1) ∧ (op is ⊇) then G[g] ⇐ True
12: else
13: /* For ⊆, =, if v /∈ {v1, ..., vn}, g does not qualify. */
14: if op ∈ {⊆,=} then G[g] ⇐ False

15: /* Output qualified groups and their aggregates. */
16: for every groupg in hash tableM do
17: if (op is =) ∧ (M [g] != 2n − 1) then G[g] ⇐ False
18: if G[g] then output(g, A[g])

attributev matches somevj in v1, ..., vn, we set thejth-bit
of the group’s mask value inM to 1, indicating the existence
of vj in the group. This is done by the bitwise OR operation
in Line 10. If the mask value becomes2n−1, we mark the
group as qualified if the operator is⊇ (Line 11). On the other
hand, if the tuple’sv value does not match any suchvj , we
mark the group as disqualified if the operator is⊆ or = (Line
14). If the operator is=, we also check if the mask value
equals2n−1 at the final calculation stage. If not, it means the
group does not contain all the valuesv1, ..., vn. Therefore we
mark the group as disqualified (Line 17).

Algorithm 1 is a one-pass algorithm where memory is
available for storing the hash tables for all groups. We only
implemented and experimented with such one-pass algorithm,
given that the number of groups is seldom extremely large.
Should the number of groups become so large that the hash
tables cannot fit in memory, we can adopt standard two-
pass hashing-based or sorting-based aggregation method in
DBMSs. In the first pass the input table is sorted or partitioned
by a hash function. In the second pass tuples in the same
group are loaded into memory and aggregates over different
groups are handled independently. Such two-pass method can
be further improved by early aggregation strategies [17].

6 B ITMAP INDEX-BASED APPROACH

Our second approach is based on bitmap index [22], [23]. In
a vanilla bitmap index on an attribute, there exists a bitmap
(a vector of bits) for each unique attribute value. The vector
length equals the number of tuples in the indexed relation. In
the vector for valuex of attributev, its ith bit is set to1 if the
ith tuple has valuex on attributev. Complex selection queries
can be efficiently answered by bitwise operations (AND (&),

OR(|), XOR(̂), and NOT(∼)) over bit vectors. Moreover,
bitmap indices enable efficient computation of aggregates (e.g.,
SUM and COUNT) [23].

The idea of using bitmap index to process set predicates
is in line with the aforementioned intuition of processing set-
level comparison by a one-pass iteration of tuples (i.e., their
corresponding bits in bit vectors). On this aspect, it is similar to
the aggregate function-based approach. However, this method
brings several advantages by leveraging the distinguishing
characteristics of bitmap index. (1) We only need to access
the bitmap indices on columns involved in a query. Hence the
method’s query performance is independent of the underlying
table’s width. (2) The data structure of bit vector is efficient for
basic operations such as membership checking (for matching
with values in set predicates). Bitmap index gives us the ability
to skip irrelevant tuples. Chunks of 0s in a bit vector can be
skipped together due to effective bitmap encoding. (3) The
simple data format and bitmap operations make it convenient
to integrate various operations in a query, including dynamic
grouping of tuples and set-level comparisons. It also enables
efficient and seamless integration with conventional selections,
joins, and aggregations. (4) It allows straightforward exten-
sions to handle otherwise complex features, such as multi-
attribute set predicates and multiple set predicates.

As an efficient index for decision support queries, bitmap in-
dex has gained broad popularity. State-of-the-art bitmap com-
pression methods [33], [2], [16] and encoding strategies [5],
[34], [23] allow bitmap index to be applied on all types
of attributes (e.g., high-cardinality categorical attributes [32],
[33], numeric attributes [32], [23] and text attributes [28]).
Bitmap index is now supported in major commercial database
systems (e.g, Oracle, SQL Server), and it is often the default
(or only) index option in column-oriented database systems
(e.g., Vertica, C-Store [30], LucidDB). In applications with
read-mostly or append-only data, such as OLAP and data
warehouses, it is common that bitmap indices are created for
many attributes. Moreover, index selection based on query
workload allows a system to selectively create indices on
attributes that are more likely to be used in queries.

The bitmap index-based approach only needs bitmap indices
on individual attributes. Based on single-attribute indices, it
copes with general queries, dynamic groups, joins, selection
conditions, multi-attribute grouping and multiple set predi-
cates. It does not require pre-computed index for join/selection
results or combination of attributes. (Details in Section 7.)

Some systems (e.g., DB2, PostgreSQL) only build bitmap
indices on the fly at query-time. We do not consider such
scenario. We focus on bitmap indices built before query time.

The particular type of bitmap index we use isbit-sliced
index (BSI) [28]. Given a numeric attribute on integers or
floating-point numbers, BSI directly captures the binary repre-
sentations of attribute values. The tuples’ values on an attribute
are represented in binary format and kept ins bit vectors
(i.e., slices), which represent2s different values. Categorial
attributes can be also indexed by BSI, with a mapping from
distinct categorical values to integers.

The approach requires bit-sliced indices ong (BSI(g)) anda
(BSI(a)) and a bitmap index onv (BI(v)), which can be a BSI

6

Algorithm 2 Bitmap Index-Based Approach
Input: TableR(g, a, v) with t tuples;

QueryQ = γg,⊕a v op {v1, ..., vn}(R);
bit-sliced index BSI(g), BSI(a), and bitmap index BI(v).

Output: Qualified groupsg and their aggregate values⊕a
/* gID: array of sizet, storing the group ID of each tuple */
/* A: hash table for aggregate values */
/* M : hash table for value masks */
/* G: hash table for Boolean indicators of qualified groups */
/* Step 1. get the vector for eachvj in the predicate */

1: for eachvj do
2: vecvj ⇐ QUERYBI (BI(v), vj)

/* Step 2. get the group ID for each tuple */
3: Initialize gID to all zero
4: for each bit sliceBi in BSI(g), i from 0 to s-1 do
5: for each set bitbk in bit vectorBi do
6: gID[k] ⇐ gID[k] + 2i

7: for eachk from 0 to t-1 do
8: if groupgID[k] is not in hash tableA,M ,G then
9: M [gID[k]]⇐0; G[gID[k]] ⇐ False; also initialize

A[gID[k]] according to the aggregate function.
/* Step 3. find qualified groups */

10: if op ∈ {⊇, =} then
11: for each bit vectorvecvj do
12: for each set bitbk in vecvj do
13: M [gID[k]] ⇐ M [gID[k]] | 2j−1

14: for each groupg in hash tableM do
15: G[g] ⇐ (M [g] == 2n − 1)
16: if op ∈ {⊆, =} then
17: for each set bitbk in ∼(vecv1 | ... | vecvn) do
18: G[gID[k]] ⇐ False

/* Step 4. aggregate the values ofa for qualified groups */
19: for eachk from 0 to t-1 do
20: if G[gID[k]] then
21: agg ⇐ 0
22: for each sliceBi in BSI(a) do
23: if bk is set in bit vectorBi then agg ⇐ agg + 2i

24: A[gID[k]] ⇐ A[gID[k]]⊕ agg

25: for every groupg in hash tableM do
26: if G[g] then output (g, A[g])

or other type of bitmap index. Note that the algorithm below
will also work if we have other types of bitmap indices ong
anda, with modifications that we omit. The advantage of BSI
is that it indexes high-cardinality attributes with small number
of bit vectors, thus improves query performance if grouping
or aggregation is on such high-cardinality attributes.

Example 4: Given the data in Figure 1 and query
γstudent,AV G(grade) course op {‘CS101’,‘CS102’}(SC), Figure 4
shows the bitmap indices ong (student), v (course), and a
(grade). BSI(student) has two slices. For instance, the fourth
bits in B1 andB0 of BSI(student) are 0 and 1, respectively.
Thus the fourth tuple has value1 on attributestudent, which
represents ‘Tom’ according to the mapping from the original
values to numbers. There is also a BSI(grade) on grade. The
bitmap index oncourseis not a BSI, but a regular one where
each distinct attribute value has a corresponding bit vector. For
instance, the bit vectorBCS101 is 1000100, indicating that the
1st and the5th tuples have ‘CS101’ as the value ofcourse.

The outline of this approach is in Algorithm 2. It takes four
steps. Step 1 is to get the tuples having valuesv1, ..., vn

Mapping from values in
student to numbers:

Mary=>0 (00)
Tom=>1 (01)
John=>2 (10)

student course grade

B1 B0 BCS101 BCS102 BCS103 B2 B1 B0

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0

0 1 0 1 0 1 0 0

0 1 0 0 1 0 1 1

1 0 1 0 0 1 0 0

1 0 0 1 0 1 0 0

1 0 0 0 1 0 1 1

Fig. 4. Bitmap indices for the data in Figure 1.

on attributev. Given valuevj , functionQueryBI in Line 2
queries the bitmap index onv, BI(v), and obtains a bit vector
vecvj , where thekth bit is set (i.e., having value1) if the kth
tuple ofR has valuevj on attributev. This is a basic bitmap
index functionality.

Step 2 gets group IDs, i.e., values ofg, for tuples in
R, by querying BSI(g). The group IDs are calculated by
iterating through the slices of BSI(g) and summing up the
corresponding values for tuples with bits set in these vectors.
(See BSI(student) in Example 4.)

Step 3 gets the groups that satisfy the set predicate, based
on the vectors from Step 1. Its logic is fairly similar to that
of Algorithm 1. The algorithm outline covers all three set
operators, although the details differ, as explained below.

Step 4 gets the aggregates for qualified groups from Step
3 by using BSI(a). It aggregates the value of attributea from
each tuple into the tuple’s corresponding group if the groupis
qualified. The value of attributea for thekth tuple is obtained
by assembling the values2i−1 from slicesBi when theirkth
bits are set. The algorithm outline checks all bit slices foreach
k. Note that this can be efficiently implemented by iterating
through the bits (k from 0 to t−1) of the slices simultaneously.
We do not show such implementation details.

CONTAIN (⊇): In Step 3, a hash tableM maintains a mask
value M [g] for each groupg. The mask value hasn bits,
corresponding to then values (v1, ..., vn) in a set predicate.
A bit is set to 1 if at least one tuple in groupg has the
corresponding value on attributev. Therefore for each set bit
bk in vector vecvj , the jth bit of M [gID[k]] will be set by
a bitwise OR operation (Line 13 of Algorithm 2). IfM [g]
equals2n−1 at the end, i.e., all then bits are set, the group
g contains tuples matching everyv1, ..., vn and thus satisfies
the query (Line 15). We use another hash tableG to record
the Boolean indicators for qualified groups. The values inG
were initialized toFalse for every group (Line 9).

CONTAINED BY (⊆): If the set operator is⊆, Step 3 will
not use hash tableM . Instead, for a set bitbk in ∼(vecv1

| ... | vecvn) (i.e., thekth tuple not matching anyvj), the
corresponding groupgID[k] is disqualified (Line 18).

EQUAL (=): Step 3 for EQUAL (=) is naturally a combina-
tion of that for⊇ and⊆. It first marks a group as qualified if
⊇ is satisfied (Line 15), then disqualifies a group if⊆ is not
satisfied (Line 18).

Example 5: Suppose the query isγstudent,AV G(grade) course
= {‘CS101’,‘CS102’}(SC). Use the bitmap indices in Fig-
ure 4. After the 1st bit ofvecCS101 (i.e., v1=‘CS101’) is
encountered in Line 12,M [0]=20=1 since the 1st tuple inSC

7

belongs to group0 (Mary). After the 2nd bit ofvecCS102

(the 1st set bit) is encountered,M [0]=1|21=3. ThereforeG[0]
becomesTrue. Similarly G[2] (for John) becomesTrue
after the 6th bit ofvecCS102 is encountered. However, since
∼(vecCS101 | vecCS102) is 0001001, G[2] becomesFalse
after the last bit of0001001 is encountered in Line 17 (i.e.,
John has an extra course ‘CS103’).

7 GENERAL SET PREDICATE QUERIES

Our discussion so far has focused on simple queries that
have one grouping attribute, one aggregate for output, and
one single-attribute set predicate, under set semantics ofset
predicates. As introduced in Section 3, more general query is
denoted byγG,AC(R), whereG is a set of grouping attributes
(appear in GROUP BY clause),A is a set of regular aggregates
for output (appear in SELECT), andC is a Boolean expres-
sion over set predicates and conditions on regular aggregates
(appear in HAVING). In this section we discuss how to extend
our algorithms for general queries.

(A) Multi-Attribute Grouping: Given a query with multiple
grouping attributes,γg1,...gl,A C(R), we can treat the grouping
attributes as a single combined attributeg. That is, the con-
catenation of the bit slices of BSI(g1), ..., BSI(gl) becomes
the bit slices of BSI(g). For example, given Figure 4, if
the grouping condition isGROUP BY student,grade, the
BSI of the conceptual combined attributeg has 5 slices,
which areB1(student), B0(student), B2(grade), B1(grade),
andB0(grade). Thus the binary value of the combined group
g of the first tuple is00100.

(B) Multi-Attribute Set Predicate: The query syntax
also allows comparing sets defined on multiple attributes,
e.g., SET(course, grade) CONTAIN {(’CS101’,4),

(’CS102’,2)} finds all the students who received grade 4
in CS101 and 2 in CS102. In general, for a query with a
set predicate defined on multiple attributes,γG,A (v1, ..., vm)
op {(v11, ..., v1m), ..., (vn1 , ..., vnm)}(R), we replace Step 1 of
Algorithm 2 as follows. We first obtain vectorsvec

v
j
1

, ...,
vec

v
j
m

by querying BI(v1), ..., BI(vm). Then their intersection
(bitwise AND), vecvj = vec

v
j
1

& ... & vec
v
j
m

, gives us the

tuples that match the multi-attribute value (vj1, ..., vjm).

(C) Multi-Predicate Set Operation: A query with mul-
tiple set predicates can be supported by using Boolean
operators, i.e., AND, OR, and NOT. For instance, to i-
dentify all the students whose grades are never below
3, except those who took both CS101 and CS102, we
can use querySET(grade) CONTAINED BY {4,3} AND

NOT (SET(course) CONTAIN {’CS101’, ’CS102’}).
With regard to the aggregation function-based method in

Algorithm 1, during a one-pass scan of tuples, multiple set
predicates are processed by simply repeating the same steps
for each predicate. With regard to the bitmap index-based
method, we defer the discussion of optimizing the evaluation
of multiple set predicates to Section 8.

(D) Regular Aggregate Expression: A general query
γG,AC(R) may have multiple regular aggregate expressions in

A (e.g., SUM(a) in Figure 2) andC (e.g., AVG(grade)>3.5
in Q2). In the aggregation function-based method, all these
aggregates are accumulated at Line 6 of Algorithm 1.2 In
the bitmap index-based method, they are handled by repeating
Line 21-24 of Algorithm 2 for multiple aggregates. We remove
a group from query result if a condition on a regular aggregate
(e.g., AVG(grade)>3.5) is not satisfied.

(E) Set Predicates under Bag Semantics: In Algorithm 1
and 2, in addition to hash tableM , we maintain an extra
hash table that stores arrays of integers. For each group, the
corresponding array records how many times eachv value has
been encountered in the group. For CONTAIN/CONTAINED
BY/EQUAL, the count of each value should be no less than/no
more than/equal to the corresponding count in a set predicate,
otherwise the group does not satisfy the predicate.

(F) Integration and Interaction with Conventional SQL
Operations: In a general queryγG,AC(R), relationR could
be the result of other operations such as selections and joins.
Logical bit vector operations allow us to integrate the bitmap
index-based method for set predicates with bitmap index-
based solutions for selection conditions [5], [34], [23] and
join queries [22]. This approach only requires bitmap indices
on underlying tables instead of join and/or selection result.

With regard toselectionconditions, suppose our query has
a set of conjunctive/disjunctive selection conditionsc1,. . . ,ck,
where eachci can be either a point conditionai=bi or a
range conditionli≤ai≤ui. We first obtain a vectorvecR that
represents the result of the selection conditions. If a tuple does
not belong to relationR, we set its corresponding bit invecR
to 0. After querying bitmap indices to obtain the vectorsvecvj

for the values in a set predicate (Step 1-2 of Algorithm 2), the
vectors are intersected withvecR before they are further used
in later stages of the algorithm.

There is much previous work (e.g., [5], [34], [23]) on
answering selection queries using bitmap index, i.e., getting
vecR. The essence is to compute one vectorvecci for each
condition ci such that vecci contains the bits for tuples
satisfyingci. After bitwise AND/OR operations on the vectors
of all conditions, the resulting vector isvecR. The bit vector
vecci is computed using bitmap operations over the bitmap
index on attributeai in conditionci.

With regard tojoin conditionsin a query, our technique can
be easily extended, by using bitmap join index [22]. Consider
two tablesS andT . Attribute j1 is a key ofT and j2 is the
corresponding foreign key inS. Due to foreign key constraint,
there exists one and only one tuple inT joining with each
and every tuples ∈ S. Hence for a join conditionT.j1=S.j2,
virtually all join results are inS, with some attributes stored in
S and other attributes inT . Therefore, for each attributea in
the schema ofT exceptj1 (sinceT.j1=S.j2 and we already
havej2 in S), we can construct a bitmap index ona for the
tuples inS, even thougha is not an attribute ofS. In general,
we can follow this way to construct bitmap indices for tuples
in a tableS, on all relevant attributes in other tables referenced

2. Note that Line 6 of Algorithm 1 only shows the state transition of ⊕.
The initialization and final calculation steps are omitted.

8

through foreign keys inS. Thus selection conditions involving
these attributes can be viewed as being applied onS only. A
join query can then be processed like a single table query.

8 OPTIMIZING QUERIES WITH MULTIPLE SET
PREDICATES : SELECTIVITY ESTIMATION BY
HISTOGRAM

Given a query with multiple set predicates, the straightforward
approach is to evaluate individual predicates independently
and follow the logic operations between predicates (AND,
OR, NOT) to perform intersection, union, and difference
operations over qualified groups. However, this approach can
be an overkill. In this Section we present strategies to prune
unnecessary set predicates.

If multiple predicates are defined on the same set of
attributes, we can eliminate the evaluation of redundant or
contradicting predicates based on set-containment or mutual-
exclusion between the predicates’ value sets. One example
is queryγg,⊕a v⊇{1}(R) AND v⊇{1, 2}(R). The value set
of the first predicate is a subset of the second value set.
Evaluating the first predicate is unnecessary because its qual-
ified groups always subsume the second predicate’s qualified
groups. Similarly the second predicate can be pruned if the
query uses OR instead of AND. Another example isγg,⊕a

v⊆{1}(R) AND v⊇{2, 3}(R). The two value sets are disjoint.
Without evaluating either predicate, we can report empty
result. We do not elaborate on such logical optimization since
query minimization and equivalence [6] is a well-known topic.

The above logical optimization is applied without evaluating
the predicates because it is based on algebraic equivalences
that are data-independent. A more general optimization is
to prune unnecessary set predicates during query evaluation.
The idea is as follows. Suppose a query has conjunctive set
predicatesp1, ..., pn. We evaluate the predicates sequentially,
obtain the qualified groups for each predicate, and thus obtain
the groups that satisfy all the evaluated predicates so far.If no
satisfying group is left afterp1, ..., pm (m<n) are processed,
we terminate query evaluation, without processing remaining
predicates. Similarly, if the predicates are disjunctive,we stop
the evaluation if all the groups satisfy at least one ofp1, ..., pm.
In general smallerm leads to cheaper evaluation cost. (We
assume equal predicate cost for simplicity. Optimization by
predicate-specific cost estimation warrants further study.)

The number of “necessary” predicates before we can stop,
m, depends on predicate evaluation order. For instance, sup-
pose a query has three conjunctive predicatesp1, p2, p3, which
are satisfied by 10%, 50%, and 90% of all groups, respectively.
Consider two different orders of predicate evaluation,p1p2p3
andp3p2p1. The former order may have a much larger chance
than the latter order to terminate after 2 predicates, i.e.,
reaching zero qualified groups afterp1 andp2 are evaluated.
Hence different predicate evaluation orders can potentially
result in much different costs. Givenn predicates, by randomly
selecting an order out ofn! possible orders, the chance of
hitting an efficient one is slim. Our goal is to select a good
order, i.e, an order that results in a smallm.

Such good order hinges on the “selectivities” of predicates.
Suppose a query has predicatesp1,...,pm, which are in either
conjunctive form (connected by AND) or disjunctive form
(OR). Each predicate can have a preceding NOT.3 Our opti-
mization rule is to evaluate conjunctive (disjunctive) predicates
in ascending (descending) order of selectivities, where the
selectivity of a predicate is its number of qualified groups.
Hence the key challenge in optimizing multi-predicate queries
is to estimate predicate selectivity.

To optimize an SQL query with multiple selection pred-
icates that have different selectivities and costs, the idea of
predicate migration[13] is to evaluate the most selective and
cheapest predicates first. The intuition of our method is similar.
However, we focus on set predicates, instead of the tuple-wise
selection predicates studied in [13]. Consequently the concept
of “selectivity” in our setting stands for the number of qualified
groups, instead of the typical definition based on the number
of satisfying tuples.

Our method to estimating set predicate selectivity is a
probabilistic approach that exploits histograms in databases. A
histogram on an attribute partitions the attribute values from
all tuples into disjoint sets calledbuckets. Different histograms
vary by partitioning schemes. Some schemes partition by
values. In anequi-width histogram the range of values in
each bucket has equal length. In anequi-depthor equi-height
histogram each bucket has the same number of tuples. Some
other schemes partition by value frequencies. One example is
v-optimalhistogram [25].

The histogram on attributex, h(x), consists of a number
of bucketsb1(x), ..., bs(x). For each bucketbi(x), the his-
togram provides its number of distinct valueswi(x) and its
depth di(x), i.e., the number of tuples in the bucket. The
frequency of each value is typically approximated bydi(x)

wi(x)
,

based on theuniform distribution assumption[15]. If the
histogram partitions by frequency (e.g., v-optimal histogram),
each bucket directly recordswi(x) and all distinct values in
it. If the histogram partitions by sortable values (e.g., equi-
width or equi-depth histogram), the number of distinct values
wi(x) is estimated as the width of bucketbi(x), based on
the continuous value assumption[15]. That is,wi(x)=ui(x)-
li(x), where [li(x),ui(x)] is the value range of the bucket.
When the attribute domain is an uncountably infinite set (e.g.,
real numbers),wi(x) can only mean the range size of bucket
bi(x), instead of the number of distinct values inbi(x).

Given a query with multiple set predicates, we assume his-
tograms are available on the grouping attributes, the set pred-
icate attributes, and attributes involved in selection conditions
(WHERE clause). Moreover, we also assume all attributes
are independent of each other. For simplicity of discussion,
from now on we assume single-attribute grouping and single-
attribute set predicate and focus on selectivity estimation
of groups. Selectivity estimation for tuples (i.e., selection
conditions) can be incorporated by multiplying bucket sizes
below by such selectivity. Multi-dimensional histograms,such
as MHIST [26], can extend the techniques developed in

3. Therefore our technique does not extend to queries that have both AND
and OR in connecting the multiple set predicates.

9

this section to multi-attribute grouping and multi-attribute set
predicate, as well as correlated attributes.

Suppose the grouping attribute isg. The selectivity of an
individual set predicatep = v op {v1, ...vn}, i.e., the number
of groups satisfyingp, is estimated by the following formula:

sel(p) =

#g
∑

j=1

P (gj) (1)

where#g is the number of distinct groups, which is estimated
by #g=

∑

i wi(g). P (gj) is the probability of groupgj satis-
fying p, assuming the groups are independent of each other.

The histogram onv partitions the tuples in a group into
disjoint subgroups. We useRj to denote the tuples that belong
to groupgj , i.e.,Rj={r|r∈R, r.g=gj}. We useRij to denote
the tuples in groupgj whose values onv fall into bucketbi(v),
i.e.,Rij={r|r∈Rj , r.v ∈ bi(v)}. Similarly the histogramh(v)
divides the valuesV ={v1, ..., vn} in predicatep into disjoint
subsets{V1, ..., Vs}, whereVi={v′|v′∈bi(v), v′∈V }.

A group gj satisfies a set predicate on values{v1, ..., vn}
if and only if eachRij satisfies the same set predicate onVi.
Thus we estimateP (gj), the probability that groupgj satisfies
the predicate, by the following formula:

P (gj) =

s
∏

i=1

Pop(bi(v), Vi, Rij) (2)

Pop(bi(v), Vi, Rij) is the probability thatRij satisfies the
same predicate onVi, based on information in bucket
bi(v). Specifically,P⊇(bi(v), Vi, Rij), P⊆(bi(v), Vi, Rij), and
P=(bi(v), Vi, Rij) are the probabilities thatRij subsumesVi,
Rij is contained byVi, andRij equalsVi, respectively, by set
semantics.
Pop(bi(v), Vi, Rij) is estimated based on the number of

distinct values inbi(v), i.e.,wi(v), according to the aforemen-
tioned continuous value assumption, the number of values in
Vi, and the number of tuples inRij , i.e.,

Pop(bi(v), Vi, Rij) = Pop(wi(v), |Vi|, |Rij |) (3)

For the above formula,wi(v) is stored in bucketbi(v) itself
and |Vi| is straightforward fromV and bi(v). Based on the
attribute independence assumption betweeng andv, the size
of Rij can be estimated by the following formula, where
dk(g) and wk(g) are the depth and width of bucketbk(g)
that contains valuegj :

|Rij | = di(v)×
|Rj |

|R|
= di(v) ×

dk(g)/wk(g)

|R|
(4)

We do not need to literally calculateP (gj) for every group
in formula (1). If two groupsgj1 and gj2 are in the same
bucket of g, Rij1 and Rij2 will be of equal size, and thus
P (gj1)=P (gj2).

We now describe how to estimatePop(N,M, T) (i.e.,
wi(v)=N , |Vi| = M , |Rij |=T), for each operator. Apparently
Pop(N,M, 0)=0. Moreover,M≤N , by the fashionV was
partitioned into{V1, ..., Vs}. Note that the estimation is only
for set semantics of set predicates.

CONTAIN (op is ⊇):

WhenM>T , i.e., the number of values inVi is larger than
the number of tuples inRij , P (N,M, T)=0.

WhenM=1, i.e., there is only one value inVi, since there
areN distinct values in bucketbi(v), each tuple in groupgj
has probability1

N
to have that value on attributev. With totally

T tuples in groupgj , the probability that at least one tuple has
that value is:

P⊇(N, 1, T) = 1− (1−
1

N
)T (5)

When M>1, i.e., there are at least two values inVi, in
groupgj the first tuple’s value on attributev has a probability
of M

N
to be one of the values inVi. If it indeed belongs toVi,

the problem becomes deriving the probability ofT−1 tuples
containingM−1 values. Otherwise, with probability1−M

N
,

the problem becomes deriving the probability ofT−1 tuples
containingM values. Hence:

P⊇(N,M, T) =
M

N
P⊇(N,M − 1, T − 1)

+(1−
M

N
)P⊇(N,M, T − 1) (6)

By solving the above recursive formula, we get:

P⊇(N,M, T) =
1

NT

M
∑

r=0

(−1)r
(

M
r

)

(N − r)T (7)

CONTAINED BY (op is ⊆):
WhenT = 1, straightforwardlyP (N,M, 1) = M

N
.

WhenT > 1, every tuple inRij must have one of the values
in Vi on attributev, for the group to satisfy the predicate.
Each tuple has the probability ofM

N
to have one such value

on attributev. Therefore we can derive the following formula:

P⊆(N,M, T) = (
M

N
)T (8)

EQUAL (op is =):
StraightforwardlyP (N, 1, T) = 1

NT andP (N,M, T)=0 if
M>T . For 1<M≤T , we can drive the following equation:

P=(N,M, T) =
M

N
[P=(N,M, T − 1)

+P=(N,M − 1, T − 1)] (9)

That is, for the group to satisfy the predicate, if the first
tuple in Rij has one of the values inVi on attributev (with
probability of M

N
), the remainingT−1 tuples should contain

either theM or the remainingM−1 values. Solving this
equation, we get:

P=(N,M, T) =
1

NT

M
∑

r=0

(−1)r
(

M
r

)

(M − r)T (10)

9 EXPERIMENTS

9.1 Overview and Implementation Details

We conducted experiments on both query processing algo-
rithms (Section 9.2 (A)-(C)) and query optimization techniques
(Section 9.2 (D)). We compared the performance of three
methods in evaluating set-level comparisons– the aggregate
function-based method, the bitmap index-based method, and
the method of using regular SQL queries. They are compared

10

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

se
cs

.)

Data Table (0-60)

Rewrt Agg Bitmap

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

se
cs

.)

Data Table (0-60)

Rewrt Agg Bitmap

Fig. 5. Overall comparison of the methods, O=⊆, C=10. (Execution time is in logarithmic scale.)

on three different datasets– (1) Our own synthetic data (Sec-
tion 9.2 (A)), for studying the effect of various parameters
in the performance of these methods, including the number
of tuples, the number of groups, the number of values in a
set predicate, the number of qualified groups, and so on; (2)
TPC-H benchmark database (Section 9.2 (B)), for studying
the performance of these methods on general queries with join
conditions and on benchmark data capturing the characteristics
of decision support applications; (3) WorldCup98 dataset (Sec-
tion 9.2 (C)), for evaluating the performance of the methods
on real and big data.

The aggregate function-based method, denoted asAgg,
is implemented in C++. The bitmap index-based method,
denoted asBitmap, is also implemented in C++ and leverages
FastBit 4 for bit-sliced index implementation. The compres-
sion scheme of FastBit, Word-Aligned Hybrid (WAH) code,
makes the compressed bitmap indices efficient even for high-
cardinality attributes [33].

The method of using regular SQL to express set-level
comparisons is denoted asRewrt. We used PostgreSQL 8.3.7
to store data and execute regular SQL queries. In the sup-
plemental materials to this paper, we describe how to rewrite
queries with set predicate into regular SQL. It is not a com-
plete enumeration of all possible query rewritings becausein
practice there will be infinite possible rewritings. We madeour
best effort to express each query by an appropriate regular SQL
query and obtain an efficient query plan for the query. This was
done by manually investigating alternative queries and plans
and turning on/off various physical query operators. Below
we report the numbers obtained by these hand-picked plans.
Nevertheless, the queries we often used for CONTAINED BY
are in the form of the rewriting in Figure 2. For a CONTAIN
predicate withm values, we often used a query that intersects
the results ofm selection queries on the individual values. This
rewriting approach can be found in the supplemental materials
to this paper.

Note thatRewrt uses a full-fledged database engine Post-
greSQL, while bothAgg and Bitmap are implemented ex-
ternally. AlthoughRewrt would incur extra overhead from
query optimizer, tuple formatting, etc., we believe this com-
parison is still insightful. Our results show thatRewrt is
often one or more orders of magnitude less efficient. It is
unlikely that all the slowness comes from extra overheads.
Moreover the query plans resulting from regular SQL queries
discussed in Section 4 ultimately perform one-pass grouping
and aggregation upon the results of (multiple) other upstream
operations. Therefore the performance ofAgg, which is also
implemented externally, serves as a yardstick in comparison

4. https://sdm.lbl.gov/fastbit.

parameter meaning values

O set operators ⊇, ⊆, =
C number of values in set

predicate
1, 2, . . . , 10, 20,
. . . , 100

T number of tuples 10K,100K, 1M
G number of groups 10,100,. . . ,T
S number of qualified groups 1,10,. . . ,G

TABLE 1
Configuration parameters of synthetic data experiments.

with the performance ofBitmap. Hence the results verify
that using regular SQL queries obscures the semantics of set-
level comparisons and leads to costly plans. The results could
encourage vendors to incorporate the proposed approaches into
a database engine.

9.2 Results

The experiments were performed on a Dell PowerEdge 2900
III server with Linux kernel 2.6.27, dual quad-core Xeon
2.0GHz processors, 2x4MB cache, 8GB RAM, and three
146GB 10K-RPM SCSI hard drivers in RAID5. The reported
results are the averages of 10 runs. All performance data were
obtained with cold buffer.

(A) Comparison over synthetic data:

Queries: We evaluated the three methods under various com-
binations of parameters, which are summarized in Table 1.O
can be one of the 3 set operators (⊇,⊆,=). C is the number of
values in a predicate, varying from 1 to 10, then 10 to 100. The
values always start from 1 and increase by 1, i.e., the values
are{1, . . . , C}. Altogether we have 3×19 (O,C) pairs. Each
pair corresponds to a unique query with a single set predicate.
For instance,(⊇, 2) corresponds toQ=γg,SUM(a)v⊇{1, 2}(R).
Note that we assume SUM is the aggregate function since its
evaluation is not our focus and Algorithm 1 and 2 process all
aggregate functions in the same way.

Data: For each of the 3×19 single-predicate queries, we
generated 61 data tables, each corresponding to a different
combination of (T,G, S) values in Table 1. Given query
(O,C) and data statistics(T,G, S), we correspondingly gen-
erated a table that satisfies the statistics for the query. The table
has schemaR(a, v, g), for queryγg,SUM(a)v O {1, ..., C}(R).

Each column is a 4-byte integer. The values of columna
are randomly generated. The values in columng are generated
by following a uniform distribution, to make sure there areG
groups, i.e., there are aboutT /G tuples in each group. We
randomly chooseS out of the G groups to be qualifying
groups. For the tuples in each qualifying group, we generate
their values on columnv in a way such that the group
satisfies the set predicate. Thev values for theG-S disqualified

11

groups are similarly generated, by making sure the groups
cannot satisfy the set predicate. For example, if the query
is γg,SUM(a)v⊇{1, 2}(R), for a qualified group, we randomly
select 2 tuples and set theirv values to 1 and 2, respectively.
The v values for remaining tuples in the group are generated
randomly. Given a group to be disqualified, we randomly
decide if 1, 2, or both should be missing from the group,
and generate the values randomly from a pool of numbers
excluding the missing values.

Results: We measured wall-clock execution time ofRewrt,
Agg, and Bitmap over the aforementioned 61 data tables for
each of the 3×19 queries. The comparison of these methods
under different queries are fairly similar. Hence we only show
the results for one query for data table 0-60 in Figure 5:
γg,SUM(a)v ⊆ {1, . . . , 10}(R). For instance, data table 54 in
Figure 5 represents results of the three methods withT=1 mil-
lion, G=100K, S=100K, under queryO=⊆, C=10. Note that
the purpose of the figure is not to compare the performance
on different data tables. (Such detailed comparison is provided
in Figure?? in the supplemental materials to this paper.) It is
rather to show the performance gap between several algorithms
that is consistently observed in all data tables under various
queries.

Figure 5 shows thatBitmap is often several times more
efficient than Agg and is usually one order of magnitude
faster thanRewrt. The low efficiency ofRewrt is due to the
awkwardness of expressing set-level comparisons by regular
SQL and the difficulty in optimizing such queries. The per-
formance advantage ofAgg over Rewrtshows that the simple
query algorithm could improve efficiency significantly. The
shown advantage ofBitmap over Agg is due to fast bit-wise
operations and skipping enabled by bitmap index, compared
to the verbatim comparisons used byAgg.

Impact of the Skewness of Group Sizes: Since the grouping
attribute values in the synthetic data were generated by uni-
form distributions, the groups in a table have about the same
size (i.e., number of tuples). To further study the impact of
skewness of group sizes on the several methods’ performance,
we generated more data tables. Given a combination of fixed
values on the four configuration parametersC, T , G, andS,
we generated 4 different data tables, by varying group size
distribution– (1)Uniform, where the grouping attribute values
follow a uniform distribution, thus the sizes of different groups
tend to be equal. Note that this is the same as the data used
in Figure 5. (2)Random, where the group size is a random
variable in a given range. (3)Exp1andExp2, where the sizes
of groups follow an exponential distribution(1/2)n, in which
n is the variable for group size. A small constant is used when
a group size generated by the distribution is smaller than 1.
Exp1andExp2are two opposite cases, in which the sizes of
qualified groups are all large and small, respectively.

Figure 6 shows the results of this experiment underC=4,
T=1M , G=1K, andS=10, for which theUniform data table
corresponds to data table 40 in Figure 5. We can make the
following observations. (1) The skewness of group size had
large impact on the performance ofRwrt, especially for CON-
TAINED BY and EQUAL operations. Consider CONTAINED

BY. The execution time ofRwrt decreased when qualified
groups are large (Exp1). Based on the way the skewed data
was generated, the larger the qualified groups are, the more
tuples matching the values in set predicates. Therefore the
output cardinality of the Filter operation in Figure 2 was
substantially reduced underExp1. In contrast, when qualified
groups are small (Exp2), the Filter operation produced large
output, which increased the cost of the query method in this
case. For EQUAL operation, the performance can also be
analyzed similarly based on the query plan generated, which
is omitted here. (2) The skewness of group size did not have
much effect on the performance ofAgg. This is becauseAgg
always sequentially scans the whole table, regardless of the set
operation and the skewness of group size. (3) The skewness
of group size had some impact on the performance ofBitmap,
although not as much as onRewrt. Consider CONTAIN
operation. Step 3 and Step 4 (and thus the wholeBitmap
method) in Algorithm 2 are more expensive when there are
more tuples matching the values in set predicates (Exp1). It
becomes the opposite case when qualified groups are small
(Exp2). For all the methods, the performance onRandomis not
much different from that onUniform, because the numbers of
tuples matching the values in set predicates only differ slightly
in the two data tables.

(B) Experiments over TPC-H data:
Two of the advantages ofBitmap mentioned in Section 6

could not be demonstrated by the above experiment. First,
it only needs to process necessary columns, whileAgg and
Rewrt have to scan the full table before irrelevant columns
can be projected out. The tables used in the experiments for
Figure 5 have schemaR(a, v, g) which does not include other
columns. We can expect the costs ofRewrtandAggto increase
by table width, whileBitmap will stay unaffected. Second,
Bitmapenables seamless integration with selections and joins,
while the above experiment is on a single table.

Queries: We thus designed six queries (TPCH-1 below,
TPCH-2 to TPCH-6 in the supplemental materials to this pa-
per) on the TPC-H benchmark database [31] and compared the
performance of the three methods. In these queries, grouping
and set predicates are defined over the join result of multiple
tables. Note that the joins are key-foreign key joins. ForRewrt
andAgg, we first joined the tables to generate a single joined
table, and then executed the algorithms over that joined table.

(TPCH-1)Get the total sales of each brand that has business in both
USA and Canada.
CREATE VIEW R1 AS
SELECT P_BRAND, L_QUANTITY, N_NAME
FROM LINEITEM, ORDERS, CUSTOMER, PART, NATION
WHERE L_ORDERKEY=O_ORDERKEY

AND O_CUSTKEY=C_CUSTKEY
AND C_NATIONKEY=N_NATIONKEY
AND L_PARTKEY=P_PARTKEY;

SELECT P_BRAND, SUM(L_QUANTITY) FROM R1
GROUP BY P_BRAND
HAVING SET(N_NAME) CONTAIN {’United States’,’Canada’}

Data: The data tables were generated by the TPC-H data
generator, with scale factors 0.1, 1, and 10, respectively.
Table 2 shows the sizes of the original TPC-H tables under

12

3000

4000

5000

6000

7000

8000

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

1000

2000

3000

Uniform Exp1 Exp2 Random

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

Distribution

200

300

400

500

600

700

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

100

200

Uniform Exp1 Exp2 Random

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

Distribution

150

200

250

300

350

400

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

50

100

150

Uniform Exp1 Exp2 Random

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

Distribution

Rewrt Agg Bitmap

Fig. 6. Execution time of three methods over different skewness of group size.

TPC-H table Size Joined table Size

PART 200000 R1 6001215
PARTSUPP 800000 R2 800000
SUPPLIER 10000 R3 800000

CUSTOMER 150000 R4 800000
NATION 25 R5 800000

LINEITEM 6001215 R6 6001215
ORDERS 1500000

TABLE 2
Sizes of tables in TPC-H data with scale factor=1.

scale factor 1 and the sizes of the corresponding joined tables
used in our experiments, i.e., R1 to R6 in queries TPCH-1
to TPCH-6, respectively. The sizes of data tables under scale
factor 0.1 (10) are 10 times smaller (larger) than the sizes of
the tables under scale factor 1.

Results: The results are shown in Table 3. Regular B+-tree
indices were created on both individual tables and the joined
table, to improve query efficiency. Hence in Table 3 we report
the costs ofRewrtandAgg together with the cost of join. For
Bitmap we created bitmap join index [22] according to key-
foreign key joins, based on the description in Section 7 (F).For
example, we index tuples in tableLINEITEM on the values
of attributeN_NAME which is from a different tableNATION.
With such a bitmap join index, given query TPCH-1 and other
queries, theBitmap method works in the same way as for a
single table, without pre-computing joined tables.

Table 3 shows that, even if the tables are already joined for
RewrtandAgg, Bitmap is still often 3-4 times faster thanAgg
and more than 10 times faster thanRewrt. If we consider the
cost of join, the performance gain is even more significant.
For all three methods (except the join result materialization
for RewrtandAgg), the execution time grows almost linearly
with scale factor from 0.1 to 10.

(C) Experiments over WordCup98 data:
To measure the performance of the three methods under

large and skewed data in the real world, we conducted exper-
iments over the WorldCup98 dataset.5

Data: The WorldCup98 dataset contains 1,352,804,107 tuples,
which correspond to all the access requests made to the 1998
World Cup Website between April 30, 1998 and July 26, 1998.
Each tuple records information such as the timestamp of the
request, the type of the requested file, the file size, the server
that handled the request, the client identifier (which maps to an
IP address), and so on. This dataset by nature is skewed. For

5. The WorldCup98 dataset is collected from http://ita.ee.lbl.gov/html/
contrib/WorldCup.html.

Query Rewrt+Join Agg+Join Bitmap

scale factor = 0.1
TPCH-1 0.71+14.50 secs. 0.30+14.50 secs. 0.11 secs.
TPCH-2 0.30+0.13 secs. 0.09+0.13 secs. 0.07 secs.
TPCH-3 0.10+0.09 secs. 0.04+0.09 secs. 0.02 secs.
TPCH-4 0.08+0.09 secs. 0.06+0.09 secs. 0.03 secs.
TPCH-5 0.20+0.09 secs. 0.07+0.09 secs. 0.03 secs.
TPCH-6 0.19+1.85 secs. 0.36+1.85 secs. 0.15 secs.

scale factor = 1
TPCH-1 10.64+31.64 secs. 2.65+31.64 secs. 0.83 secs.
TPCH-2 4.37+1.51 secs. 0.77+1.51 secs. 0.19 secs.
TPCH-3 1.20+1.76 secs. 0.37+1.76 secs. 0.23 secs.
TPCH-4 0.92+0.95 secs. 0.36+0.95 secs. 0.23 secs.
TPCH-5 3.28+0.94 secs. 0.41+0.94 secs. 0.23 secs.
TPCH-6 26.98+7.09 secs. 3.16+7.09 secs. 1.53 secs.

scale factor = 10
TPCH-1 110.89+710.76 secs. 28.07+710.76 secs. 8.43 secs.
TPCH-2 60.71+22.52 secs. 8.17+22.52 secs. 2.64 secs.
TPCH-3 64.08+24.40 secs. 4.46+24.40 secs. 1.40 secs.
TPCH-4 28.75+25.15 secs. 4.29+25.15 secs. 2.55 secs.
TPCH-5 92.85+30.92 secs. 5.01+30.92 secs. 2.58 secs.
TPCH-6 287.82+566.24 secs. 33.71+566.24 secs. 16.06 secs.

TABLE 3
Results on TPC-H data with different scale factors.

Query C S G T Tuples inS

WC98-1 3 1.4K 2.8M 1.4B 77.0M
WC98-2 3 16.8K 89.9K 1.4B 21.2K
WC98-3 3 76.1K 2.8M 1.4B 3.9M

TABLE 4
Characteristics of the WorldCup98 dataset with regard to

queries WC98-1, WC98-2, and WC98-3.

example, 88.16% of the requests were images, 44.5% of the
requests were handled by servers in Plano, TX, and more than
5% of all requests were made on a single day, June 30th [3].

Queries: We designed three queries on this dataset, as follows.
(WC98-1)Find the total traffics for clients who had visited in three
consecutive days– July 24th, July 25th, and July 26th.
SELECT clientID, SUM(bytes) GROUP BY clientID
HAVING SET(date) CONTAIN {0724,0725,0726}

(WC98-2)Find the total traffics for files that had only been retrieved
from US servers #1, #2, and #3.
SELECT objectID, SUM(bytes) GROUP BY objectID
HAVING SET(server) CONTAINED by {1,2,3}

(WC98-3)Find the total traffics of clients who had accessed file types
HTML(1), JPG(2), and GIF(3), but nothing else.
SELECT clientID, SUM(bytes) GROUP BY clientID
HAVING SET(type) EQUAL {1,2,3}

Results: The results on the WorldCup98 dataset are shown
in Table 5. We observed that whileRewrt required hours to
finish a query,BitmapandAggonly used several minutes. This
clearly shows the enlarged performance gains of our methods
on billion-tuple dataset.

13

Query Rewrt Agg Bitmap

WC98-1 16061 secs. 569 secs. 427 secs.
WC98-2 20692 secs. 698 secs. 380 secs.
WC98-3 15571 secs. 689 secs. 468 secs.

TABLE 5
Results on the WorldCup98 dataset.

200

250

300

350

400

450

500

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

WC98-1 WC98-2 WC98-3

0

50

100

150

200

25% 50% 75% 100%E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

T

200

300

400

500

600

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

WC98-1 WC98-2 WC98-3

0

100

200

25% 50% 75% 100%E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

C

Fig. 7. Execution time of Bitmap on the WorldCup98
dataset under different data sizes and query complexities.

We further investigated howBitmapperforms under differ-
ent table sizes and query complexities. We varied number of
tuples (T) by using 20%, 50%, 75%, and 100% of the original
dataset. We varied number of values in set predicate (C) by
using 20%, 50%, 75%, and 100% of the distinct attribute
values in the original dataset as the values in set predicate. The
results are shown in Figure 7. The execution time ofBitmap
grew linearly by the data size and grew very slowly by the
query complexity.

Below we explain the results in Table 5. For better under-
standing of the results, we list in Table 4 the characteristics of
the dataset with regard to the three queries. In addition to the
four variables–number of values in set predicate (C), number
of qualified groups (S), number of groups (G), and number of
tuples (T)–Table 4 also shows the number of tuples in qualified
groups (Tuples inS). Note that the focus of the analysis is to
understand the individual results. It is not to say which query is
more efficient than others. The three queries are different in set
operations (i.e. CONTAIN, CONTAINED BY, and EQUAL),
set predicate attributes, and grouping attributes. Hence it is less
meaningful to compare the three queries against each other,
as the performance of a query can be highly dependent on the
parametersC, S, G, Tand skewness of data.

ForRewrt, the performance difference between WC98-1 and
WC98-3 was small. WC98-2 was considerably less efficient.
From Figure 2, we can see that the query plan needs to perform
a set difference operation between the original table and the
set of tuples that do not match any set predicate values. In
query WC98-2, many tuples did not match the set predicate
values. That made the set difference operation expensive.
For Agg, query WC98-1 took less time than the other two
queries. This can be explained by our observation thatAgg is
sensitive to data sizeT and less sensitive to other parameters
and under the same data size CONTAIN operation is more
efficient than CONTAINED BY and EQUAL with regard to
Agg (cf. Figure 6 and supplemental materials). ForBitmap,
query WC98-2 had the best performance since it had much
fewer groups and tuples in qualified groups, in comparison
with WC98-1 and WC98-3 (cf. Table 4). This is also consistent
with the observation in Section 9.2 (A).

estimated selectivity real selectivity
p11 99.88% 95.71%

MPQ1 p12 62.88% 80.32%
p13 25.75% 15.79%
p21 99.99% 95.56%

MPQ2 p22 69.54% 83.81%
p23 13.16% 9.61%
p31 99.95% 90.09%

MPQ3 p32 73.51% 35.61%
p33 13.87% 20.13%

TABLE 6
Comparison of estimated and real selectivity.

MPQ1 (i=1) MPQ2 (i=2) MPQ3 (i=3)
plan1: pi1pi2pi3 0.69 0.79 0.68
plan2: pi1pi3pi2 0.69 0.79 0.68
plan3: pi2pi1pi3 0.69 0.79 0.68
plan4: pi2pi3pi1 0.31 0.33 0.16
plan5: pi3pi1pi2 0.69 0.79 0.68
plan6: pi3pi2pi1 0.32 0.33 0.16

TABLE 7
Execution time of different plans (in seconds).

(D) Selectivity estimation and predicate ordering:
We also conducted experiments to verify the accuracy and
effectiveness of the selectivity estimation method in Section 8.
Here we use the results of three queries (MPQ1, MPQ2,
MPQ3), each on a different synthetic data table, to demon-
strate. The values of grouping attributeg and set predicate at-
tributev are independently generated, each following a normal
distribution. Each MPQi has three conjunctive set predicates,
pi1, pi2, andpi3. The predicates are manually chosen so that
they have different selectivities, shown in the real selectivity
column of Table 6. Predicatepi3 is most selective, with 10%
to 20% qualified groups;pi1 is least selective, with around
90% qualified groups;pi2 has a selectivity in between.

To estimate set predicate selectivity, we employed two
histograms overg and v, respectively. The data tables have
about 40−60 distinct values inv and 10000 distinct values
in g. We built 10 and 100 equi-width buckets, onv and g,
respectively. Table 6 shows that the estimated selectivities are
sufficiently accurate to capture the order of different predicates
by selectivity.

Table 7 shows that our method is effective in choosing
efficient query plans. As discussed in Section 8, based on
estimated selectivity, our optimization method chooses a plan
that evaluates conjunctive predicates in the ascending order of
selectivity. The execution terminates early when the evaluated
predicates result in empty qualified groups. Given each query
MPQi, there are 6 possible orders in evaluating three predi-
cates, shown as plan1−plan6 in Table 7. Since the order of
estimated selectivity ispi3 < pi2 < pi1, our method chooses
plan6 over other plans, based on the speculation that it has a
better chance to stop the evaluation earlier. Plan6 evaluatespi3
first, followed bypi2, and finallypi1 if necessary.

In all three queries, the chosen plan6 terminated after
pi3 and pi2, because no group satisfies both predicates. By
contrast, other plans (except plan4) evaluated all predicates.
Therefore their execution time is 3 to 4 times of that of plan6.
Note that plan6 saves the cost by about 60%, by just avoiding
pi1 out of 3 predicates. This is due to different evaluation costs
of predicates. The least selective predicate,pi1, naturally is

14

also the most expensive one. This indicates that, selectivity
and cardinality will be the basis of cost-model in a cost-based
query optimizer for set predicates, consistent with the common
practice in DBMSs. We also note that plan4 is equally efficient
as plan6 for these queries, because they both terminate after
pi2 andpi3 and no plan can stop after only one predicate.

10 CONCLUSION

We propose to extend SQL by set predicates to support set-
level comparisons. Such predicates, combined with grouping,
allow selection of dynamically formed groups by comparison
between a group and a set of values. We presented two
evaluation methods to process set predicates. Comprehensive
experiments on synthetic and TPC-H data show the effective-
ness of both the aggregate function-based approach and the
bitmap index-based approach. For optimizing multi-predicate
queries, we designed a histogram-based probabilistic method
to estimate the selectivity of set predicates. The estimation
governs the evaluation order of multiple predicates, producing
efficient query plans.

ACKNOWLEDGMENT

This material is based upon work partially supported by
NSF Grant IIS-1018865, CCF-1117369, and 2011, 2012 HP
Labs Innovation Research Award. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the author(s) and do not necessarily reflect the
views of the funding agencies. The authors would also like to
thank the anonymous reviewers for their valuable comments
and suggestions to improve the quality of the paper.

REFERENCES

[1] Jaql: Query language for javascript object notation (json).
http://code.google.com/p/jaql/.

[2] G. Antoshenkov. Byte-aligned bitmap compression. InProceedings of
the Conference on Data Compression, 1995.

[3] M. Arlitt and T. Jin. A workload characterization study of the 1998
world cup web site.IEEE Network, 14(3):30 –37, 2000.

[4] D. Chamberlin, M. Astrahan, K. Eswaran, P. Griffiths, R. Lorie, J. Mehl,
P. Reisner, and B. Wade. Sequel 2: A unified approach to data definition,
manipulation, and control.IBM Journal of R & D, 20(6):560 –575, 1976.

[5] C. Y. Chan and Y. E. Ioannidis. An efficient bitmap encoding scheme
for selection queries. InSIGMOD, 1999.

[6] A. K. Chandra and P. M. Merlin. Optimal implementation ofconjunctive
queries in relational data bases. InSTOC, 1977.

[7] D. Chatziantoniou. Using grouping variables to expresscomplex
decision support queries.Data Knowl. Eng., 61(1):114–136, 2007.

[8] D. Chatziantoniou and K. A. Ross. Querying multiple features of groups
in relational databases. InVLDB, pages 295–306, 1996.

[9] D. Chatziantoniou and K. A. Ross. Groupwise processing of relational
queries. InVLDB, pages 476–485, 1997.

[10] D. Chatziantoniou and E. Tzortzakakis. Asset queries:a declarative
alternative to mapreduce.SIGMOD Rec., 38(2):35–41, Oct. 2009.

[11] R. Elmasri and S. Navathe. Fundamentals of Database Systems.
Addison-Wesley, 2011.

[12] G. Graefe and R. L. Cole. Fast algorithms for universal quantification
in large databases.ACM TODS, 20(2), 1995.

[13] J. M. Hellerstein and M. Stonebraker. Predicate migration: optimizing
queries with expensive predicates. InSIGMOD, pages 267–276, 1993.

[14] S. Helmer and G. Moerkotte. Evaluation of main memory join algo-
rithms for joins with set comparison join predicates. InVLDB, 1996.

[15] Y. Ioannidis. The history of histograms (abridged). InVLDB, 2003.
[16] T. Johnson. Performance measurements of compressed bitmap indices.

In VLDB, pages 278–289, 1999.

[17] P.-A. Larso. Grouping and duplicate elimination: Benefits of early
aggregation. Technical report, 1997.

[18] N. Mamoulis. Efficient processing of joins on set-valued attributes. In
SIGMOD, pages 157–168, 2003.

[19] S. Melnik and H. Garcia-Molina. Adaptive algorithms for set contain-
ment joins.ACM Trans. Database Syst., 28(1):56–99, 2003.

[20] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. Dremel: interactive analysis of web-scale datasets.
Commun. ACM, 54:114–123, June 2011.

[21] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. InSIGMOD, pages
1099–1110, 2008.

[22] P. E. O’Neil and G. Graefe. Multi-table joins through bitmapped join
indices. SIGMOD Record, 24(3):8–11, 1995.

[23] P. E. O’Neil and D. Quass. Improved query performance with variant
indexes. InSIGMOD, pages 38–49, 1997.

[24] G. Özsoyoğlu, Z. M.Özsoyoğlu, and V. Matos. Extending relational
algebra and relational calculus with set-valued attributes and aggregate
functions. ACM TODS, 12(4), 1987.

[25] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. Improved
histograms for selectivity estimation of range predicates. SIGMOD Rec.,
25(2):294–305, 1996.

[26] V. Poosala and Y. E. Ioannidis. Selectivity estimationwithout the
attribute value independence assumption. InVLDB, 1997.

[27] K. Ramasamy, J. Patel, R. Kaushik, and J. Naughton. Set containment
joins: The good, the bad and the ugly. InVLDB, 2000.

[28] D. Rinfret, P. O’Neil, and E. O’Neil. Bit-sliced index arithmetic. In
SIGMOD, pages 47–57, 2001.

[29] M. Roth, H. Korth, and A. Silberschatz. Extended algebra and calculus
for nested relational databases.TODS, 1988.

[30] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik. C-store: A column oriented dbms. InVLDB, 2005.

[31] Transaction Processing Performance Council. TPC benchmark H (deci-
sion support) standard specification. 2009.

[32] K. Wu, E. Otoo, and A. Shoshani. On the performance of bitmap indices
for high cardinality attributes. InVLDB, 2004.

[33] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with
efficient compression.ACM TODS, 31(1), 2006.

[34] M.-C. Wu and A. P. Buchmann. Encoded bitmap indexing fordata
warehouses. InICDE, pages 220–230, 1998.

Chengkai Li is an Assistant Professor in the Department of Computer
Science and Engineering at the University of Texas at Arlington. His
research interests are in the areas of databases, Web data manage-
ment, data mining, and information retrieval. In particular, he works
on computational journalism, database exploration, database testing,
entity search and query, and ranking and skyline queries. He received
his Ph.D. degree in Computer Science from the University of Illinois
at Urbana-Champaign in 2007, and an M.E. and a B.S. degree in
Computer Science from Nanjing University, China, in 2000 and 1997,
respectively.

Bin He is a Research Staff Member and Master Inventor at IBM
Almaden Research. He got his Ph.D. in the Department of Computer
Science at the University of Illinois at Urbana-Champaign in 2006. He
also received the M.S. degree in Computer Science from the University
of Illinois at Urbana-Champaign in 2002, and M.S. and B.S. degrees
in Mathematics from Peking University, China in 2000 and 1998 respec-
tively. He has strong expertise in business intelligence, cloud computing,
databases, data warehousing, data mining, and data integration.

Ning Yan received his B.E. degree in software engineering and M.S.
degree in computer science from Southeast University in China. He is
currently a Ph.D. candidate in the Department of Computer Science
and Engineering at the University of Texas at Arlington. His research
interests include faceted search, entity retrieval, and database system.

Muhammad Assad Safiullah received his M.S. degree in Computer
Science from the University of Texas at Arlington in 2008 and his B.S.
degree in Computer Science from the National University of Computer
and Emerging Sciences, Islamabad, Pakistan in 2005. His M.S. thesis
focused on efficient processing of set-predicate queries using bitmap
indexes. He is currently a software engineer at Microsoft Corporation.

1

Supplemental Materials to “Set Predicates in SQL:
Enabling Set-Level Comparisons for Dynamically Formed
Groups”

A DETAILS OF THE QUERY REWRITING AP-
PROACH

We can formally prove by relational algebra that a query with
set predicates can be translated into standard SQL queries.
There could be multiple ways in rewriting a query. We will
not enumerate all of them.

First, it is easy to show
γG,AC(R) = γG,A(R ⊲⊳ γGC(R)).

γGC(R) selects the qualified groups. Joining the qualified
groups withR on grouping attributes and then computing
aggregates will generate the correct query results.

Now we consider the rewriting ofγGC(R). Given two
predicates, i.e.,C = C1 AND|OR C2, we rewrite for each
set predicate separately and then put them together, by using
INTERSECT for AND and UNION for OR.
γGC1 AND C2 (R) = γGC1 (R) ∩ γGC2 (R)
γGC1 OR C2 (R) = γGC1 (R) ∪ γGC2 (R)
Given a predicate with a preceding NOT, i.e.,C = NOT C′,

we rewrite by using set difference operation.
γG NOT C′ (R) = πG(R) − γG C′ (R)
If C contains multiple predicatesC1 ... Cm connected by

Boolean operators (AND, OR, NOT), we rewrite by keep
applying the above algebraic rules.

Now we focus on how to rewrite a single set predicate. A
CONTAIN predicateC ⊇ {c1, ..., cn} can be rewritten by:
γGC ⊇ {c1, ..., cn}(R) = πGσC=c1(R) ∩ ... ∩ πGσC=cn (R)
A CONTAINED BY predicateC ⊆ {c1, ..., cn} can be

rewritten by:
γGC ⊆ {c1, ..., cn}(R) = πG(R) - πGσC6=c1∧...∧C6=cn(R)
An EQUAL predicateC = {c1, ..., cn}, which is a combi-

nation of CONTAIN and CONTAINED BY, is rewritten by:
γGC = {c1, ..., cn}(R) =
(πGσC=c1 (R) ∩ ... ∩ πGσC=cn (R)) - πGσC6=c1∧...∧C6=cn(R)
Below are some examples to show how to apply the above

algebraic rules in query rewriting.

Rewriting CONTAIN : Consider the query Q1 in Section 3,
which has a CONTAIN predicate. It can be rewritten using
INTERSECT, as shown in the following Q1’. In general, a
CONTAIN predicate withm constant values can be rewritten
usingm-1 INTERSECT operations. Note that INTERSECT,
UNION, and EXCEPT in SQL operate by set semantics
instead of bag semantics, unless they are followed by ALL.

Q1’: SELECT student FROM SC WHERE course = ’CS101’
INTERSECT
SELECT student FROM SC WHERE course = ’CS102’

If the SELECT clause in the query contains aggregate
values, the rewritten query needs to be joined with the original
table on the grouping attributes. For instance, suppose the
SELECT clause in Q1 isSELECT student,COUNT(*),
i.e., we want to identify the qualifying students and the number
of courses that they have taken, the rewritten query will be:

SELECT student, COUNT(*)

FROM SC,
(SELECT student FROM SC WHERE course = ’CS101’
INTERSECT
SELECT student FROM SC WHERE course = ’CS102’

) as TMP
WHERE SC.student = TMP.student
GROUP BY student

Alternatively a subquery instead of join can be used to
obtain the aggregate values:

SELECT student, COUNT(*)
FROM SC
WHERE student IN

(SELECT student FROM SC WHERE course = ’CS101’
INTERSECT
SELECT student FROM SC WHERE course = ’CS102’

) as TMP
GROUP BY student

Rewriting CONTAINED BY : The CONTAINED BY pred-
icate can be rewritten by using EXCEPT. For instance, the
rewritten query for Q3 in Section 3 is:

Q3’: SELECT student FROM SC
EXCEPT
SELECT student FROM SC
WHERE grade <> 4 AND grade <> 3

Rewriting EQUAL : The rewriting of EQUAL predicates
naturally combines that of CONTAIN and CONTAINED BY,
since two setsS1 = S2 if and only if S1 ⊆ S2 andS1 ⊇ S2.
For instance, Q4 in Section 3 can be rewritten as:

Q4’:(SELECT student FROM SC WHERE course = ’CS101’
INTERSECT
SELECT student FROM SC WHERE course = ’CS102’)

EXCEPT
(SELECT student FROM SC
WHERE course <> ’CS101’ AND course <> ’CS102’)

Rewriting General Queries: To rewrite more complex queries
with multiple predicates, we use the rewriting of individual
predicates as the building blocks and connect them together
by their logical relationships. For instance, given the following
query:

SELECT student,AVG(grade) FROM SC GROUP BY student
HAVING MAX(grade) = 4
OR SET(course) CONTAIN {’CS101’, ’CS102’}
OR SET(course) CONTAIN {’CS101’, ’CS103’}

The rewritten query is:

SELECT student, AVG(grade)
FROM SC,

((SELECT student FROM SC GROUP BY student
HAVING MAX(grade) = 4)

UNION (SELECT student FROM SC WHERE course=’CS101’
INTERSECT
SELECT student FROM SC WHERE course=’CS102’)

UNION (SELECT student FROM SC WHERE course=’CS101’
INTERSECT
SELECT student FROM SC WHERE course=’CS103’)

) as TMP
WHERE SC.student = TMP.student
GROUP BY student

Moreover, as mentioned in Section 3, the grouping and set
predicates can be defined over a relationR that is the result
of a subquery. Even though our examples only use a single
table, the general applicability is straightforward.

2

B GENERAL SET PREDICATE QUERIES (SEC-
TION 7 CONT’D)
(G) Range-Based Set Predicate: Set predicates on data types
such as numeric attributes and dates can use range-based
values (e.g., Example 3 in Section 1), in two different ways.

(1) The operand is a set and a value in this set can
be a range. For example, predicateSET(size) CONTAIN

{[1,10],[25,30)} requires a group to have at least twosize

values such that the first one is within range [1,10] and the sec-
ond one is within range [25,30). A group such as{3,4,15,27}
would qualify because 3 (4 too) satisfies the first range and 27
satisfies the second range. Similarly{3,15} does not satisfy
SET(size) CONTAINED BY {[1,10], [25,30)} because
15 is not in either [1,10] or [25,30).

With regard to the bitmap index-based method, we modify
Line 1 and 2 of Algorithm 2. TheQueryBI function returns
a bit vector for each range, which is naturally supported by
both bit-sliced index and regular bitmap indices [28], [32]. For
extending the aggregate function-based method, we replace
v==vj by v ∈ rangej in Line 8 of Algorithm 1.

(2) The whole operand itself is a range. For example,
predicateSET(size) CONTAINED BY [1,10] requires the
values ofsize in a qualified group to be subsumed by{1, 2,
. . . , 10}. Another example isSET(size) CONTAIN [1,10]

which requires a group to subsume{1, 2, . . . , 10}. Note that
such a CONTAIN predicate is not meaningful on attribute of
floating point numbers.

With regard to the bitmap index-based method, we replace
Line 1 and 2 of Algorithm 2 by aQueryBI function to
obtain a bit vector for the range. For extending the aggregate
function-based method, we replacev == vj by v ∈ range in
Line 8 of Algorithm 1.

(H) Set-Level Comparisons with Subquery Results,
between Multiple Groups, and with Partial Satisfaction:
The syntax in Section 3 can be extended to allow
comparison with not only literal values, but also the
result of a subquery. An example query isSELECT student

FROM SC GROUP BY student HAVING SET (course)

CONTAINED BY (SELECT course_id FROM Courses

WHERE dept=’CS’). (Finding those students that have only
taken CS courses.) The impact of such extension on the
proposed evaluation approaches is minimal– The subquery is
evaluated first by conventional methods and the original set
predicate operand is replaced by the subquery’s result values.

Furthermore, the subquery can be correlated. For example,
the following query returns those courses that have more
diverse students in 2011 than in 2010. Note that, although the
syntax can allow correlated subqueries, our proposed methods
are not suitable for such extension. In order to find qualifying
groups, our algorithms produce bitmap vectors for set predi-
cate operand (returned values from correlated subquery in this
case), which in turn depend on correlated qualifying groups.

SELECT SC.course FROM SC, Students AS S
WHERE SC.student=S.name AND SC.year=2011
GROUP BY SC.course
HAVING SET(S.nationality) CONTAIN

(SELECT S.nationality
FROM SC AS SC1, Students AS S

WHERE SC1.course=SC.course AND
SC1.student=S.name AND
SC1.year=2010)

In [8], [9], [7], [10] the concept ofgrouping variablewas
introduced as an SQL extension to allow comparisons of
multiple aggregates over the same grouping condition. That
line of work only considered regular aggregates such as SUM
and COUNT. Combining the concepts of set predicate and
grouping variable– set predicates for set-level comparisons
and grouping variable for group-wise comparisons– can allow
simpler syntax for complex queries. For example, the above
student diversity query can be simplified as follows. The
simpler query syntax can potentially ease the job of query
optimization in producing more efficient query evaluation
plans. For instance, the aggregate function-based approach in
Section 5 can be adapted to maintain the multiple aggregates
during one-pass iteration over tuples.

SELECT SC.course FROM SC, Students AS S
WHERE SC.student=S.name
GROUP BY SC.course : X, Y
SUCHTHAT X.year=2010 AND Y.year=2011 AND
SET(X.nationality) CONTAIN SET(Y.nationality)

The syntax can also be extended to allow partial
satisfaction of set predicates. For example, set pred-
icate SET(skill) CONTAIN 3 OF {’Java’, ’Python’,

’C++’, ’MySQL’, ’Web services’} finds the job can-
didates that have at least 3 of the 5 skills, and
predicateSET(course) CONTAINED BY 2 of {’CS101’,

’CS102’, ’CS103’, ’CS104’} identifies the students that
have taken no more than 2 of the 4 courses and nothing else.
Incorporating partial satisfaction into Algorithm 2 (and simi-
larly Algorithm 1) is quite straightforward. For CONTAIN, it
would need to check ifk of the n bits in M [g] are set (Line
15). For CONTAINED BY, it needs to maintain bothM and
G and disqualifies a groupg when either some unwanted value
is encountered (i.e., current Line 17) or more thank of then
bits in M [g] are set.

C DETAILED ANALYSIS OF SYNTHETIC DATA
RESULTS

To better understand the performance difference between the
three methods, we looked at detailed breakdown of their
execution time. Based on the results of 3×19 queries and
61 tables for each query mentioned in Section 9.2(A), we
investigated how execution time scales under various groups
of configuration parametersC, T , G, andS. In each group, we
varied one parameter value and fixed the remaining three. We
compared all three methods for all three different operators
(O={⊇,⊆,=}). In general, the trend of curve remains fairly
similar when we use different values for three fixed parameters
and vary the values of the fourth parameter. Hence we only
plotted the result for four representative configuration groups.

Detailed Analysis of Bitmap: Figure 8 is for Bitmap un-
der four configuration groups. For each group, the upper
and lower figures show the execution time and its detailed
breakdown. Each vertical bar represents the execution time
for one particular query (O,C) and the stacked components

3

60

80

100

120

140

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

20

40

60

1 3 5 7 9 20 40 60 80 100

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

C

150

200

250

300

350

400

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

50

100

150

1 10 100 1000

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

S

150

200

250

300

350

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

50

100

10 100 1000 10000 100000

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

G

10

100

1000

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

1

10

10000 100000 1000000

E
xe

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

T

0%

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

t
io

n
 T

im
e

Step 1 Step 2 Step 3 Step 4

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

1 10 100

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

t
io

n
 T

im
e

C

Step 1 Step 2 Step 3 Step 4

0%

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

Step 1 Step 2 Step 3 Step 4

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

1 10 100 1000

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

S

Step 1 Step 2 Step 3 Step 4

0%

20%

40%

60%

80%

100%

B
r
e

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

Step 1 Step 2 Step 3 Step 4

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

10 1000 100000

B
r
e

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

G

Step 1 Step 2 Step 3 Step 4

0%

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

t
io

n
 T

im
e

Step 1 Step 2 Step 3 Step 4

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

10000 100000 1000000

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

t
io

n
 T

im
e

T

Step 1 Step 2 Step 3 Step 4

(a) T=100K, G=1K, S=10, varyingC. (b) T=1M , G=1K, C=4, varyingS. (c) T=1M , S=10, C=4, varyingG. (d) G=100, S=10, C=4, varyingT .

Fig. 8. Execution time of Bitmap and its breakdown.

in the bar represent percentages of the costs of all individual
steps.Bitmaphas four major steps, as shown in Algorithm 2.
The figures show that no single component dominates. The
breakdown varies as configuration parameters change. Hence
we shall analyze it in detail while we investigate the effectof
parameters below.

Figure 8(a) shows that the execution time ofBitmapincreas-
es linearly withC (number of values in set predicate). This
can be explained by the detailed breakdown in Figure 8(a).
The costs of Step 1 and Step 3 increase asC increases, thus
get higher and higher percentages in the breakdown. This is
because the method needs to obtain the corresponding vector
for each value and find qualified groups by considering all
values. On the other hand, the costs of Step 2 and 4 have
little to do with C, thus get decreasing percentages.

Figure 8(b) shows the execution time ofBitmap increases
slowly with S (number of qualified groups). With more and
more qualified groups, the costs of Step 1-3 increase only
moderately sinceC and G do not change, while Step 4
becomes dominating because it has to calculate aggregates for
more and more qualified groups.

As Figure 8(c) shows, the cost ofBitmapdoes not change
significantly withG (number of groups). However, the curves
do show that the method is least efficient when there are very
many or very few groups. WhenG increases, withS (number
of qualified groups) unchanged, less tuples match the values
in predicate, resulting in cheaper cost of bit vector operations
in Step 1. The number of tuples per group decreases, thus the
cost of Step 4 decreases. These two factors lower the overall
cost, although the cost of Step 2 increases due to more vectors
in BSI(g). WhenG reaches a large value such as100, 000, the
cost of Step 2 dominates, making overall cost higher again.

Figure 8(d) shows thatBitmapscales linearly withT (num-
ber of tuples). WhenT increases, Step 1 gets less dominating
and Step 4 becomes more significant.

Detailed Analysis ofRewrt and Agg: We divided theBitmap
algorithm into four steps in Algorithm 2. Similarly, bothRewrt
andAggalgorithms could also be divided into several steps for
detailed study. InRewrt, the PostgreSQL plans can be roughly

divided into three major steps: Step 1– scan the table (several
times); Step 2– find qualifying groups that satisfy the query
conditions; Step 3– calculate the required aggregates for each
qualifying group. ForAgg, we divide the cost into table scan
and the rest.

Figure 10(a) shows that the execution time ofRewrt, similar
to that ofBitmap, increases linearly withC (number of values
in a set predicate). The breakdown also changes byC. For
example, the Step 3 (calculate aggregates) for CONTAIN (⊇)
gets smaller and smaller percentage. We can understand this
by analyzing the plan for the rewritten query ofγg,SUM(a)

v ⊇ {1,2,3}(R), shown in Figure 9. It performs multiple
index scans in Step 1 and intersects the scan results in
Step 2. Therefore these two steps become more costly asC
increases. The last step, calculating aggregates, does thesame
amount of work, since the aggregating is independent ofC.
Figure 10(a) also shows large performance difference between
different operators whenC increases. GivenT=100K, G=1K,
andS=10, the number of tuples withR.v being 1, 2, ..., or
C is small, in order to have only10 out of 1, 000 groups
satisfying the query condition. Therefore for CONTAIN, the
set intersect operator in Figure 9 involves small cost. However
for CONTAINED BY, the Filter operator in Figure 2 produces
much more result tuples, making the set difference (Except)
operator more costly.

Figure 11(a) shows that the execution time ofAgg, different
from that of Rewrt and Bitmap, is not affected byC. As
Algorithm 1 shows, the only cost component related toC is
the checking of a tuple’sv value against the givenC values
in a predicate (line 8 and 11 of Algorithm 1), which is much
cheaper than other components.

Figure 11(b) shows that the execution time ofAgg increases
with S (number of qualified groups) under some operators and
decreases under others, and the changes are only slight in both
cases. Figure 10(b) shows that the behavior ofRewrtis similar
to that of Agg with regard toS in that the execution time
increases under some operators and decreases under others.
The variations are small for some operators and larger for
others. For example, the cost of CONTAINED BY decreases

4

300

400

500

600

700

800

900

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 20 40 60 80 100E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

C

contain contained by equal

3000

4000

5000

6000

7000

8000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100 1000E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

S

contain contained by equal

2000

3000

4000

5000

6000

7000

8000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

1000

2000

3000

4000

5000

6000

7000

8000

10 100 1000 10000 100000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

G

contain contained by equal

100

1000

10000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

1

10

100

1000

10000

10000 100000 1000000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

T

contain contained by equal

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

scan find_group agg

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

1 10 100

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

C

scan find_group agg

0%

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

scan find_group agg

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

1 10 100 1000
B

re
a

k
d

o
w

n
 o

f

E
x
e

c
u

ti
o

n
 T

im
e

S

scan find_group agg

0%

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

scan find_group agg

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

10 1000 100000

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

G

scan find_group agg

0%

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

t
io

n
 T

im
e

scan find_group agg

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

10000 100000 1000000

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

t
io

n
 T

im
e

T

scan find_group agg

(a) T=100K, G=1K, S=10, varyingC. (b) T=1M , G=1K, C=4, varyingS. (c) T=1M , S=10, C=4, varyingG. (d) G=100, S=10, C=4, varyingT .

Fig. 10. Execution time of Rewrt and its breakdown.

40

60

80

100

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

20

40

60

80

100

1 3 5 7 9 20 40 60 80 100E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

C

contain contained by equal

200

300

400

500

600

700

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

100

200

300

400

500

600

700

1 10 100 1000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

S

contain contained by equal

400

600

800

1000

1200

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

0

200

400

600

800

1000

1200

10 100 1000 10000 100000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

G

contain contained by equal

10

100

1000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

contain contained by equal

1

10

100

1000

10000 100000 1000000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

cs
.)

T

contain contained by equal

0%

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

scan the rest

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

1 10 100

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

C

scan the rest

0%

20%

40%

60%

80%

100%

B
r
e

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

scan the rest

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

1 10 100 1000

B
r
e

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

S

scan the rest

0%

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

t
io

n
 T

im
e

scan the rest

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

1 10 100

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

t
io

n
 T

im
e

G

scan the rest

0%

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

scan the rest

0%

20%

40%

60%

80%

100%

⊇ ⊆ = ⊇ ⊆ = ⊇ ⊆ =

1 10 100

B
re

a
k

d
o

w
n

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

T

scan the rest

(a) T=100K, G=1K, S=10, varyingC. (b) T=1M , G=1K, C=4, varyingS. (c) T=1M , S=10, C=4, varyingG. (d) G=100, S=10, C=4, varyingT .

Fig. 11. Execution time of Agg and its breakdown.

3.730 ms

SELECT sum(a)
FROM R,
((SELECT DISTINCT g

FROM R

Intersect

Project &

2.643 ms

FROM R
WHERE v = 1)

INTERSECT
(SELECT DISTINCT g
FROM R
WHERE v = 2)

INTERSECT
(SELECT DISTINCT g
FROM R
WHERE v = 3)

) AS TMP

Index Scan

R.v=1

Project &

Sort on g

Append

1.450 ms

) AS TMP
WHERE R.g = TMP.g
GROUP BY R.g

Intersect

Hash Join

Seq Scan

R

Hash Aggregate

3.730 ms 27.842 ms

50.582 ms

51.100 ms

Intersect

Project &

Intersect

Project &

Sort on g

Append

Index Scan

R.v=3

R

0.988 ms

3.651 ms

3.721 ms

Project &

Sort on g

Append

Index Scan

R.v=2
1.107 ms

2.567 ms

2.633 ms

Fig. 9. Rewrt Query Plan for CONTAIN, 100K tuples, 1K
groups, 10 qualified groups.

by S. Use Figure 2 to explain again. When more groups satisfy
the query condition, the output cardinality of operator Filter
becomes smaller, resulting in smaller cost of set difference
(Except) operation.

Figure 10(c) shows that, asG (number of groups) in the data
increases, the execution time ofRewrt increases substantially
for CONTAINED BY and EQUAL, but does not change much
for CONTAIN. Use CONTAINED BY as an example. When

G increases, with the number of qualified groups unchanged,
the number of tuples matching the constants becomes smaller,
resulting in more result tuples from the Filter operator in
Figure 2, making the set difference (Except) operator more
costly. Figure 11(c) shows that the execution time ofAgg
increases slowly withG, for the reason similar to why the
execution time is not affected much byC.

Figure 10(d) and Figure 11(d) show that, unsurprisingly,
Rewrt and Agg scale linearly withT (number of tuples),
similar to Rewrt.

D OTHER QUERIES USED IN TPC-H EXPERI-
MENTS

Due to the space limit, we only showed one of the six TPC-H
queries in the paper. The other five queries together with their
query semantics are given below.

(TPCH-2)Get the available quantity for each part that is only
available from suppliers in member nations of G8:
CREATE VIEW R2 AS
SELECT P_PARTKEY, PS_AVAILQTY, N_NAME
FROM PARTSUPP, SUPPLIER, PART, NATION
WHERE PS_PARTKEY=P_PARTKEY

AND PS_SUPPKEY=S_SUPPKEY
AND S_NATIONKEY=N_NATIONKEY;

SELECT PS_PARTKEY, SUM(PS_AVAILQTY)

5

FROM R2
GROUP BY PS_PARTKEY
HAVING SET(N_NAME) CONTAINED BY {’France, Germany’,

’Japan’, ’United Kingdom’, ’United States’,
’Canada’, ’Russia’, ’Italy’}

(TPCH-3)Get the available quantity of parts for each supplier
which provides parts of brand #13 and brand #42 :
CREATE VIEW R3 AS
SELECT PS_SUPPKEY, PS_AVAILQTY, P_BRAND
FROM PARTSUPP, PART
WHERE PS_PARTKEY=P_PARTKEY;

SELECT PS_SUPPKEY, SUM(PS_AVAILQTY)
FROM R3
GROUP BY PS_SUPPKEY
HAVING SET (P_BRAND) CONTAIN {’Brand#13’, ’Brand#42’}

(TPCH-4)Get the available quantity of parts for each supplier
which provides parts of size 30, 31, and 32:
CREATE VIEW R4 AS
SELECT PS_SUPPKEY, PS_AVAILQTY, P_SIZE
FROM PARTSUPP, PART
WHERE PS_PARTKEY=P_PARTKEY;

SELECT PS_SUPPKEY, SUM(PS_AVAILQTY)
FROM R4
GROUP BY PS_SUPPKEY
HAVING SET (P_SIZE) CONTAIN {’30’,’31’,’32’}

(TPCH-5)Get the available quantity of parts for each supplier
which only provides parts manufactured by MFGR#1-#5:
CREATE VIEW R5 AS
SELECT PS_SUPPKEY, PS_AVAILQTY, P_MFGR
FROM PARTSUPP, PART
WHERE PS_PARTKEY=P_PARTKEY;

SELECT PS_SUPPKEY, SUM(PS_AVAILQTY)
FROM R5
GROUP BY PS_SUPPKEY
HAVING SET (P_MFGR) CONTAINED BY {’MFGR#1’,’MFGR#2’,

’MFGR#3’,’MFGR#4’,’MFGR#5’}

(TPCH-6)Get the total price of orders for each lineitem that
has orders with exactly 5 different priorities, from low to
urgent:
CREATE VIEW R6
SELECT L_LINENUMBER, O_TOTALPRICE, O_ORDERPRIORITY
FROM LINEITEM, ORDERS
WHERE L_ORDERKEY=O_ORDERKEY;

SELECT L_LINENUMBER, SUM(O_TOTALPRICE)
FROM R6
GROUP BY L_LINENUMBER
HAVING SET (O_ORDERPRIORITY) EQUAL {’1-URGENT’,

’2-HIGH’,’3-MEDIUM’,’4-NOT SPECIFIED’,’5-LOW’}

	set-tkde-lhysr-final
	supplemental-materials

