
A

Discovering General Prominent Streaks in Sequence Data

GENSHENG ZHANG, The University of Texas at Arlington

XIAO JIANG, Shanghai Jiao Tong University

PING LUO, HP Labs China

MIN WANG, Google Research

CHENGKAI LI, The University of Texas at Arlington

This paper studies the problem of prominent streak discovery in sequence data. Given a sequence of val-
ues, a prominent streak is a long consecutive subsequence consisting of only large (small) values, e.g., consec-
utive games of outstanding performance in sports, consecutive hours of heavy network traffic, consecutive
days of frequent mentioning of a person in social media, and so on. Prominent streak discovery provides
insightful data patterns for data analysis in many real-world applications and is an enabling technique
for computational journalism. Given its real-world usefulness and complexity, the research on prominent
streaks in sequence data opens a spectrum of challenging problems.

A baseline approach to finding prominent streaks is a quadratic algorithm that exhaustively enumer-
ates all possible streaks and performs pairwise streak dominance comparison. For more efficient methods,
we make the observation that prominent streaks are in fact skyline points in two dimensions– streak in-
terval length and minimum value in the interval. Our solution thus hinges upon the idea to separate the
two steps in prominent streak discovery– candidate streak generation and skyline operation over candidate
streaks. For candidate generation, we propose the concept of local prominent streak (LPS). We prove that
prominent streaks are a subset of LPSs and the number of LPSs is less than the length of a data sequence,
in comparison with the quadratic number of candidates produced by the brute-force baseline method. We
develop efficient algorithms based on the concept of LPS. The non-linear LPS-based method (NLPS) con-
siders a superset of LPSs as candidates, and the linear LPS-based method (LLPS) further guarantees to
consider only LPSs. The proposed properties and algorithms are also extended for discovering general top-k,
multi-sequence, and multi-dimensional prominent streaks. The results of experiments using multiple real
datasets verified the effectiveness of the proposed methods and showed orders of magnitude performance

improvement against the baseline method.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—data mining

General Terms: Algorithms, Performance

Additional Key Words and Phrases: computational journalism, sequence database, time-series database,
skyline query

ACM Reference Format:

Zhang, G., Jiang, X., Luo, P., Wang, M., Li, C. 2013. Discovering General Prominent Streaks in Sequence

This material is based upon work partially supported by NSF Grants IIS-1018865, CCF-1117369 and HP
Labs Innovation Research Award. Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not necessarily reflect the views of the funding agencies.
Author’s addresses: G. Zhang, Department of Computer Science and Engineering, The University of Texas
at Arlington; X. Jiang, Department of Computer Science, Shanghai Jiao Tong University; P. Luo, HP Labs
China; M. Wang, the bulk of the research was done at HP Labs China, and she is currently affiliated with
Google Research; C. Li, Department of Computer Science and Engineering, The University of Texas at Ar-
lington.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1556-4681/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 G. Zhang et al.

Data. ACM Trans. Knowl. Discov. Data. V, N, Article A (January YYYY), 37 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

This paper is on the problem of prominent streak discovery in sequence data. A piece of
sequence data is a series of values or events. This includes time-series data, in which
the data values or events are often measured at equal time intervals. Sequence and
time-series data is produced and accumulated in a rich variety of applications. Ex-
amples include stock quotes, sports statistics, temperature measurement, Web usage
logs, network traffic logs, Web clickstream, customer transaction sequence, social me-
dia statistics. Given a sequence of values, a prominent streak is a long consecutive sub-
sequence consisting of only large (small) values. Examples of such prominent streaks
include consecutive days of high temperature, consecutive trading days of large stock
price oscillation, consecutive games of outstanding performance in professional sports,
consecutive hours of high volume of TCP traffic, consecutive weeks of high flu activity,
consecutive days of frequent mentioning of a person in social media, and so on.

It is insightful to investigate prominent streaks since they intuitively and succinctly
capture extraordinary subsequences of data. Consider several example application sce-
narios: (1) Business analysts may be interested in prominent streaks in social media
usage logs, e.g. streaks of re-tweeting a tweet, streaks of hashtagging a topic, and
so on. (2) A security auditing may be performed after a streak of excessive login at-
tempts is detected. (3) A cooling system can be started when a streak of days with high
temperature has been discovered. (4) For disease outbreak detection, we can identify
prominent streaks in time series of aggregated disease case counts. Previous works
on outbreak detection focus on conventional data mining tasks such as clustering and
regression [Wong 2004]. The concept of prominent streaks has not been studied before.

Prominent streak discovery can be particularly useful in helping journalists to iden-
tify newsworthy stories when data sequences evolve, investigators to find suspicious
phenomena, and news anchors and sports commentators to bring out attention-seizing
factual statements. Therefore it will be a key enabling technique for computational
journalism [Cohen et al. 2011]. In fact, we witness the mentioning of prominent steaks
in many real-world news articles:

• “This month the Chinese capital has experienced 10 days with a maximum temper-
ature in around 35 degrees Celsius – the most for the month of July in a decade.”
(http://www.chinadaily.com.cn/china/2010-07/27/content 11055675.htm)

• “The Nikkei 225 closed below 10000 for the 12th consecutive week, the
longest such streak since June 2009.” (http://www.bloomberg.com/news/2010-08-06/
japanese-stocks-fall-for-second-day-this-week-on-u-s-jobless-claims-yen.html)

• “He (LeBron James) scored 35 or more points in nine consecutive games and joined
Michael Jordan and Kobe Bryant as the only players since 1970 to accomplish the
feat.” (http://www.nba.com/cavaliers/news/lbj mvp candidate 060419.html)

• “Only player in NBA history to average at least 20 points, 10 rebounds and 5 assists
per game for 6 consecutive seasons. (Kevin Garnett)” (http://en.wikipedia.org/wiki/
Kevin Garnett)

The examples indicate that general prominent streaks can have a variety of con-
straints. A streak can be on multiple dimensions (e.g., 〈point, rebound, assist〉), its sig-
nificance can be with regard to a certain period (e.g., “since June 2009”) or a certain
comparison group (e.g., “the month of July”), and we may be interested in not only the
most prominent streaks but also the top-k most prominent ones (e.g., “LeBron James

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.chinadaily.com.cn/china/2010-07/27/content_11055675.htm
http://www.bloomberg.com/news/2010-08-06/japanese-stocks-fall-for-second-day-this-week-on-u-s-jobless-claims-yen.html
http://www.bloomberg.com/news/2010-08-06/japanese-stocks-fall-for-second-day-this-week-on-u-s-jobless-claims-yen.html
http://www.nba.com/cavaliers/news/lbj_mvp_candidate_060419.html
http://en.wikipedia.org/wiki/Kevin_Garnett
http://en.wikipedia.org/wiki/Kevin_Garnett

Discovering General Prominent Streaks in Sequence Data A:3

Fig. 1. A Data Sequence and its Prominent Streaks.

joined Michael Jordan and Kobe Bryant as the only players”, which means LeBron
James’s scoring streak mentioned above is among the top-3 streaks.)

Given its real-world usefulness and variety, the research on prominent streaks
in sequence data opens a spectrum of challenging problems. In an earlier
work [Jiang et al. 2011], we proposed the concept of prominent streak and studied the
problem of discovering the simplest kind of prominent streaks, i.e., those without the
aforementioned constraints. In this paper, we extend the work to discovering general
multi-dimensional and top-k prominent streaks from multiple sequences, which shall
substantially broaden the applicability of our study in real-world scenarios, as evi-
denced by the above stories in news articles.

1.1. Problem Definition

Definition 1 (Streak and Prominent Streak). Given an n-element sequence P =
(p1, · · · , pn), a streak is an interval-value pair 〈[l, r], v〉, where 1≤l≤r≤n and v =
minl≤i≤r pi.

Consider two streaks s1 = 〈[l1, r1], v1〉 and s2 = 〈[l2, r2], v2〉. We say s1 dominates s2,
denoted by s1≻s2 or s2≺s1, if r1−l1≥r2−l2 and v1>v2, or r1−l1>r2−l2 and v1≥v2. For
example, 〈[1, 2], 3〉 ≺ 〈[4, 7], 6〉 and 〈[1, 2], 3〉 ≺ 〈[3, 4], 5〉, while 〈[1, 2], 3〉 and 〈[7, 8], 3〉 do
not dominate each other.

With regard to P = (p1, ...pn), the set of all possible streaks is denoted by SP . A
streak s∈SP is a prominent streak if it is not dominated by any streak in SP , i.e., ∄s′

s.t. s′∈SP and s′≻s. The set of all prominent streaks in P is denoted by PSP .

Problem Statement: The prominent streak discovery problem is to, given a sequence
P , produce PSP .

Figure 1 is our running example which shows the assists made by an NBA player
in 10 consecutive games P = (3, 1, 7, 7, 2, 5, 4, 6, 7, 3). There are 5 prominent streaks in
P– 〈[1, 10], 1〉, 〈[3, 10], 2〉, 〈[6, 10], 3〉, 〈[6, 9], 4〉, 〈[3, 4], 7〉. Each streak is represented by a
horizontal segment, which crosses the minimal-value points in the streak and runs
from the left end to the right end of the corresponding interval. For instance, 〈[6, 9], 4〉
is a prominent streak of minimal value 4, whose interval is from p6 to p9. It captures
the fact that the NBA player made at least 4 assists in 4 consecutive games (game 6 −
game 9). 〈[1, 10], 1〉, the whole data sequence, is also a trivial prominent streak because
no other streak can possibly dominate the sequence itself. The streak 〈[8, 9], 6〉 is an
instance of non-prominent streaks because it is dominated by 〈[3, 4], 7〉.

Definition 1 focuses on the simplest type of prominent streaks. The concept of promi-
nent streak can be extended in several ways. First, we may be interested in top-k

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 G. Zhang et al.

prominent streaks which are dominated by less than k other streaks. Second, we may
need to compare streaks from not only the same sequence but also multiple different
sequences (e.g., sequences corresponding to different NBA players, cities, stocks, etc.)
Third, the data points in a sequence can be multi-dimensional, leading to the pursuit
of multi-dimensional prominent streaks. We have seen examples of all such general
prominent streaks at the beginning of Section 1 and their combinations naturally ex-
ist. The focus of our following discussion will first be on the simplest prominent streak
discovery problem. In Section 5, we discuss how to discover general prominent streaks.

Definition 1 and the problem statement focus on finding streaks of large values. To
find streaks of small values (e.g., a stock index below 10000 for 12 consecutive weeks,
described in the aforementioned second news article), two changes should be made.
First, a streak should be captured by its interval length and the maximal value (in-
stead of the minimal value) in the interval, i.e., v = maxl≤i≤r pi. Second, the dominance
relation between streaks should be defined to prefer smaller values. More specifically,
s1 dominates s2 if r1−l1≥r2−l2 and v1<v2 (instead of v1>v2), or r1−l1>r2−l2 and v1≤v2
(instead of v1≥v2). Given that the new definition would be exactly symmetric to Defi-
nition 1, finding streaks of large and small values become the same problem. Hence,
we only consider finding streaks of large values in the rest of this paper.

1.2. Overview of the Solution

A brute-force method for discovering prominent streaks is not appealing. One can enu-
merate all possible streaks and decide if each streak is prominent by comparing it with
every other streak. Given a sequence P with length n, there are |SP | =

(

n+1
2

)

streaks in

total. Thus the number of pair-wise streak comparison would be
(

|SP |
2

)

= n4+2n3−n2−2n
8 .

Given a sequence of length 10000, the brute-force approach enumerates 108 streaks
and performs 1016 comparisons. Many real-world sequences can be quite long. The se-
quence of daily closing prices for a stock with 40-year history has about 10000 values.
A one-year usage log for a Web site has 8760 values at hourly interval.

Prominent streaks are in fact skyline points [Börzsönyi et al. 2001] in two
dimensions– streak interval length (r − l) and minimum value in the interval (v). A
streak is a prominent streak (skyline point) if it is not dominated by any point, i.e.,
there exists no streak that has both longer interval and greater minimum value.

Based on this observation, our solution hinges upon the idea to separate the
two steps of prominent streak discovery– candidate streak generation and sky-
line operation over candidate streaks. In candidate generation, we prune a large
portion of non-prominent streaks without exhaustively considering all possible
streaks. For skyline operation, we apply efficient algorithms from the rich litera-
ture on this topic, e.g., [Börzsönyi et al. 2001; Tan et al. 2001; Kossmann et al. 2002;
Papadias et al. 2005]. The effectiveness of pruning in the first step is critical to overall
performance, because execution time of skyline algorithms increases superlinearly by
the number of candidate points [Börzsönyi et al. 2001].

Candidate streak generation
We considered three methods with increasing pruning power in candidate

generation– a baseline method, a non-linear LPS (local prominent streak)-based
method, and a linear LPS-based method. The baseline method exhaustively enumer-
ates SP , all possible streaks in a sequence P , by a nested-loop over the values in P .
Thus, the baseline method does not have pruning power. The sketch of this method

is in Algorithm 1. It produces quadratic (n(n+1)
2) candidate streaks. We then propose

the concept of local prominent streak (LPS) for substantially reducing the number of
candidate streaks (Section 3). The intuition is, given a prominent streak s, there can-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:5

Algorithm 1: Baseline Method

Input: Data sequence P=(p1, ..., pn)
Output: Prominent streaks skyline

1 skyline← empty
2 for r = 1 to n do
3 min value←∞
4 for l = r downto 1 do
5 min value← min(pl,min value)
6 s← 〈[l, r],min value〉 // candidate streak
7 skyline← skyline update(skyline, s)

Algorithm 2: Update Dynamic Skyline (skyline update)

Input: Dynamic skyline skyline, new candidate streak s = 〈[l, r], v〉
Output: Updated dynamic skyline skyline

1 Find the largest i in skyline s.t. vi ≤ v
2 if s ≺ si or s ≺ si+1 then
3 return skyline
4 while s ≻ si and i > 0 do
5 Delete si from skyline
6 i← i− 1
7 Insert s into skyline
8 return skyline

not be a super-sequence of s with greater or equal minimal value. In other words, s
must be locally prominent as well. Hence we only need to consider LPSs as candidates.
The algorithm sequentially scans the data sequence and maintains possible LPSs. The
non-linear LPS-based method finds a superset of LPSs as candidates, while the linear
LPS-based method guarantees to find only LPSs.

Skyline operation
To couple candidate streak generation with skyline operation, Algorithm 1 main-

tains a dynamic skyline and updates it whenever a new candidate streak is produced.
The updating procedure skyline update is in Algorithm 2.

Our focus is not to compare various skyline algorithms. Many existing algorithms
can be adopted. What matters is the number of candidate streaks produced by the
candidate generation step. This is also verified by our experiments which show that,
under various skyline algorithms, the candidate streak generation methods in Sec-
tion 3 perform and compare consistently.

We can use a sorting-based method for finding the skyline points in a two-
dimensional space [Börzsönyi et al. 2001]. If the candidate streak generation step does
not prune streaks effectively, we cannot hold all candidate streaks in memory. The
memory overflow can be addressed by external-memory sorting.

Another approach is to progressively update a dynamic skyline with candidate
streaks, based on the nested-loop method in [Börzsönyi et al. 2001]. The outline of this
approach is shown in Algorithm 2. We use skyline to denote the dynamic skyline. When
a new candidate streak s is generated, s is inserted into skyline if it is not dominated by
any point in skyline. The algorithm also checks if some points in skyline are dominated
by s and eliminates them from skyline.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 G. Zhang et al.

The dominance relationship can be efficiently checked, given that the streaks have
only two dimensions– interval length (r − l) and minimum value (v). The key idea is
that the lengths of streaks monotonically decrease as their minimal values increase
(except that there can be identical points, i.e., streaks with equal lengths and equal
minimal values.) Hence the streaks in skyline are ordered by v (or by r−l). Suppose the
candidate streak is s = 〈[l′, r′], v′〉. We find in skyline a pivoting streak si = 〈[li, ri], vi〉
such that i is the largest index with vi ≤ v′, i.e., vi ≤ v′ < vi+1. The following Property 1
says that s must be dominated by si or si+1 if it is dominated by any point in skyline
and Property 2 says that s can only dominate si and its immediate neighbors with
smaller v values. (For concise presentation, in these properties, we omit the discussion
of boundary cases, i.e., i = 0 or i = |skyline|.) For quickly finding si and its neighbors,
we use a balanced binary search tree (BST) on v to store skyline. (Thus we call it the
BST-based skyline method.)

Property 1. A candidate streak s = 〈[l′, r′], v′〉 is dominated by some points in skyline
if and only if s is dominated by si or si+1, in which si = 〈[li, ri], vi〉 and i is the largest
index such that vi ≤ v′, i.e., vi ≤ v′ < vi+1.

Proof. We first prove that, if there exists j < i such that sj = 〈[lj , rj], vj〉 ≻ s, then
si ≻ s. Since i is the largest index such that vi ≤ v′, we have vj ≤ vi ≤ v′. Given
that sj ≻ s, we know vj = vi = v′ and rj−lj > r′−l′. From vj = vi, we know that
rj−lj = ri−li, otherwise they cannot both exist in skyline. Therefore si ≻ s.

We then prove that, if there exists j > i+1 such that sj = 〈[lj , rj], vj〉 ≻ s, then
si+1 ≻ s. Since the points in skyline are ordered by v, vi+1 ≤ vj and ri+1−li+1 ≥ rj−lj.
We already know that v′ < vi+1 and rj−lj ≥ r′−l′ (since sj ≻ s). Therefore si+1 ≻ s.

Property 2. If s = 〈[l′, r′], v′〉 dominates totally k streaks in skyline, then the k streaks
are si, si−1, . . ., si−k+1.

Proof. Since the points in skyline are ordered by v, we know that vi ≤ vj and ri−li ≥
rj−lj if i < j. s cannot dominate any sj such that j > i. The reason is that v′ < vi+1 ≤
vj . If s dominates si, then v′ ≥ vi and r′−l′ ≥ ri−li. Since vi decreases by i and ri−li
increases by i, the k streaks dominated by s must be consecutively ordered.

In comparison with the sorting-based method, the above BST-based skyline method
saves both memory space and execution time. It avoids memory overflow because the
number of streaks in the dynamic skyline in most cases remains small enough to fit
in memory. Hence no streak needs to be read from/written to secondary memory. The
small size of dynamic skyline in real data is verified by our experiments in Section 6.
After all, prominent streaks (and skyline points in general) are supposed to be minor-
ity, otherwise they cannot stand out to warrant further investigation. Furthermore,
even if the dynamic skyline grows large, a method such as the block nested-loop based
method in [Börzsönyi et al. 2001] can be applied to fall back on secondary memory.
The small size of dynamic skyline also means small number of streak comparisons.
Intuitively, given c candidate streaks, a fast comparison-based sorting algorithm (say
quicksort) requires O(c log c) comparisons, while the BST-based method only requires
O(c log s) comparisons, where s is the maximal size of the dynamic skyline during
computation. Experiments in Section 6 show that s is typically much smaller than c.

Monitoring Prominent Streaks
A desirable property of a prominent streak discovery algorithm is the capability of

monitoring new data entries as the sequence grows continuously and always keeping
the prominent streaks up-to-date. The aforementioned algorithms naturally fit into

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:7

such monitoring scenario, with only minor modification. The details are given in Sec-
tion 4.

1.3. Summary of Contributions and Outline

To summarize, our work makes the following contributions:

• We define the problem of prominent streak discovery. The simple concept is useful
in many real-world applications. To the best of our knowledge, there has not been
study along this line except our prior work [Jiang et al. 2011].

• We propose the solution framework to separate candidate streak generation and sky-
line operation during prominent streak discovery. Under this framework, we de-
signed efficient algorithms for candidate streak generation, based on the concept
of local prominent streak. Both the non-linear LPS-based method (NLPS) and the
linear LPS-based method (LLPS) produce substantially less candidate streaks than
the quadratic number of candidates produced by a baseline method. LLPS further
guarantees a linear number of candidate streaks.

• We extend the solution framework to discovering general prominent streaks. While
the extensions to top-k and multi-sequence prominent streaks are simple, the exten-
sion to multi-dimensional prominent streak is non-trivial. These extensions signifi-
cantly broaden the real-world application scenarios of the work.

• We conduct experiments over multiple real datasets. The results verified the effec-
tiveness of our methods and showed orders of magnitude performance improvement
over the baseline method. We also showed some insightful prominent streaks dis-
covered from real data, to highlight the practicality of this work.

The rest of the paper is organized as follows. In Section 2 we review related work.
Section 3 presents the NLPS and LLPS methods for candidate streak generation. Sec-
tion 4 discusses how to adapt the algorithms to monitor prominent streaks when data
sequence continuously grows. Section 5 extends the concept of prominent streak and
the algorithms for finding general prominent streaks. Experiment setup and results
are reported in Section 6. Section 7 concludes the paper.

2. RELATED WORK

Data mining on sequence and time-series data has been an active area of re-
search, where many techniques are developed for similarity search and subse-
quence matching in sequence and time-series databases [Agrawal et al. 1993;
Faloutsos et al. 1993; Agrawal et al. 1995; Yi et al. 1998], finding sequential
patterns [Agrawal and Srikant 1995; Srikant and Agrawal 1996; Zaki 2001;
Pei et al. 2004; Yan et al. 2003], classification and clustering of sequence and time-
series data [Smyth et al. 1997; Oates et al. 1999; Liao 2005; Shin and Fussell 2007],
biological sequence analysis [Altschul et al. 1990; Rabiner 1989], etc. However, we are
not aware of prior work on the prominent streak discovery problem proposed in this
paper.

The skyline of a set of tuples is the subset of tuples that are not dominated by any
tuple. A tuple dominates another tuple if it is equally good or better on every attribute
and better on at least one attribute. The notion of skyline is useful in several appli-
cations, including multi-criteria decision making. Skyline query has been intensively
studied over the last decade. Kung et al. [Kung et al. 1975] first proposed in-memory
algorithms to tackle the skyline problem, which they called the “maximal vector prob-
lem”. Börzsönyi et al. [Börzsönyi et al. 2001] considered the problem in database con-
text and integrated skyline operator into database system. They also invented a block-
nested-loop algorithm (BNL) and extended the divide-and-conquer algorithm (DC)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 G. Zhang et al.

from [Kung et al. 1975]. Chomicki et al. presented the Sort-Filter-Skyline algorithm
(SFS) [Chomicki et al. 2003], which improves upon BNL by pre-sorting tuples with a
function compatible with the skyline criteria. We apply skyline algorithms over candi-
date streaks but our methods are orthogonal to specific choices of skyline algorithms.

A dataset may have too many skyline tuples, especially when the dimensionality
of the data is high. Various approaches have been proposed to alleviate this prob-
lem. For example, Pei et al. [Pei et al. 2006] and Tao et al. [Tao et al. 2006] proposed
to perform skyline analysis in subspaces instead of the original full space. Several
methods were designed to find the representatives among a large number of skyline
points [Zhang et al. 2005; Chan et al. 2006; Lin et al. 2007; Tao et al. 2009].

Progressive skyline algorithms optimize the efficiency in returning initial sky-
line points while producing more results progressively. Various algorithms devel-
oped along this line include the bitmap-based algorithm and the index-based algo-
rithm [Tan et al. 2001], the nearest neighbor search algorithm [Kossmann et al. 2002],
and the branch-and-bound skyline algorithm (BBS) [Papadias et al. 2005]. Other
variants of skyline queries have also been studied, including skyline cube which
aims to answer skyline queries over any combination of dimensions [Pei et al. 2006;
Xia and Zhang 2006].

Jiang et al. [Jiang and Pei 2009] studied the problem of interval skyline queries on
time-series. Given a set of time series and a time interval, they find the time series that
are not dominated by others in the interval. A time series dominates another one if its
value at every position is at least equal to the corresponding value in the other time
series and it is at least larger at one position. The point-by-point equi-length interval
comparison is clearly different from our problem.

The plateau of a time series is the time interval in which the vlaues are close to each
other (within a given threshold) and are no smaller than the values outside the in-
terval [Wang and Wang 2006]. The plateau problem is not concerned about comparing
different intervals.

3. DISCOVERING PROMINENT STREAKS FROM LOCAL PROMINENT STRE AKS

For an n-element sequence P , the baseline method (Algorithm 1) produces n(n+1)
2 can-

didate streaks. In this section, based on the concept of local prominent streak (LPS)
we propose the non-linear LPS-based (NLPS) and linear LPS-based (LLPS) methods.
Both drastically reduce the number of candidate streaks in practice. LLPS further
guarantees only a linear number of candidate streaks.

3.1. Local Prominent Streak (LPS)

Definition 2 (Local Prominent Streak). Given a sequence of data values P =
(p1, · · · , pn), we say a streak s = 〈[l, r], v〉 ∈ SP is a local prominent streak (LPS) or
locally prominent if there does not exist any other streak s′ = 〈[l′, r′], v′〉 ∈ SP such that
[l′, r′] ⊃ [l, r] and s′ ≻ s. (I.e., there does not exist such s′ that [l′, r′] ⊃ [l, r] and v′ ≥ v.)
The symbol ⊃ denotes the subsumption check between two intervals, i.e., [l′, r′] ⊃ [l, r]
if and only if l′ ≤ l ∧ r′ > r or l′ < l ∧ r′ ≥ r. We denote the set of local prominent
streaks in sequence P as LPSP .

Figure 2 shows all the local prominent streaks found in our running example. All
other streaks are not locally prominent. For example, 〈[6, 8], 4〉 is not locally prominent
since it is dominated by 〈[6, 9], 4〉 and [6, 9] ⊃ [6, 8]. In the following we give several
important properties of local prominent streaks.

Property 3. Every prominent streak is also a local prominent streak, i.e., PSP ⊆
LPSP .

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:9

Fig. 2. Local Prominent Streaks.

Proof. Suppose there is a prominent streak that is not locally prominent, i.e., ∃s ∈ PSP
s.t. s /∈ LPSP . By Definition 2, there exists some streak s′ such that [l′, r′] ⊃ [l, r] and
s′ ≻ s. That is contradictory to Definition 1 which says s is not dominated by any other
streak. Therefore a streak cannot be prominent if it is not even locally prominent.

The above Property 3 is illustrated by Figure 2, as all the prominent streaks in
Figure 1 also appear in Figure 2. However, the reverse of Property 3 does not hold–
local prominent streaks are not necessarily prominent streaks. For example, 〈[8, 9], 6〉
is an LPS but is dominated by 〈[3, 4], 7〉 and therefore is not in Figure 1.

Lemma 1. Suppose s = 〈[l, r], v〉 and s′ = 〈[l′, r′], v′〉 are two different local prominent
streaks in P , i.e., s, s′ ∈ LPSP , l 6= l′ or r 6= r′. For any k ∈ argmini∈[l,r]pi and k′ ∈
argmini∈[l′,r′]pi, we have k 6= k′. I.e., argmini∈[l,r]pi ∩ argmini∈[l′,r′]pi = ∅.

Proof. If [l, r]∩ [l′, r′] = ∅, i.e., the two intervals do not overlap, it is obvious that k 6= k′.
Now consider the case when [l, r] ∩ [l′, r′] 6= ∅, i.e., l ≤ l′ ≤ r or l′ ≤ l ≤ r′. By definition
of argmin, pk = v = mini∈[l,r]pi and pk′ = v′ = mini∈[l′,r′]pi. Suppose there exist such k
and k′ that k = k′. Thus v = v′ = pk. By Definition 1, we have pi ≥ v for every i ∈ [l, r]
and every i ∈ [l′, r′]. Since the two intervals [l, r] and [l′, r′] overlap, their combined
interval corresponds to a new streak s′′ = 〈[l, r] ∪ [l′, r′], v〉. 1 It is clear s′′≻s and s′′≻s′.
That is a contradiction to the precondition that both s and s′ are LPSs. Thus, this
lemma holds.

Lemma 1 indicates that two different LPSs cannot reach their minimal values at
the same position. Therefore each value position in sequence P can correspond to the
minimal value of at most one LPS. What immediately follows is that there are at most
n LPSs in an n-element sequence. Formally we have the following property.

Property 4. |LPSP | ≤ |P |.

From Property 3 we know that LPSP is a sufficient candidate set for PSP , i.e., we
can guarantee to find all prominent streaks if we only consider local prominent streaks.
Property 4 further shows how small LPSP is and thus how good it is as a candidate
set. Specifically, the size of LPSP is at most |P |, the length of the sequence, in contrast

to the all |P |(|P |+1)
2 possible streaks considered by the baseline method (Algorithm 1).

Thus, LPSP helps to prune most streaks from further consideration. In the following
sections we present efficient algorithms for computing a superset of LPSP and LPSP
itself exactly.

1The two intervals can overlap in four different ways. Thus [l, r]∪ [l′, r′] = [l, r] or [l, r′] or [l′, r] or [l′, r′].

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 G. Zhang et al.

3.2. LPS
k

P and LPS
k

Pk

(a) LPS9

P9
(b) LPS10

P10

(c) l-v plot of LPS9

P9
(d) l-v plot of LPS10

P10

Fig. 3. From LPS9

P9
to LPS10

P10
.

To facilitate our discussion, we first define a new notation, LPSkP .

Definition 3. LPSkP is the set of local prominent streaks in P that end at position k,

i.e., LPSkP = {s|s ∈ LPSP and s = 〈[l, k], v〉}.

There are two key components in the definition of LPSkP . The first is the upper script
k, which fixes the right end of every interval in the set. It is clear that LPS1P , LPS2P ,

. . . , LPS
|P |
P is a natural partition of LPSP . We use this partition scheme in the design

of our algorithms. Specifically, we show how each LPSkP in this partition is calculated
in a sequential and progressive way.

The second key component in the definition of LPSkP is the lower script P , which
provides the scope for local prominent streaks. By generalizing this component we
define LPSkPk

. We denote the sequence with the first k entries of P as Pk. Then LPSPk

is the set of local prominent streaks with regard to sequence Pk (instead of P) and
LPSkPk

are those LPSs in LPSPk
that end at k. Due to the change of scope, LPSkPk

is a

superset of LPSkP . Formally, we have the following property.

Property 5. LPSkP ⊆ LPS
k
Pk

.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:11

Algorithm 3: Non-linear LPS Method (NLPS)

Input: Data sequence P = (p1, · · · , pn)
Output: Prominent streaks skyline

1 skyline← empty
2 for k = 1 to n do

3 Compute LPSkPk
by Algorithm 4

4 for each streak s in LPSkPk
do

5 skyline← skyline update(skyline, s)

Proof. Consider any streak s ∈ LPSkP . By Definition 3, s = 〈[l, k], v〉 and s ∈ LPSP .
Therefore by Definition 2, there does not exist any s′ = 〈[l′, r′], v′〉 in P such that s′ ≻ s
and [l′, r′] ⊃ [l, k]. Since Pk is a prefix of P , i.e., the first k values in P , it follows that

there does not exist any such s′ in Pk either. Therefore s ∈ LPSkPk
.

Consider the running example again. Figure 3(a) shows LPS9P9
, including

〈[1, 9], 1〉, 〈[3, 9], 2〉, 〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉. As shown in Figure 2, LPS9P contains
〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉. Streaks 〈[1, 9], 1〉 and 〈[3, 9], 2〉 do not belong to LPSP , thus
do not belong to LPS9P , since they are locally dominated by 〈[1, 10], 1〉 and 〈[3, 10], 2〉,
respectively. By contrast, 〈[1, 9], 1〉 and 〈[3, 9], 2〉 are part of LPS9P9

because they are not
locally dominated by any streak of P9, which only contains the first 9 values of P .

3.3. Non-linear LPS Method

By Property 5 and the fact that LPS1P , · · · ,LPS
|P |
P is a partition of LPSP , we have

LPSP =
⋃

1≤k≤|P |

LPSkP ⊆
⋃

1≤k≤|P |

LPSkPk
(1)

Thus, we can use
⋃

1≤k≤|P | LPS
k
Pk

as our candidate set for prominent streaks. Although

its size can be greater than that of LPSP , in practice it does substantially reduce the
size of candidate streaks, verified by the experimental results in Section 6.

Along this line, Algorithm 3 presents the method to compute candidate streaks.
Since the number of candidates may be super-linear to the length of data sequence,
we call it the non-linear LPS method (NLPS). The algorithm iterates k from 1 to |P |,
progressively computes LPSkPk

from LPSk−1
Pk−1

when the k-th element pk is visited, and

includes them into candidate streaks. The details of updating from LPSk−1
Pk−1

to LPSkPk

are in Algorithm 4, which is based on the following Lemma 2. For convenience of dis-
cussion, we first define the right-end extension of a streak and a streak set.

Definition 4. If s = 〈[l, r], v〉 is a streak in an n-element data sequence P and r < n, the
right-end extension of s is streak 〈[l, r + 1], v′〉, where v′ = min{v, pr+1}. The extension
of a streak set S is the set which consists of extensions of all the streaks in S.

Lemma 2. If s1 = 〈[l, k], v1〉 ∈ LPS
k
Pk

and l 6=k, then the streak s2 = 〈[l, k − 1], v2〉 ∈

LPSk−1
Pk−1

.

Proof. First, note that v2 = minl1≤i≤k−1 pi and v1 = min{v2, pk}. We prove by con-

tradiction. Suppose s2 = 〈[l1, k − 1], v2〉/∈LPS
k−1
Pk−1

. By Definition 3, s2 /∈LPSPk−1
. Fur-

ther by Definition 2, there exists s3 = 〈[l3, r3], v3〉∈SPk−1
such that [l3, r3] ⊃ [l1, k − 1]

and s3 ≻ s2. Given any s = 〈[l, r], v〉∈SPk−1
, we have r ≤ k − 1. Therefore r3 =

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 G. Zhang et al.

Algorithm 4: Progressive Computation of LPSkPk

Input: LPSk−1
Pk−1

and pk

Output: LPSkPk

// When it starts, stack lps consists of streaks in LPSk−1
Pk−1

.

1 pivot← null
2 while ! lps.isempty() do
3 if lps.top().v < pk then
4 break
5 else
6 pivot← lps.pop()
7 if pivot == null then
8 lps.push(〈[k, k], pk〉)
9 else

10 pivot.v ← pk
11 lps.push(pivot)

// Now, lps contains all the streaks in LPSkPk
.

k − 1, l3 < l1 and v3 ≥ v2. The right-end extension of s3 is s4 = 〈[l3, k], v4〉, where
v4 = min{v3, pk}≥min{v2, pk} = v1. Therefore s4 ≻ s1, which contradicts with the pre-

condition that s1∈LPS
k
Pk

. The property holds.

Lemma 2 indicates that, except 〈[k, k], pk〉, for each streak in LPSkPk
, its prefix streak

is in LPSk−1
Pk−1

. Hence, to produce LPSkPk
, we only need to consider the right-end exten-

sion of LPSk−1
Pk−1

. Beyond that, we only need to consider one extra streak 〈[k, k], pk〉

since it may belong to LPSkPk
as well.

In order to articulate how to derive LPSkPk
from LPSk−1

Pk−1
, we partition LPSk−1

Pk−1
into

two disjoint sets, namely,

LPSk−1
Pk−1

<
= {s|s = 〈[l, k − 1], v〉 ∈ LPSk−1

Pk−1
, v < pk}, (2)

LPSk−1
Pk−1

≥
= {s|s = 〈[l, k − 1], v〉 ∈ LPSk−1

Pk−1
, v ≥ pk}. (3)

It is clear that LPSk−1
Pk−1

is the disjoint union of these two sets, i.e., LPSk−1
Pk−1

=

LPSk−1
Pk−1

<
∪ LPSk−1

Pk−1

≥
, and LPSk−1

Pk−1

<
∩ LPSk−1

Pk−1

≥
= ∅. Use the running example

again. For LPS9P9
in Figure 3(a), since p10 = 3, the two sets are LPS9P9

<
= {〈[1, 9], 1〉,

〈[3, 9], 2〉}, LPS9P9

≥
= {〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉}.

We consider how to extend streaks in LPSk−1
Pk−1

<
and LPSk−1

Pk−1

≥
, respectively. For

simplicity of presentation, we omit the formal proofs when we make various state-
ments below.

• LPSk−1
Pk−1

<
: We use S1 to denote the right-end extension of LPSk−1

Pk−1

<
. Since ev-

ery streak in LPSk−1
Pk−1

<
has a minimal value less than pk, the corresponding ex-

tended new streak has the same minimal value. Hence all the new streaks be-
long to LPSkPk

. For the running example, corresponding to LPS9P9

<
, we have S1 =

{〈[1, 10], 1〉, 〈[3, 10], 2〉}.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:13

• LPSk−1
Pk−1

≥
: We use S2 to denote the right-end extension of LPSk−1

Pk−1

≥
. Since every

streak in LPSk−1
Pk−1

≥
has a minimal value greater than or equal to pk, the minimal

value of every streak in S2 equals pk. Hence, the longest streak in S2, denoted as
S2∗, dominates all other streaks in S2 and it is the only streak in S2 that belongs

to LPSkPk
. In other words, we only need to extend the longest streak in LPSk−1

Pk−1

≥
to

form a new candidate streak. Furthermore, since every streak in S2 has the same
r value (the right end of the interval), i.e., k, S2∗ is the streak with the minimal l
value (the left end of the interval) in S2. Clearly there cannot be another streak in

S2 with the same length. For the running example, corresponding to LPS9P9

≥
, we

have S2 = {〈[6, 10], 3〉, 〈[8, 10], 3〉, 〈[9, 10], 3〉}. The longest streak in S2 is 〈[6, 10], 3〉. It
is clear that 〈[6, 10], 3〉 dominates other streaks in S2. Hence it belongs to LPS10P10

.

• LPSk−1
Pk−1

≥
= ∅: If LPSk−1

Pk−1

≥
is empty, a new streak 〈[k, k], pk〉 belongs to LPSkPk

.

(Otherwise, it is dominated by S2∗.)

The above discussion is captured by the following Property 6.

Property 6. LPSkPk
= S1 ∪ {S2∗} if S2 6= ∅ and LPSkPk

= S1 ∪ {〈[k, k], pk〉} if S2 = ∅.

We use Figure 3 to explain the above procedure of producing LPSkPk
from LPSk−1

Pk−1
.

Figure 3(a) and 3(b) show LPS9P9
and LPS10P10

, respectively. Figure 3(c) and 3(d) also

show LPS9P9
and LPS10P10

, by using a different presentation– l-v plot. All the streaks

〈[l, r], v〉 in LPSk−1
Pk−1

share the same value of r, which is k − 1. Therefore we plot the

streaks by l (x-axis) and v (y-axis). In Figure 3(c), the 5 points represent the 5 streaks
in LPS9P9

: 〈[1, 9], 1〉, 〈[3, 9], 2〉, 〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉. The dotted line represents the

10-th data entry p10 = 3. It bisects LPS9P9
into LPS9P9

≥
(3 hollow points above the line)

and LPS9P9

<
(2 filled points below the line). We produce new candidate streaks LPS10P10

by extending the right ends of streaks in LPS9P9
to 10. The streaks extended from

LPS9P9

<
all belong to LPS10P10

. They are the 2 filled points in Figure 3(d), correspond-

ing to 〈[1, 10], 1〉 and 〈[3, 10], 2〉. Among the streaks extended from LPS9P9

≥
, only the one

with the smallest l (the longest one) belongs to LPS10P10
. It is the hollow point in Fig-

ure 3(d), corresponding to 〈[6, 10], 3〉. Hence LPS10P10
= {〈[1, 10], 1〉, 〈[3, 10], 2〉, 〈[6, 10], 3〉}.

The details of the algorithm are shown in Algorithm 4. We use a stack lps to maintain
LPSkPk

. Since the streaks 〈[l, r], v〉 in LPSkPk
have the same r value which equals k,

we do not need to store r in lps. Hence each item in lps has two data attributes, v
and l. The items in the stack are ordered by v (and l). More specifically, their v and
l values both strictly monotonically increase, from the bottom of the stack to the top.
The monotonicity on l is obvious since they are different streaks of the same r value.
The monotonicity on v thus is also clear because their lengths monotonically decreases
due to monotonically increasing l and they must not dominate each other. In fact,
Figure 3(c) and 3(d) visualize all items in lps, before and after p10 is encountered,
respectively. In each figure, the leftmost point denotes the bottom of the stack (with
the smallest v), while the rightmost point denotes the top of the stack (with the largest
v). After data entries p1, ..., pk−1 are encountered, lps contains LPSk−1

Pk−1
. Given data

entry pk, we popped from the stack all the streaks whose v values are greater than or
equal to pk. Among the popped streaks, the leftmost one (with the smallest l and v) is
pushed back into the stack, with v value replaced by pk and r extended from k − 1 to

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 G. Zhang et al.

Algorithm 5: Linear LPS Method(LLPS)

Input: Data sequence P = (p1, . . . pn)
Output: Prominent streaks skyline

1 skyline← empty
2 for k = 1 to n do

3 Compute LPSk−1
P and LPSkPk

by Algorithm 6

4 for each streak s in LPSk−1
P do

5 skyline← skyline update(skyline, s)
6 LPSnP ← LPS

n
Pn

7 for each streak s in LPSnP do
8 skyline← skyline update(skyline, s)

Algorithm 6: Computing LPSk−1
P and LPSkPk

Input: LPSk−1
Pk−1

and pk

Output: LPSk−1
P and LPSkPk

// Insert the following line before Line 1 in Algorithm 4.

1 LPSk−1
P ← ∅

// Insert the following two lines after Line 6 in Algorithm 4, in the same else
branch as Line 6.

2 if pivot.v > pk then

3 LPSk−1
P ← LPSk−1

P ∪ {pivot}

k. (Again, the r value is not explicitly stored in the stack.) If no streak was popped,
then 〈[k, k], pk〉 is pushed into the stack. The remaining streaks in the original stack
are kept, with their v and l values unchanged and r extended from k − 1 to k.

Algorithm 3 computes candidate streaks for an n-element sequence P . It invokes Al-
gorithm 4 n times.2 In each invocation, exactly 1 item is pushed into the stack. There-
fore in total there are n insertions and thus at most n deletions. Hence, the amortized
time complexity of Algorithm 4 is O(1).

In each iteration of Algorithm 3, we compute LPSkPk
and include them into candi-

date streaks. Thus, for an n-element sequence, the total number of candidate streaks
considered is

∑n
k=1 |LPS

k
Pk
|. In the worst case, we may have a strictly increasing se-

quence and the candidate streaks include all possible streaks. This is as bad as the ex-
haustive baseline method in Algorithm 1. For example, given sequence (10, 20, 30), we
have LPS1P1

= {〈[1, 1], 10〉}, LPS2P2
= {〈[1, 2], 10〉, 〈[2, 2], 20〉} and LPS3P3

= {〈[1, 3], 10〉,
〈[2, 3], 20〉, 〈[3, 3], 30〉}.

3.4. Linear LPS Method

Now we present the linear LPS (LLPS) method (Algorithm 5), which guarantees to
produce a linear number of candidate streaks even in the worst case. Similar to Al-
gorithm 3, this method iterates through the data sequence and computes LPSkPk

from

LPSk−1
Pk−1

when the k-th data entry is encountered, for k from 1 to n. However, different

2With regard to the first data element p1, 〈[1, 1], p1〉 is pushed into the stack. It is the only prominent
streak and local prominent streak for P1.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:15

from Algorithm 3, it also computes LPSk−1
P from LPSk−1

Pk−1
. Computation of both LPSkPk

and LPSk−1
P is done in Algorithm 6, which is a simple extension of Algorithm 4. It is

worth noting that, since Pn = P , LPSnP and LPSnPn
are identical.

To produce LPSk−1
P from LPSk−1

Pk−1
given the k-th entry pk, Algorithm 6 is based on

the following Property 7. Its intuition is as follows. Recall that the minimal value of

any streak in LPSk−1
Pk−1

≥
(Equation (3)) is not smaller than pk. It follows that if the

minimal value of a streak in LPSk−1
Pk−1

≥
is greater than pk, the streak cannot grow into

a longer local prominent streak without changing the minimal value. Hence, the streak

itself is a local prominent streak. To summarize,LPSk−1
P is the same as LPSk−1

Pk−1

≥
. The

only exception is the longest streak in LPSk−1
Pk−1

≥
, i.e., the streak with the smallest l

and thus the smallest minimal value v. If its minimal value is equal to pk, then it does

not belong LPSk−1
P , because it can be right-extended and included in LPSk

′

P for some
k′ ≥ k.

Lemma 3. For an n-entry sequence P , a streak s = 〈[l, r], v〉 is a local prominent streak
if and only if (l = 1 or v>pl−1) and (r = n or v>pr+1).

Proof. We prove by contradiction. Consider l > 1. If v ≤ pl−1, then s is dominated by
〈[l − 1, r], v〉, which contradicts with s being a local prominent streak. Consider r < n.
Similarly if v ≤ pr+1, then s is dominated by 〈[l, r + 1], v〉, which contradicts with s
being locally prominent.

Property 7. Given an n-entry sequence P , for any position 1<k≤n, LPSk−1
P = {s|s =

〈[l, k − 1], v〉 ∈ LPSk−1
Pk−1

≥
and v > pk}.

Proof. Proof of the equality from left to right: Suppose streak s = 〈[l, k−1], v〉 ∈ LPSk−1
P .

By Property 5, s ∈ LPSk−1
Pk−1

, and by Lemma 3 v > pk. By the concept of LPSk−1
Pk−1

≥
in

Equation (3), s ∈ LPSk−1
Pk−1

≥
.

Proof of the equality from right to left: Suppose streak s = 〈[l, k − 1], v〉 satisfies

s ∈ LPSk−1
Pk−1

≥
and v > pk. Then s is a local prominent streak in the scope of LPSk−1

Pk−1
,

which means, by Lemma 3, l = 1 or v > pl−1. Since v > pk, by Lemma 3 s is a local
prominent streak in P . Therefore s ∈ LPSk−1

P .

Continue the running example. LPS9P = LPS9P9

≥
= {〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉}.

Note that LPS9P9

≥
and LPS9P are identical because the minimal values for the streaks

in LPS9P9

≥
are all greater than p10.

Similar to Algorithm 4, Algorithm 6 has an amortized time complexity of O(1). With
regard to candidate streaks, LLPS is different in that it only needs to consider the
streaks in LPSk−1

P as candidates. Consequently, LLPS reduces the total number of

candidate streaks to
∑n

k=1 |LPS
k
P |, i.e., |LPSP | (Equation (1)). By Property 4, |LPSP |

is n at most, thus LLPS guarantees to produce only a linear number of candidate
streaks even in worst case.

4. MONITORING PROMINENT STREAKS

One desirable property of a prominent streak discovery algorithm is the capability of
monitoring new data entries as the sequence grows continuously and always keeping

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 G. Zhang et al.

Algorithm 7: Continuous Monitoring of Prominent Streaks

Input: The new data entry pk
1 Compute LPSk−1

P and LPSkPk
by Algorithms 6

2 if last requested position < k − 1 then

3 for each streak s in LPSk−1
P do

4 skyline← sklyine update(skyline, s)
5 if PSPk

is requested then

6 for each streak s in LPSkPk
do

7 skyline← sklyine update(skyline, s)
8 last requested position← k
9 // Now, skyline contains all prominent streaks in PSPk

the prominent streaks up-to-date. For example, a network administrator may check
the prominent streaks in the network traffic of a Web server till any particular mo-
ment. Formally, given a continuously growing data sequence P (such as a data stream),
the k-th data entry that has just come is denoted by pk and the sequence so far is de-
noted by Pk. At this moment, if the user requests PSPk

, the prominent streaks of Pk,
our method should efficiently discover them.

With regard to skyline operation, the BST-based method progressively updates the
dynamic skyline with new candidate streaks, thus can be applied for monitoring promi-
nent streaks without modification.

With regard to candidate streak generation, all three methods (baseline, NLPS,
LLPS) use one-pass sequential scan of the data sequence, therefore they all naturally
fit into the monitoring scenario. Specifically, the new data point pk corresponds to the
next iteration of the outer loop in Algorithm 1, 3, and 5. The baseline method exhaus-
tively lists all streaks ending at pk and updates the skyline with these streaks. The
NLPS method updates LPSk−1

Pk−1
to LPSkPk

, and updates the skyline with the streaks

in LPSkPk
.

The adaptation of LLPS is a bit more complex, as shown in Algorithm 7. This algo-
rithm records the last position when the user requested the prominent streaks. When
pk arrives, LPSk−1

P and LPSkPk
are dynamically computed by Algorithms 6. The skyline

is updated with the candidate streaks in LPSk−1
P , only if PSPk−1

was not requested by
the user when pk−1 was visited. Note that if PSPk−1

was requested, the skyline has

already been updated with the streaks in LPSk−1
Pk−1

. Since LPSk−1
P ⊆ LPSk−1

Pk−1
, we do

not need to update the skyline with LPSk−1
P again. Finally, if the user requests PSPk

,

the skyline has to be updated with LPSkPk
since all the local prominent streaks (with

regard to Pk) ending at pk must be considered. In Section 6 we will show the significant
superiority of this adaptation of LLPS over other methods.

Note that this algorithm degrades to NLPS (Algorithm 3) if the user requests the
prominent streaks at every data entry. On the other hand, if the prominent streaks
are only requested at pn, i.e., the last entry in the sequence, it becomes the same as
LLPS (Algorithm 5).

5. DISCOVERING GENERAL PROMINENT STREAKS

In this section, we extend the concept of prominent streak and the algorithms intro-
duced in previous sections to general cases. Specifically, we investigate how to discover
top-k, multi-sequence, and multi-dimensional prominent streaks.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:17

5.1. Top-k Prominent Streaks

Definition 5 (Top-k Prominent Streak). With regard to a sequence P = (p1, ...pn) and
its local prominent streaks LPSP , a streak s∈LPSP is a top-k prominent streak if it is
not dominated by k or more streaks in LPSP , i.e.,

∣

∣{s′|s′ ∈LPSP and s′≻s}
∣

∣<k. The set
of all top-k prominent streaks in P is denoted by KPSP . Note that there can be more
than k top-k prominent streaks.

Top-k prominent streaks are those local prominent streaks dominated by less than
k other local prominent streaks, by Definition 5. This definition has two implications.
First, a top-k prominent streak must be locally prominent. For instance, a streak does
not qualify even if it is only dominated by 1 subsuming streak and k > 1. Second, a
streak can qualify even if it is dominated by k or more other streaks, as long as less
than k of those dominating streaks are local prominent streaks.

Consider a sequence P = (20, 30, 25, 30, 5, 5, 15, 10, 15, 5), corresponding to the points
made by a basketball player in all his games. The streak 〈[3, 4], 25〉, though only dom-
inated by 〈[2, 4], 25〉, is a sub-streak of the latter, and hence is not a top-2 prominent
streak. The intuitive explanation is that, 〈[3, 4], 25〉 is within the interval of 〈[2, 4], 25〉,
therefore we do not consider it important. On the other hand, the streak 〈[7, 9], 10〉 is
a top-2 prominent streak. Although it is dominated by 3 streaks 〈[1, 4], 20〉, 〈[1, 3], 20〉,
and 〈[2, 4], 25〉, the dominating streaks are all from the same period and only 1 of the 3
is a local prominent streak.

The candidate streak generation methods discussed in previous sections are appli-
cable in discovering top-k prominent streaks. We only need several small changes on
skyline operation. For LLPS, since the candidates produced are guaranteed to be local
prominent streaks only, we simply need to maintain a counter for each current skyline
point in the dynamic skyline. The counter of a point records the number of its domi-
nators in the skyline. When a candidate is compared against current skyline points, it
is inserted into the skyline if it has less than k dominators. A current skyline point is
removed if its counter reaches k. With regard to the baseline method and NLPS, they
may produce candidates that are not local prominent streaks. A candidate must be
pruned if another candidate streak dominates it and subsumes it. (Note that they both
produce candidates with the same right-end of interval at the same time. Therefore a
candidate cannot be locally dominated by existing points in the current skyline.)

5.2. Multi-sequence Prominent Streaks

Definition 6 (Multi-sequence Prominent Streak). Given multiple sequences P =
{P 1, ..., Pm} and their corresponding sets of streaks SP 1 , ..., SPm , a streak s ∈ SP i

is a multi-sequence prominent streak in P if there does not exist a streak in any se-
quence that dominates s. More formally, ∄s′, j s.t. s′∈SP j , and s′≻s. The set of all
multi-sequence prominent streaks with regard to P is PSP .

As an example, consider 3 sequences corresponding to the points made by 3
basketball players in all their games—P1 = (20, 30, 25, 30, 5, 5, 15, 10, 15, 5), P2 =
(10, 5, 30, 35, 21, 25, 5, 15, 5, 25), and P3 = (5, 10, 15, 5, 25, 10, 20, 5, 15, 10). The streak
〈[1, 4], 20〉 of P1 is a prominent streak within P1 itself, but is dominated by 〈[3, 6], 21〉
in P2. Hence it is not a multi-sequence prominent streak.

The extension from single-sequence algorithms (baseline, NLPS, LLPS) to multi-
sequence algorithms is simple. We process individual sequences separately by the
single-sequence algorithms and use a common dynamic skyline to maintain their
prominent streaks. That is, when a local prominent streak within a sequence Pi is
identified, it is compared with current streaks in the dynamic skyline, which contains
prominent streaks from all sequences.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 G. Zhang et al.

Algorithm 8: Update Dynamic Skyline for Multi-Dimensional Sequences
(skyline update)

Input: Dynamic skyline skyline, new candidate streak s = 〈[l, r], ~v〉
Output: Updated dynamic skyline skyline

1 dominating ← Find streaks in skyline that dominate s, by a range query on the
KD-tree over skyline

2 if dominating 6= ∅ then
3 return skyline
4 dominated← Find streaks in skyline that are dominated by s, by another range

query on the KD-tree
5 Remove dominated from skyline
6 Insert s into skyline
7 return skyline

5.3. Multi-dimensional Prominent Streaks

Definition 7 (Multi-dimensional Prominent Streak). In an n-entry d-dimensional se-
quence P = (~p1, · · · , ~pn), a point ~pi is a d-dimensional vector of data values. A streak s
in P is an interval-vector pair 〈[l, r], ~v〉, where

~v = (min
l≤i≤r

~pi[1], · · · , min
l≤i≤r

~pi[d]), (4)

~pi[j] is the j-th dimension of ~pi, and 1 ≤ l ≤ r ≤ n.

A d-dimensional vector ~v = (~v[1], · · · , ~v[d]) dominates another vector ~v′ =

(~v′[1], · · · , ~v′[d]), denoted by ~v ≻ ~v′, if and only if ~v(1) ≥ ~v′[1], · · · , ~v[d] ≥ ~v′[d] and ∃j

such that ~v[j] > ~v′[j]. Moreover, we use ~v � ~v′ to denote the case when ~v dominates or

equals ~v′.

A streak s = 〈[l, r], ~v〉 dominates another streak s′ = 〈[l′, r′], ~v′〉, denoted by s ≻ s′, if

and only if r − l ≥ r′ − l′ and ~v ≻ ~v′, or r − l > r′ − l′ and ~v � ~v′.
The set of all possible streaks is denoted by SP . A streak s∈SP is a prominent streak

if it is not dominated by any streak in SP , i.e., ∄s′ s.t. s′∈SP and s′≻s. The set of all
multi-dimensional prominent streaks in P is denoted by PSP .

For a running example in this section, consider a two-dimensional sequence P =
((10, 10),(40, 20),(40, 30),(30, 40),(50, 30),(20, 30)). By the above definition, there are 8
prominent streaks in P– 〈[1, 6], (10, 10)〉, 〈[2, 3], (40, 20)〉, 〈[2, 5], (30, 20)〉, 〈[2, 6], (20, 20)〉,
〈[3, 5], (30, 30)〉, 〈[3, 6], (20, 30)〉, 〈[4, 4], (30, 40)〉, 〈[5, 5], (50, 30)〉. Other streaks are not
prominent. For instance, 〈[2, 4], (30, 20)〉 is dominated by 〈[3, 5], (30, 30)〉.

In finding prominent streaks from a d-dimensional sequence, skyline operations per-
form dominance relationship test on d + 1 dimensions—d dimensions for data values
and one special dimension for streak length. We maintain a KD-tree [Bentley 1975;
Bentley 1979] on current skyline points. Given a candidate streak, we use a range
query on the KD-tree to efficiently find its dominating points in the current skyline
and another ranger query to find its dominated points in the current skyline. Specifi-
cally, Algorithm 2 is replaced by Algorithm 8 for multi-dimensional sequences. We do
not further discuss how to answer range queries by multi-dimensional index structures
such as KD-tree since it is well studied.

With regard to candidate streak generation, the brute-force baseline method does
not require change, except that min value and its calculation in Algorithm 1 are re-
placed according to the definition of vector ~v in Equation (4). Our focus in the rest of
this section is to extend the concept of local prominent streak and its properties, in

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:19

order to adapt NLPS and LLPS for multi-dimensional data sequence. Note that Prop-
erty 3, Property 5 and Lemma 2 still hold, and can be proven in the same way as for
single-dimensional sequence. We thus will use the result directly without tediously
showing the proof. With the adaptation of NLPS and LLPS for multi-dimensional se-
quences, the continuous monitoring approach in Algorithm 7 works in the same way.

Definition 8. For a multi-dimensional sequence P , a streak s = 〈[l, r], ~v〉 ∈ SP is
a local prominent streak (LPS) if and only if there does not exist any other streak

s′ = 〈[l′, r′], ~v′〉 ∈ SP , s.t. [l′, r′] ⊃ [l, r] and s′ ≻ s. (I.e., there does not exist such s′ that

[l′, r′] ⊃ [l, r] and ~v′ � ~v.) We use LPSP to denote the set of all local prominent streaks
in P .

For a multi-dimensional sequence, Property 3 still holds. Hence, every prominent
streak in a multi-dimensional sequence P is also a local prominent streak, i.e.,
PSP ⊆ LPSP , and thus we can still find LPSP and use it as the set of candidate
streaks. Computing local prominent streaks in a multi-dimensional sequence is quite
similar to that in a single-dimensional sequence. The concepts of LPSkP and LPSkPk

remain the same, except that the ~v in each streak 〈[l, r], ~v〉 is a multi-dimensional vec-
tor instead of a single numeric value. Property 5 also holds. Therefore, the essential
ideas of NLPS and LLPS algorithms remain unchanged. NLPS iterates k from 1 to
|P |, progressively computes LPSkPk

from LPSk−1
Pk−1

when the k-th element ~pk is visited,

and includes LPSkPk
into candidate streaks. LLPS does not immediately include all of

LPSkPk
into candidate streaks. Instead, it waits till seeing ~pk+1, then computes LPSkP

(in addition to LPSk+1
Pk+1

) from LPSkPk
, and only includes LPSkP into candidate streaks.

Hence, LLPS only considers local prominent streaks (LPSP =
⋃n

k=1 LPS
k
P) as candi-

dates, while NLPS needs to consider more candidates (
⋃n

k=1 LPS
k
Pk

), since LPSkP is

subsumed by LPSkPk
according to Property 5.

5.3.1. Key Ideas.
Our following discussion focuses on how to compute LPSkPk

and LPSk−1
P from LPSk−1

Pk−1
,

when the k-th element ~pk arrives. To facilitate the discussion, we partition LPSk−1
Pk−1

into two disjoint sets LPSk−1
Pk−1

�
and LPSk−1

Pk−1

�
, as shown below, which are similar to

LPSk−1
Pk−1

<
and LPSk−1

Pk−1

≥
in Equations (2) and (3). LPSk−1

Pk−1

�
is the set of streaks, for

which the value at any dimension of the vector ~v is not greater than the corresponding

value in ~pk. LPSk−1
Pk−1

�
is the set of streaks, for which ~v is greater than ~pk on at least

one dimension.

LPSk−1
Pk−1

�
= {s|s = 〈[l, k − 1], ~v〉 ∈ LPSk−1

Pk−1
, ~v � ~pk}, (5)

LPSk−1
Pk−1

�
= {s|s = 〈[l, k − 1], ~v〉 ∈ LPSk−1

Pk−1
, ∃j ∈ [1, d] s.t. ~v[j] > ~pk[j]}. (6)

For the running example, LPS5P5
is divided into LPS5P5

�
={s1=〈[1, 5], (10, 10)〉} and

LPS5P5

�
={s2=〈[2, 5], (30, 20)〉, s3=〈[3, 5], (30, 30)〉, s4=〈[5, 5], (50, 30)〉}.

• Compute LPSk−1
P from LPSk−1

Pk−1
:

We can prove that LPSk−1
P is equivalent to LPSk−1

Pk−1

�
, given by the following prop-

erty.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 G. Zhang et al.

Property 8. LPSk−1
P = LPSk−1

Pk−1

�
.

Proof. Since Property 5 still holds, LPSk−1
P ⊆LPSk−1

Pk−1
. Furthermore, LPSk−1

Pk−1

�
and

LPSk−1
Pk−1

�
disjointly partition LPSk−1

Pk−1
, i.e., LPSk−1

Pk−1
= LPSk−1

Pk−1

�
∪LPSk−1

Pk−1

�
and

LPSk−1
Pk−1

�
∩LPSk−1

Pk−1

�
= ∅. Therefore we only need to prove that (1) none of the streaks

in LPSk−1
Pk−1

�
is in LPSk−1

P and (2) all streaks in LPSk−1
Pk−1

�
are in LPSk−1

P .

(1) ∀s ∈ LPSk−1
Pk−1

�
, s /∈ LPSk−1

P . Suppose s = 〈[l, k − 1], ~v〉. Its right-end extension is

s′ = 〈[l, k], ~v′〉, where ~v′[j] = min(~v[j], ~pk[j]) for j ∈ [1, d]. Since ~v � ~pk (by Equation (5)),

it follows that ~v′ = ~v and thus s′ ≻ s. Hence, s cannot be a local prominent streak in P .

(2) ∀s ∈ LPSk−1
Pk−1

�
, s ∈ LPSk−1

P . We prove this by contradiction. Suppose s = 〈[l, k −

1], ~v〉. Assume s /∈ LPSk−1
P , i.e., there exists s′ ≻ s such that s′ = 〈[l′, r′], ~v′〉, [l′, r′] ⊃

[l, k − 1] and ~v′ � ~v. By Equation (6), ∃j ∈ [1, d] such that ~v[j] > ~pk[j]. Therefore

r′ = k − 1, otherwise r′ = k and ~v′[j] <= ~pk[j] < ~v[j], which contradicts with ~v′ � ~v.
From [l′, r′] ⊃ [l, k− 1] and r′ = k− 1, we get l′ < l which, along with s′ ≻ s, contradicts

with s ∈ LPSk−1
Pk−1

. The contradictions prove that s ∈ LPSk−1
P .

• Compute LPSkPk
from LPSk−1

Pk−1
:

We note that Lemma 2 still holds under multi-dimensional sequence, i.e., except
〈[k, k], ~pk〉, for each streak in LPSkPk

, its prefix streak is in LPSk−1
Pk−1

. Hence, to produce

LPSkPk
, we only need to consider the right-end extension of LPSk−1

Pk−1
and one extra

streak 〈[k, k], ~pk〉 which may belong to LPSkPk
as well. Again, we consider the two dis-

joint partitions of LPSk−1
Pk−1

, LPSk−1
Pk−1

�
and LPSk−1

Pk−1

�
, respectively.

(1) The right-end extensions of all streaks in LPSk−1
Pk−1

�
belong to LPSkPk

, by the

property below.

Property 9. ∀s ∈ LPSk−1
Pk−1

�
, its right-end extension s′ ∈ LPSkPk

.

Proof. We prove by contradiction. Suppose s = 〈[l, k − 1], ~v〉. Its right-end extension is

s′ = 〈[l, k], ~v′〉, where ~v′[j] = min(~v[j], ~pk[j]) for j ∈ [1, d]. Since s ∈ LPSk−1
Pk−1

�
, ~v � ~pk.

Therefore ~v′ = ~v. If s′ /∈ LPSkPk
, then there exists s′′ = 〈[l′′, k], ~v′′〉 such that s′′ ≻ s′,

i.e., l′′ < l, and ~v′′ � ~v′. Since s′′ and s′ have the same right end of interval and l′′ < l,
~v′′ � ~v′. Therefore ~v′′ = ~v′ = ~v. Consider s′′′ = 〈[l′′, k − 1], ~v′′′〉, i.e., s′′ is the right-end

extension of s′′′. ~v′′′ � ~v′′ by definition of right-end extension. Therefore ~v′′′ � ~v and
thus s′′′ ≻ s (since l′′ < l). This contradicts with s ∈ LPSk−1

Pk−1
.

(2) Given a streak in LPSk−1
Pk−1

�
, its right-end extension does not always belong to

LPSkPk
.

For a single-dimensional sequence, LPSk−1
Pk−1

was similarly partitioned into

LPSk−1
Pk−1

<
and LPSk−1

Pk−1

≥
. Among the streaks in LPSk−1

Pk−1

≥
, the right-end extension

of the longest streak belongs to LPSkPk
. If LPSk−1

Pk−1

≥
is empty, then 〈[k, k], pk〉 belongs

to LPSkPk
.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:21

For a multi-dimensional sequence, multiple but not necessarily all streaks in

LPSk−1
Pk−1

�
can be right-extended to streaks in LPSkPk

. This can be simply proven

by using the running example. Recall that LPS5P5

�
= {s1 = 〈[1, 5], (10, 10)〉} and

LPS5P5

�
= {s2 = 〈[2, 5], (30, 20)〉, s3 = 〈[3, 5], (30, 30)〉, s4 = 〈[5, 5], (50, 30)〉}. Since

~p6 = (20, 30), the right-end extensions of s2, s3 and s4 are s′2 = 〈[2, 6], (20, 20)〉,
s′3 = 〈[3, 6], (20, 30)〉 and s′4 = 〈[5, 6], (20, 30)〉, respectively. It is clear s′2, s

′
3 ∈ LPS

6
P6

and s′4 /∈ LPS6P6
since s′3 ≻ s′4.

5.3.2. Efficient Computation.
Based on the discussion in Section 5.3.1, in computing LPSkPk

and LPSk−1
P from

LPSk−1
Pk−1

, the key is to partition LPSk−1
Pk−1

into LPSk−1
Pk−1

�
(which equals LPSk−1

P) and

LPSk−1
Pk−1

�
. The right-end extensions of all streaks in LPSk−1

Pk−1

�
belong to LPSkPk

,

and all remaining streaks in LPSkPk
are formed by right-end extensions of streaks

in LPSk−1
Pk−1

�
. Below we discuss an efficient method of partitioning LPSk−1

Pk−1
and iden-

tifying streaks in LPSk−1
Pk−1

�
that should be extended to streaks in LPSkPk

.

• Partition LPSk−1
Pk−1

into LPSk−1
Pk−1

�
and LPSk−1

Pk−1

�
:

Suppose there are m streaks in LPSk−1
Pk−1

, which are s1 = 〈[l1, k − 1], ~v1〉, . . .,

sm = 〈[lm, k − 1], ~vm〉, where l1<· · ·<lm. We can prove that there exists t such that

LPSk−1
Pk−1

�
= {s1, . . . , st} and LPSk−1

Pk−1

�
= {st+1, . . . , sm}. (Two special cases are

LPSk−1
Pk−1

�
= ∅ (i.e., t = 0) and LPSk−1

Pk−1

�
= ∅ (i.e., t = m).) The proof is sketched as

follows. Since l1<· · ·<lm, for any dimension j, the value ~vi[j] monotonically increases
by i (not necessarily strictly increasing), i.e., ~v1[j] ≤ ~v2[j] ≤ · · · ≤ ~vm[j]. It follows
that ~v1 ≺ ~v2 ≺ · · · ≺ ~vm. (Note that ~vi 6= ~vi+1 for any i, otherwise si would dominate
si+1, which contradicts with that they all are local prominent streaks in Pk−1.) Given

si1 ∈ LPS
k−1
Pk−1

�
and si2 ∈ LPS

k−1
Pk−1

�
, it must be that i1 < i2, otherwise i1 > i2, ~vi1 ≻ ~vi2

and thus ∀j, ~vi1 [j] ≥ ~vi2 [j], which contradicts with Equations (5) and (6).

• Identify streaks in LPSk−1
Pk−1

�
that should be extended to streaks in LPSkPk

:

To find all those right-end extensions of streaks in LPSk−1
Pk−1

�
that belong to LPSkPk

,

consider the aforementioned partitioning of LPSk−1
Pk−1

into LPSk−1
Pk−1

�
= {s1, . . . , st} and

LPSk−1
Pk−1

�
= {st+1, . . . , sm}, where the m streaks sm, . . . , s1 are decreasingly ordered by

the left ends of their intervals. For each si = 〈[li, k − 1], ~vi〉 ∈ LPS
k−1
Pk−1

�
, its right-end

extension is s′i = 〈[li, k], ~v
′
i〉. The following important property tells us that if s′i ⊀ s′i−1,

then s′i belongs to LPSkPk
.

Property 10. For each streak si = 〈[li, k − 1], ~vi〉 ∈ LPS
k−1
Pk−1

�
, its right-end extension

is s′i = 〈[li, k],
~v′i〉. s′i ∈ LPS

k
Pk

if and only if s′i ⊀ s′i−1.

Proof. It is apparent that if s′i ≺ s′i−1 then s′i /∈ LPSkPk
. Thus our focus is to prove

s′i ∈ LPS
k
Pk

if s′i ⊀ s′i−1, by contradiction. Assume s′i ⊀ s′i−1 but s′i /∈ LPSkPk
. Hence,

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 G. Zhang et al.

∃j < i− 1 and s′j ≻ s′i (and thus ~v′j �
~v′i). Since lj < li, ~v′j � . . . � ~v′i−1 � ~v′i. Therefore

~v′j = . . . = ~v′i−1 = ~v′i. Hence s′i−1 ≻ s′i which contradicts with s′i ⊀ s′i−1.

Based on the properties discussed in Section 5.3.1 and 5.3.2 so far, we design an
efficient method to compute LPSkPk

and LPSk−1
P from LPSk−1

Pk−1
. The current skyline

points (prominent streaks) after the (k − 1)-th element is encountered are stored in
the aforementioned KD-tree index structure. The streaks in LPSk−1

Pk−1
, sm, . . . , s1, are

stored in memory by the decreasing order of the left ends of their intervals. Since they
have the same right ends of intervals, only the left ends and the corresponding vectors
are stored. When the k-th element ~pk arrives, this method considers the streaks si and
their right-end extensions s′i, starting from i = m + 1 and iteratively decreasing i by
1. (For i = m + 1, the special streak in consideration is s′m+1 = 〈[k, k], ~pk〉.) According
to Property 10, the method only requires comparing s′i with its predecessor s′i−1. If

s′i ≺ s′i−1, then si is removed from the memory. Otherwise s′i belongs to LPSkPk
and

thus si is updated to s′i in memory. More specifically, the vector ~vi of si needs to be

updated to ~v′i, by ~v′i[j] = min(~vi[j], ~pk[j]) for j ∈ [1, d]. The method goes on until i = t
such that ~vt � ~pk. At that moment, the method will take the following actions.

• The streaks scanned so far (sm, . . . , st+1) form LPSk−1
Pk−1

�
which is equivalent to

LPSk−1
P . All remaining streaks in LPSk−1

Pk−1
(st, . . . , s1) form LPSk−1

Pk−1

�
.

• The streaks in LPSk−1
P are candidate prominent streaks. They are compared with

current skyline points by the aforementioned range queries over the KD-tree on the
skyline points. Non-dominated candidates are inserted into the KD-tree.

• For all remaining streaks in the memory (i.e., LPSk−1
Pk−1

�
), their right-end extensions

belong to LPSkPk
. Since their vectors are all dominated by or equivalent to ~pk, their

corresponding vectors do not need to be updated. At this moment, all streaks of
LPSkPk

are stored in memory by the decreasing order of the left-ends of their inter-
vals.

More concretely, Algorithms 3 and 5 remain unchanged, and Algorithms 4 and 6 are
replaced by Algorithms 9 and 10, respectively.

5.3.3. A Note on “Curse of Dimensionality”.
For a single-dimensional sequence with n elements, LLPS produces at most n candi-
dates (i.e., local prominent streaks), according to Property 4. This upper-bound guar-
antees LLPS to be an efficient linear-time algorithm. However, the same property
does not hold for multi-dimensional sequences. Consider an extreme case which is
a 2-dimensional n-element sequence (~p1, . . . , ~pn), where ~pi = (i, n − i). It is not hard

to prove that all n(n+1)
2 possible streaks in this sequence are prominent streaks and

thus automatically local prominent streaks. This represents the worst case, in which
nothing beats the brute-force baseline method.

While the worst case indicates the rather notorious “curse of dimensionality”, our
empirical results on multiple datasets are much more encouraging. The results show
that the number of prominent streaks and the execution time of LLPS do not increase
exponentially by the dimensionality of data. This is mainly due to that data values
fluctuate and are correlated. We investigate these results in more details in Section 6.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:23

Algorithm 9: Progressive Computation of LPSkPk
on Multi-Dimensional Sequences

Input: LPSk−1
Pk−1

and ~pk

Output: LPSkPk

// When it starts, stack lps consists of streaks in LPSk−1
Pk−1

.

1 temp stack← an empty stack
2 while ! lps.isempty() do
3 if lps.top().~v � ~pk then
4 break
5 else
6 s = 〈[ls, k − 1], ~vs〉 ← lps.pop()

7 s′ ← 〈[ls, k], ~v′s〉, where ~v′s = (min(~vs[1], ~pk[1]), . . . ,min(~vs[d], ~pk[d]))
//right-end extension of s

8 if lps.isempty() then
9 temp stack.push(s′)

10 else
11 q = 〈[lq, k − 1], ~vq〉 ← lps.top()

12 q′ ← 〈[lq, k], ~v′q〉, where ~v′q = (min(~vq[1], ~pk[1]), . . . ,min(~vq[d], ~pk[d]))
//right-end extension of q

13 if q′ ⊁ s′ then
14 temp stack.push(s′)
15 while ! temp stack.isempty() do
16 lps.push(temp stack.pop())
17 if lps.isempty() or lps.top().~v � ~pk then
18 lps.push(〈[k, k], ~pk〉)

// Now, lps contains all the streaks in LPSkPk
.

Algorithm 10: Computing LPSk−1
P and LPSkPk

on Multi-Dimensional Sequences

Input: LPSk−1
Pk−1

and ~pk

Output: LPSk−1
P and LPSkPk

// Insert the following line before Line 1 in Algorithm 9.

1 LPSk−1
P ← ∅

// Insert the following line after Line 6 in Algorithm 9.

2 LPSk−1
P ← LPSk−1

P ∪ {s}

6. EXPERIMENTS

We report and analyze experimental results in this section. The algorithms were im-
plemented in Java. The experiments were conducted on a server with four 2.00GHz
Intel Xeon E5335 CPUs running Ubuntu Linux. The limit on the heap size of Java
Virtual Machine (JVM) was set at 512MB. We discuss the results on basic and general
prominent streak discovery in Section 6.1 and Section 6.2, respectively.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 G. Zhang et al.

Table I. Data Sequences Used in Experiments on Basic Prominent Streak Discovery.

name length # prominent streaks description
Gold 1074 137 Daily morning gold price in US dollars, 01/1985-03/1989.
River 1400 93 Mean daily flow of Saugeen River near Port Elgin, 01/1988-12/1991.
Melb1 3650 55 The daily minimum temperature of Melbourne, Australia, 1981-1990.
Melb2 3650 58 The daily maximum temperature of Melbourne, Australia, 1981-1990.
Wiki1 4896 58 Hourly traffic to http://en.wikipedia.org/wiki/Main page, 04/2010-10/2010.
Wiki2 4896 51 Hourly traffic to http://en.wikipedia.org/wiki/Lady gaga, 04/2010-10/2010.
Wiki3 4896 118 Hourly traffic to http://en.wikipedia.org/wiki/Inception (film), 04/2010-10/2010.
SP500 10136 497 S&P 500 index, 06/1960-06/2000.
HPQ 12109 232 Closing price of HPQ in NYSE for every trading day, 01/1962-02/2010.
IBM 12109 198 Closing price of IBM in NYSE for every trading day, 01/1962-02/2010.
AOL 132480 127 Number of queries to AOL search engine in every minute over three months.

WC98 7603201 286 Number of requests to World Cup 98 web site in every second, 04/1998-07/1998.

6.1. Experimental Results on Basic Prominent Streak Discov ery

We used multiple real-world datasets, including time series data library,3 Wikipedia
traffic statistics dataset,4 NYSE exchange data,5 AOL search engine log,6 and FIFA
World Cup 98 web site access log.7 These datasets cover a variety of application sce-
narios, including meteorology, hydrology, finance, web log, and network traffic. Table I
shows the information of 12 data sequences from these data sets that we used in exper-
iments. For each data sequence, we list its name, length, and the number of prominent
streaks in the sequence. Each data sequence was stored in a data file.

Examples of Interesting Prominent Streaks Discovered:
From 1985 to 1989, there had been more than one thousand consecutive trading

days with morning gold price greater than $300. During this period, there had been
a streak of four hundred days with price more than $400, though the $500 price only
lasted two days at most.

In Melbourne, Australia, during the years between 1981 and 1990, the weather had
been pleasant. There had been more than two thousand days with minimal tempera-
ture above zero, and the streak was not ending. (We do not have data beyond 1990.)
The longest streak during which the temperature hit above 35 degrees Celsius is six
days. It was in the summer of the year 1981.

More than half of the prominent streaks we found in the traffic data of the Lady
Gaga Wikipedia page were around September 12th, when she became a big winner
in the MTV Video Music Awards (VMA) 2010. During that time, the page had been
visited by at least 2000 people in every hour for almost four days.

Number of Candidate Streaks:
The three algorithms for candidate streak generation, namely Baseline (Algo-

rithm 1), NLPS (Algorithm 3), and LLPS (Algorithm 5), differ by the ways they pro-
duce candidates and thus the numbers of produced candidates. Table II shows the total
number of candidate streaks considered by each algorithm on each data sequence. The
baseline algorithm produces an extremely large number of candidates since it enumer-
ates all possible streaks, e.g.,

(

7603202
2

)

=2.89 × 1013 for WC98. By contrast, NLPS only

needs to consider
⋃

1≤k≤|P | LPS
k
Pk

, which is a superset of the real prominent streaks

PSP but a much smaller subset of all possible streaks SP . For instance, the number
of candidate streaks by NLPS is 1.78×108 for WC98, which is 5 orders of magnitude

3http://robjhyndman.com/TSDL/
4http://dammit.lt/wikistats/
5http://www.infochimps.com/datasets/nyse-daily-1970-2010-open-close-high-low-and-volume
6http://gregsadetsky.com/aol-data/
7http://ita.ee.lbl.gov/html/contrib/WorldCup.html

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://en.wikipedia.org/wiki/Main_page
http://en.wikipedia.org/wiki/Lady_gaga
http://en.wikipedia.org/wiki/Inception_(film)
http://robjhyndman.com/TSDL/
http://dammit.lt/wikistats/
http://www.infochimps.com/datasets/nyse-daily-1970-2010-open-close-high-low-and-volume
http://gregsadetsky.com/aol-data/
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Discovering General Prominent Streaks in Sequence Data A:25

Table II. Number of Candidate Streaks, Basic Prominent Streak Discovery.

name Baseline NLPS LLPS
Gold 5.77× 105 6.04× 104 1.05 × 103

River 9.81× 105 2.18× 104 1.33 × 103

Melb1 6.66× 106 4.47× 104 3.50 × 103

Melb2 6.66× 106 4.28× 104 3.49 × 103

Wiki1 1.20× 107 7.16× 104 4.79 × 103

Wiki2 1.20× 107 5.77× 104 4.75 × 103

Wiki3 1.20× 107 7.31× 104 4.70 × 103

SP500 5.14× 107 1.69× 106 9.98 × 103

HPQ 7.33× 107 5.24× 105 1.08 × 104

IBM 7.33× 107 6.97× 105 1.13 × 104

AOL 8.78× 109 3.53× 106 1.20 × 105

WC98 2.89× 1013 1.78× 108 6.69 × 106

Table III. Execution Time (in Milliseconds), Basic Prominent Streak Discovery.

name Baseline NLPS LLPS
Gold 183 122 13
River 126 84 19
Melb1 385 101 36
Melb2 384 101 35
Wiki1 670 105 46
Wiki2 646 97 46
Wiki3 632 126 48
SP500 4453 789 116
HPQ 6285 338 101
IBM 4228 377 135
AOL 290744 752 201

WC98 > 1 hour 38999 3012

smaller than what Baseline considers. LLPS further significantly educes the number
of candidates by only considering LPSs. For example, there are 6.69 × 106 LPSs in
WC98, which is about 30 times smaller than 1.78× 108. Note that the number of LPSs
for LLPS is bounded by sequence length (Property 4), which is verified by Table II.

Execution Time:
The number of candidate streaks directly determines the efficiency of our algo-

rithms. In Table III we report the execution time of our algorithms using the three can-
didate streak generation methods (Baseline, NLPS, LLPS), for all 12 data sequences.
For skyline operation, we implemented the sorting-based, external-memory sorting-
based, and BST-based skyline methods mentioned in Section 1. Under these different
skyline methods, Baseline, NLPS, and LLPS perform and compare consistently. There-
fore in Table III we only report the results for implementations based on the BST-based
skyline method, due to space limitations. The reported execution time is in millisec-
onds and is the average of five runs.

When reporting the execution time of these algorithms, we excluded data loading
time, i.e., the time spent on just reading each data file. This is because data loading
time is dominated by processing time of the algorithms once the data file gets large.
In our experiments, WC98 cost 1 second to load while the loading time of all other
datasets was below 30ms.

In Table III we use ‘>1 hour’ to denote the execution time when an algorithm could
not finish within one hour (i.e., 3600000ms). This lower bound is sufficient in showing
the performance difference of the various algorithms.

With regard to the comparison of Baseline, NLPS, and LLPS, it is clear from Ta-
ble III that LLPS outperforms NLPS, and both NLPS and LLPS are far more efficient

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 G. Zhang et al.

0 2000 4000 6000 8000 10000
position

0

400

800

1200

1600

va
lu
e

SP500

(a) Data Sequence

0 2000 4000 6000 8000 10000
streak length (days)

0

400

800

1200

1600

m
in
im

a
l
va
lu
e

SP500

(b) Prominent Streaks

0 2000 4000 6000 8000 10000
position

0
100

101

102

103

104

#
 o
f
c
a
n
d
id
a
te
s

SP500

Baseline
NLPS
LLPS

(c) Number of Candidate Streaks

0 2000 4000 6000 8000 10000
position

0

100

200

300

400

500

si
ze

SP500

Baseline, NLPS
LLPS

(d) Size of Dynamic Skyline

Fig. 4. Detailed Results on SP500, Basic Prominent Streak Discovery.

than Baseline. This is exactly due to the large gap in the number of candidate streaks
(shown in Table II), which in turn determines the number of comparisons performed
during skyline operations.

A Closer Look:
To have a better understanding of the experimental results, we take a close look at

the SP500 data sequence. Figure 4(a) shows the data sequence itself. We see that the
sequence is almost monotonically increasing at the coarse grain level. Due to that, the
number of prominent streaks found in SP500 (497, as shown in Table I) is the most
among all the data sequences. We also visualize the prominent streaks in SP500 in
Figure 4(b), where the x-axis is for interval length and the y-axis is for minimal value
in the interval.

In Table II we have seen the huge difference among Baseline, NLPS and LLPS in
total number of candidate streaks. These three algorithms all generate candidates
progressively. Therefore in Figure 4(c) we show, for each algorithm, the number of new
candidate streaks produced at every value position of the data sequence. The figure
clearly shows the superiority of LLPS since it always generates orders of magnitude
less candidates at each position.

The BST-based skyline method maintains a dynamic skyline, as a binary search
tree, in memory. The size of this tree affects the efficiency of tree operations, such
as inserting and deleting a streak. Figure 4(d) shows the size of the dynamic skyline
along the sequence of SP500 by each algorithm. The curves for Baseline and NLPS
overlap since they both store PSPk

, at every position k, in the dynamic skyline. On
the contrary, LLPS does not need to store some streaks in PSPk

, hence the tree size
is much smaller than that for Baseline/NLPS when the sequence is almost constantly
growing in the second half of SP500.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:27

0 10 20 30 40 50 60 70
position

0

1000

2000

3000

4000

va
lu
e

WC98

×105

(a) Data Sequence

0 100 101 102 103 104 105 106

streak length (seconds)

0

1000

2000

3000

4000

5000

m
in
im

a
l
va
lu
e

WC98

(b) Prominent Streaks

0 10 20 30 40 50 60 70
position

0
100

101
102
103
104
105
106
107

#
 o
f
c
a
n
d
id
a
te
s

WC98

Baseline
NLPS
LLPS

×105

(c) Number of Candidate Streaks

0 10 20 30 40 50 60 70
position

0

50

100

150

200

250

300

350

si
ze

WC98

Baseline, NLPS
LLPS

×105

(d) Size of Dynamic Skyline

Fig. 5. Detailed Results on WC98, Basic Prominent Streak Discovery.

0 20 40 60 80 100 120
position

0

300

600

900

ti
m
e
(m

s)

×103

AOL
LLPS-1, NLPS
LLPS-2
LLPS-4
LLPS-8
LLPS-16

(a) AOL

0 100 200 300 400 500 600 700
position

0

100

200

300

400

500

ti
m
e
(m

s)

WC98
LLPS-1, NLPS
LLPS-2
LLPS-4
LLPS-8
LLPS-16

×102

×104

(b) WC98

Fig. 6. Cumulative Execution Time at Various Positions, for Different Reporting Frequencies, Basic Promi-
nent Streak Discovery.

In Figure 5 we show the detailed results on WC98 data, which are similar to the
results on SP500 but are also different on several aspects. The data sequence fluctu-
ates. Hence there are less candidate streaks by NLPS and LLPS, which makes the
gap between them and Baseline much bigger. For the same reason, the size of the dy-
namic skyline is almost identical for the three algorithms. Note that Figure 5(b) uses
logarithmic scale on x-axis, because the very long streaks would otherwise make most
other streaks cluttered to the left if linear scale is used.

Monitoring Prominent Streaks:
In Section 4 we discussed how to monitor the prominent streaks as a data sequence

evolves and new data values come. The adaptation of LLPS for monitoring purpose was

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 G. Zhang et al.

100 101 102 103

length of the interval

0

200

400

600

800
to
ta
l
ti
m
e
(m

s)

AOL

(a) AOL

100 101 102 103

length of the interval

0

100

200

300

400

500

to
ta
l
ti
m
e
(m

s)

WC98×102

(b) WC98

Fig. 7. Total Execution Time by Reporting Frequencies, Basic Prominent Streak Discovery.

shown in Algorithm 7. This algorithm can control at which positions the prominent
streaks (so far) need to be reported.

Take AOL and WC98 as examples. Figure 6 shows the execution time of Algorithm 7.
The x-axis represents the sequence position, and the y-axis is for the total execution
time by that position. There are five curves in each figure, corresponding to five dif-
ferent frequencies of reporting prominent streaks. For instance, LLPS-1 means that,
whenever a new data entry comes, all the prominent streaks so far are reported; LLPS-
16 means the prominent streaks are requested at every 16 data entries. As discussed
in Section 4, LLPS-1 is identical to NLPS (Algorithm 3), and LLPS-n is identical to
LLPS (Algorithm 5), where n is the sequence length when it does not evolve anymore.
Figures 6(a) and 6(b) clearly show that the total execution time of LLPS-i increases
as the reporting frequency increases (i.e., reporting interval i decreases). Figures 7(a)
and 7(b) further show how the total execution time changes along different report-
ing intervals. We can see that the execution time drops rapidly at the beginning and
quickly reaches near-optimal value even when the frequency is still fairly high (e.g.,
reporting the prominent streaks at every 16 entries.)

6.2. Experimental Results on General Prominent Streak Disc overy

In this section, we discuss the results on top-k, multi-sequence, and multi-dimensional
prominent streak discovery. At the end of this section, we also present the results from
an experiment that put together these different extensions.

Top-k Prominent Streaks:
The experiments on top-k prominent streaks were conducted on the same datasets

discussed in Section 6.1. For each dataset, Table IV shows the number of top-5 promi-
nent streaks (i.e., KPSP in Definition 5) and the execution time of the extended Base-
line, NLPS and LLPS algorithms. Note that the number of candidate streaks shown in
Table II remains the same, since the same candidate streak generation methods are
used for top-k prominent streaks, as discussed in Section 5.1.

As Table IV shows, in comparison with the execution time in Table III (i.e., the time
of discovering top-1 prominent streaks), the execution time of Baseline increased by
one or more orders of magnitude, while the performance of NLPS and LLPS was de-
graded by less than one order of magnitude in most cases. This is explained as follows.
Finding top-k prominent streaks incurs higher cost of skyline operation than finding
top-1 prominent streaks. More specifically, the cost of skyline operation is determined
by the number of dominance comparisons between candidate streaks and streaks in
the dynamic skyline. Therefore the number of comparisons increases by both the num-
ber of candidate streaks and the size of the dynamic skyline. In comparison with top-1,

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:29

Table IV. Number of Prominent Streaks and Execution Time (in Milliseconds), Top-5 Prominent Streaks.

name # prominent streaks Baseline NLPS LLPS
Gold 147 1884 348 44
River 144 6.81 × 104 275 57
Melb1 160 6.06 × 107 572 96
Melb2 160 3.01 × 106 445 150
Wiki1 181 3.68 × 107 1369 140
Wiki2 115 1.88 × 107 565 172
Wiki3 172 1.05 × 106 473 136
SP500 516 7.09 × 106 13700 270
HPQ 251 > 10 hours 3211 178
IBM 232 > 10 hours 5914 229
AOL 250 > 10 hours 26000 798

WC98 409 > 10 hours > 10 hours 13300

100 101 102 103 104

streak length (days)

101

102

103

104

m
in
im

a
l
va
lu
e

SP500

K=1
K=5

(a) Prominent Streaks

100 101 102 103 104 105

streak length (days)

0
100

101

102

103

104

m
in
im

a
l
va
lu
e

AOL

K=1
K=5

(b) Prominent Streaks

0 2000 4000 6000 8000 10000
position

0

100

200

300

400

500

600

si
ze

SP500

Baseline, NLPS (K=1)
Baseline, NLPS (K=5)
LLPS (K=1)
LLPS (K=5)

(c) Size of Dynamic Skyline

0 20000 40000 60000 80000 100000120000
position

0

300

600

900

si
ze

AOL

Baseline, NLPS (K=1)
Baseline, NLPS (K=5)
LLPS (K=1)
LLPS (K=5)

(d) Size of Dynamic Skyline

Fig. 8. Detailed Results on SP500 and AOL, Top-1 vs. Top-5 Prominent Streaks.

finding top-k prominent streaks requires maintaining local prominent streaks with as
many as k−1 dominators, which increases the size of dynamic skyline and thus incurs
larger cost. For example, a dominator search for a candidate cannot terminate until
the number of dominators reaches k, whereas the search terminates immediately in
top-1 algorithms once a dominator is found. The more candidate streaks there are, the
larger the increment of skyline operation cost (from top-1 to top-k) grows. This further
explains why the performance of Baseline was degraded the most.

Figure 8 shows some interesting detailed results on two different sequences. Since
sequence SP500 increases almost monotonically, a local prominent streak that is not
globally prominent most likely has a relatively large number of dominators. Hence,
the size of dynamic skyline in top-5 prominent streak discovery is only slightly larger
than that in top-1. This explains Figure 8(c). On the contrary, for sequence AOL, the
size of dynamic skyline for top-5 is about twice the size for top-1 (igure 8(d)). This is

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 G. Zhang et al.

100 101 102 103 104 105

K

0

3

6

9

12

#
 o
f
p
ro
m
in
e
n
t
st
re
a
k
s SP500×103

(a) Number of Prominent Streaks

100 101 102 103 104 105

K

0

1

2

3

to
ta
l
ti
m
e
(m

s)

SP500×103

(b) Execution Time

Fig. 9. Number of Prominent Streaks and Execution Time, LLPS on SP500, Top-k Prominent Streaks,
Varying k.

0 2000 4000 6000 8000 10000
position

0

3

6

9

12

15

18

21

ti
m
e
(m

s)

SP500
LLPS-1, NLPS
LLPS-2
LLPS-4
LLPS-8
LLPS-16

×103

(a) SP500

0 2 4 6 8 10 12
position

0

1

2

3

4

ti
m
e
(m

s)

AOL
LLPS-1, NLPS
LLPS-2
LLPS-4
LLPS-8
LLPS-16

×104

×104

(b) AOL

Fig. 10. Cumulative Execution Time at Various Positions, for Different Reporting Frequencies, Top-5 Promi-
nent Streak Discovery.

100 101 102 103

length of the interval

0

10

20

30

40

to
ta
l
ti
m
e
(m

s)

SP500×103

(a) SP500

100 101 102 103

length of the interval

0

4

8

12

16

20

to
ta
l
ti
m
e
(m

s)

AOL×103

(b) AOL

Fig. 11. Total Execution Time by Reporting Frequencies, Top-5 Prominent Streak Discovery.

because sequence AOL fluctuates. The prominent streaks have different right ends of
intervals due to the fluctuation. This also explains why the sizes of dynamic skylines
in Baseline, NLPS and LLPS do not differ much from each other in this sequence.
However, as Table IV shows, their differences on execution time are still significant
because NLPS and LLPS generate much less candidates than Baseline does.

By Definition 5, PSP ⊆ KPSP , i.e., all prominent streaks are also top-k prominent
streaks. This is clearly shown in Figures 8(a) and 8(b). Furthermore, KPSP ⊆ LPSP ,
i.e., top-k prominent streaks must be local prominent streaks too. Therefore, the set

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:31

Table V. Data Sequences Used in Experiments on Multi-sequence Prominent Streak Discovery.

name # sequences average length # prominent streaks description
NBA1 1225 281 28 Points scored by all NBA players from 1991-2004
Wiki 8 14454 59 Hourly traffic to the Wikipedia pages of Ivy

League universities

Table VI. Number of Candidate Streaks, Multi-sequence Prominent Streak Discovery.

name Baseline NLPS LLPS
NBA1 9.41× 107 1.23× 106 3.31 × 105

Wiki 8.36× 108 1.23× 106 1.86 × 105

Table VII. Execution Time (in Milliseconds), Multi-sequence Prominent Streak Discovery.

name Baseline NLPS LLPS
NBA1 3436 310 292
Wiki 33537 275 190

KPSP grows by k and stops growing after k reaches a certain value, when all streaks in
LPSP are included in KPSP . This is demonstrated by Figure 9(a) in which the number
of prominent streaks in sequence SP500 increases by k until k reaches about 10, 000.
As a result, total execution time also changes in sync with the number of prominent
streaks, as shown in Figure 9(b).

We also experimented with monitoring top-k prominent streaks. The results are
shown in Figure 10 and Figure 11, which exhibit patterns of execution time similar
to the patterns in Figure 6 and Figure 7 for monitoring top-1 prominent streaks.

Multi-sequence Prominent Streaks:
We used two datasets for experiments on multi-sequence prominent streak discov-

ery. One (Wiki) is the hourly traffic to Ivy League universities’ Wikipedia pages,4 one
sequence per university. The other dataset (NBA1) contains 1225 sequences, one se-
quence per NBA player. Each sequence lists the scores of a player in all the games
he played from 1991 to 2004. 8 The characteristics of these two datasets are shown in
Table V, including the number of sequences, average sequence length and the number
of prominent streaks. Tables VI and VII show the number of candidate streaks and the
execution time, respectively, for Baseline, NLPS and LLPS. The results are very simi-
lar to that in Tables II and III. This is because the process of multi-sequence prominent
streak discovery is not very different from its single-sequence counterpart.

For dataset NBA1, Table VIII shows the distribution of players by the number of
prominent streaks contributed by them. All 29 prominent streaks, i.e., NBA scoring
records in the period of 1991 to 2004, come from merely 10 different players. Ta-
ble IX shows the detailed records. One interesting observation from the table is that
Karl Malone and John Stockton, two of the healthiest NBA players, had scored in two
longest streaks of games. Another example is that Allen Iverson is the only one who
scored at least 20 points in more than 50 consecutive games.

Multi-dimensional Prominent Streaks:
We used three datasets for experiments on multi-dimensional prominent streak dis-

covery, listed in Table X. The first dataset is the game log of NBA player Karl Malone,
from 1991 to 2004 seasons.8 This is a sequence of 986 elements, each of which rep-
resents Malone’s performance in a game on 6 performance dimensions. The second
dataset is the 2003-2011 Texas Motor Vehicle Crash Statistics,9 a 5-dimensional se-

8http://www.databasebasketball.com/index.htm
9http://www.dot.state.tx.us/txdot library/drivers vehicles/publications/crash statistics/default.htm

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.databasebasketball.com/index.htm
http://www.dot.state.tx.us/txdot_library/drivers_vehicles/publications/crash_statistics/default.htm

A:32 G. Zhang et al.

Table VIII. Distribution of Players by Number of Prominent Streaks.

number of prominent streaks number of players
0 1215
1 6
3 1
4 1
5 1
10 1

Table IX. Multi-sequence Prominent Streaks in Datast NBA1.

length minimal value players
1 71 David Robinson
2 51 Allen Iverson; Antawn Jamison
4 42 Kobe Bryant
9 40 Kobe Bryant
13 35 Kobe Bryant
14 32 Kobe Bryant
16 30 Kobe Bryant
17 27 Michael Jordan
27 26 Allen Iverson
34 24 Tracy McGrady
45 21 Allen Iverson
57 20 Allen Iverson
74 19 Shaquille O’Neal
94 18 Shaquille O’Neal
96 17 Karl Malone
119 16 Karl Malone
149 15 Karl Malone
159 14 Karl Malone
263 13 Karl Malone
357 12 Karl Malone
527 11 Karl Malone
575 10 Karl Malone
758 7 Karl Malone
858 6 Shaquille O’Neal
866 2 Karl Malone
932 1 John Stockton
1185 0 Jim Jackson

Table X. Data Sequences Used in Experiments on Multi-dimensional Prominent Streak Discovery.

name length # prominent streaks # dimensions description
Malone 986 640 6 1991-2004 game log of Karl Malone (minutes, points,

rebounds, assists, steals, blocks)
Crashes 3287 1493 5 2003-2011 Texas Motor Vehicle Crash Statistics

(Crashes and Injuries by Date)
AAPL 6411 2616 3 NASDAQ stock data of Apple Inc. from 1970 to

2010, on daily values of opening price, change ratio
((open − close)/open × 100%) and trading volume

quence of 3287 elements, where each element is for one day and represents the daily
counts of crashes, injuries, fatalities, and so on. The last dataset is the historical NAS-
DAQ stock data of Apple Inc. from 1970 to 2010.10 In this 6411-element sequence, each
element is for a trading day and contains the opening price, change ratio, and trading
volume of the stock of Apple Inc. on that day.

The number of candidate streaks and the execution time by Baseline, NLPS, and
LLPS are shown in Tables XI and XII. Figure 12 further shows detailed experimental
results on dataset AAPL. The observations made on these results are similar to those
for basic, top-k, and multi-sequence prominent streak discovery.

10http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume

Discovering General Prominent Streaks in Sequence Data A:33

Table XI. Number of Candidate Streaks, Multi-dimensional Prominent Streak Discovery.

name Baseline NLPS LLPS
Malone 4.87× 105 1.27× 104 4.47 × 103

Crashes 5.40× 106 6.95× 105 1.82 × 104

AAPL 2.06× 107 4.77× 105 4.08 × 105

Table XII. Execution Time (in Milliseconds), Multi-dimensional Prominent Streak Discovery.

name Baseline NLPS LLPS
Malone 4575 336 180
Crashes 1.08× 105 1113 326
AAPL 5.65× 105 9997 557

0 1000 2000 3000 4000 5000 6000
position

0

100

101

102

103

104

#
 o
f
c
a
n
d
id
a
te
s

AAPL

Baseline
NLPS
LLPS

(a) Number of Candidate Streaks

0 1000 2000 3000 4000 5000 6000
position

0

500

1000

1500

2000

2500

3000

si
ze

AAPL

Baseline, NLPS
LLPS

(b) Size of Dynamic Skyline

0 1000 2000 3000 4000 5000 6000
position

0

3

6

9

12

ti
m
e
(m

s)

AAPL
LLPS-1, NLPS
LLPS-2
LLPS-4
LLPS-8
LLPS-16

×103

(c) Cumulative Execution Time at Various Posi-
tions, for Different Reporting Frequencies

100 101 102 103

length of the interval

0

4

8

12

to
ta
l
ti
m
e
(m

s)

AAPL×103

(d) Total Execution Time by Reporting Frequencies

Fig. 12. Detailed Results on AAPL, Multi-dimensional Prominent Streak Discovery.

We also investigated how number of prominent streaks and total execution time of
LLPS increase by the dimensionality of data, using dataset Malone. As the boxplots in
Figure 13 show, these measures do not increase exponentially by data dimensionality,
at least under small dimensionality such as 6. This indicates that, while the “curse of
dimensionality” can raise concerns, the empirical results are much more encouraging.
It is partly due to that data values fluctuate and thus the appearance of a small value
terminates many prominent streaks. Furthermore, data values are correlated, which
practically reduces data dimensionality. Finally, the results are for at most 6 dimen-
sions. We note that arguably the prominent streaks found in the real world, such as
the ones in Section 1, mostly would not have more than 6 dimensions.

Putting it Together: Top-k Prominent Streaks on Multiple Multi-dimensional
Sequences:

We also used dataset NBA2 (Table XIII) for experiments on discovering top-k promi-
nent streaks from multiple multi-dimensional sequences. This dataset contains 1185

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 G. Zhang et al.

1 2 3 4 5 6
of dimensions

0

100

200

300

400

500

600

700

#
 o
f
p
ro
m
in
e
n
t
st
re
a
k
s Malone

(a) Number of Prominent Streaks

1 2 3 4 5 6
of dimensions

0

40

80

120

160

200

240

to
ta
l
ti
m
e
(m

s)

Malone

(b) Execution Time of LLPS

Fig. 13. Experiments on Increasing Dimensionality.

Table XIII. Data Sequences Used in Experiments on Top-5 Multi-sequence Multi-dimensional Prominent Streak
Discovery.

name # sequences average length # dimensions # prominent streaks description
NBA2 1185 290 6 10867 1991-2004 game log of all NBA

players (minutes, points, re-
bounds, assists, steals, blocks)

Table XIV. Number of Candidate Streaks, Top-5 Multi-sequence Multi-dimensional Prominent Streak Discovery.

name Baseline NLPS LLPS
NBA2 9.41× 107 2.98× 106 8.76 × 105

6-dimensional sequences, each of which corresponds to the game log of an NBA player
from 1991 to 2004. One of the sequences is the aforementioned dataset Malone.

Figure 14 shows that distribution of prominent streaks by length. It is clear that
the distribution follows the power law. The reason is that the minimal value vector
for a streak takes the minimal value on each dimension from all elements. The longer
a streak is, the smaller the values in its minimal value vector become. Therefore it
is difficult for a long streak to stand out as prominent. Figure 15 shows detailed ex-
perimental results on this dataset which show similar patterns to those observed for
aforementioned experiments.

7. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of discovering prominent streaks in sequence data.
A prominent streak is a long consecutive subsequence consisting of only large (small)
values. We propose efficient methods based on the concept of local prominent streak
(LPS). We prove that prominent streaks are a subset of LPSs and the number of LPSs
is less than the length of a data sequence. Our linear LPS-based method guarantees
to consider only local prominent streaks, thus achieving significant reduction in candi-
date streaks. The proposed properties and algorithms are also extended for discovering
general top-k, multi-sequence, and multi-dimensional prominent streaks. The results
of experiments over multiple real datasets verified the effectiveness of the proposed
methods.

Prominent streak discovery provides insightful data patterns for data analysis in
many real-world applications and is an enabling technique for computational jour-
nalism. Given its real-world usefulness and complexity, the research on prominent
streaks in sequence data opens a spectrum of challenging problems. Here we briefly
outline several future directions. (1) More general concept of prominent streak can
be pursued. For instance, finding conditional prominent streaks is about discovering
constrains that make streaks prominent, e.g. “since June 2009” and “the month of

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Discovering General Prominent Streaks in Sequence Data A:35

Table XV. Execution Time (in Milliseconds), Top-5 Multi-sequence Multi-dimensional Prominent Streak Discovery.

name Baseline NLPS LLPS
NBA2 1.39× 107 4.33× 105 1.14× 105

100 101 102 103

length of streak

100

101

102

103

104

n
u
m
b
e
r
o
f
st
re
a
k
s

NBA2

Fig. 14. Distribution of Prominent Streaks by Length.

0 10 20 30
position

0
100

101

102

103

104

105

#
 o
f
c
a
n
d
id
a
te
s

NBA2

Baseline
NLPS
LLPS

×104

(a) Number of Candidate Streaks

0 1 2 3
position

0

2

4

6

8

10

12

si
ze

NBA2

Baseline, NLPS
LLPS

×103

×105

(b) Size of Dynamic Skyline

0 10 20 30
position

0

10

20

30

40

50

ti
m
e
(m

s)

NBA2
LLPS-1, NLPS
LLPS-2
LLPS-4
LLPS-8
LLPS-16

×104

×104

(c) Cumulative Execution Time at Various Posi-
tions, for Different Reporting Frequencies

100 101 102 103

length of the interval

10

20

30

40

50

to
ta
l
ti
m
e
(m

s)

NBA2×104

(d) Total Execution Time by Reporting Frequencies

Fig. 15. Detailed Results on NBA2, Top-5 Multi-sequence Multi-dimensional Prominent Streak Discovery.

July” for the motivating example streaks in Section 1. (2) Prominent streaks can be
incorporated with the model of data cube [Gray et al. 1997]. Specifically, given a multi-
dimensional sequence, the goal is to discover prominent streaks in not only the full
space but also all possible subspaces. For example, given the NBA2 dataset used in
our experiments, we may want to find prominent streaks in spaces (points, rebounds),
(points, assists, blocks), and so on. (3) When there are many prominent streaks, it is
important to rank them by their interestingness, so that a user can focus on the top-
ranked prominent streaks. Some important ranking criteria to consider include streak
length, number of similar prominent streaks in the dataset, and so on.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 G. Zhang et al.

Acknowledgements: We thank Jun Yang for discussion of the initial ideas of this
paper when Chengkai Li and Jun Yang were both visiting HP Labs in Beijing, China
in the summer of 2010.

REFERENCES

Rakesh Agrawal, Christos Faloutsos, and Arun Swami. 1993. Efficient similarity search in sequence
databases. (1993), 69–84. DOI:http://dx.doi.org/10.1007/3-540-57301-1 5

Rakesh Agrawal, King-Ip Lin, Harpreet S. Sawhney, and Kyuseok Shim. 1995. Fast Similarity Search in
the Presence of Noise, Scaling, and Translation in Time-Series Databases. In Proceedings of the 21th
International Conference on Very Large Data Bases (VLDB ’95). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 490–501. http://dl.acm.org/citation.cfm?id=645921.673155

R. Agrawal and R. Srikant. 1995. Mining sequential patterns. In Proceedings of the Eleventh International
Conference on Data Engineering. 3–14.

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool.
Journal of molecular biology 215, 3 (1990), 403–410.

Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun.
ACM 18, 9 (Sept. 1975), 509–517. DOI:http://dx.doi.org/10.1145/361002.361007

Jon Louis Bentley. 1979. Multidimensional binary search trees in database applications. Software Engineer-
ing, IEEE Transactions on SE-5, 4 (1979), 333–340. DOI:http://dx.doi.org/10.1109/TSE.1979.234200

Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline operator.
In Data Engineering, 2001. Proceedings. 17th International Conference on. 421–430.
DOI:http://dx.doi.org/10.1109/ICDE.2001.914855

Chee-Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung, and Zhenjie Zhang. 2006. On high
dimensional skylines. In Proceedings of the 10th international conference on Advances in Database Tech-
nology. Springer-Verlag, Berlin, Heidelberg, 478–495. DOI:http://dx.doi.org/10.1007/11687238 30

J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. 2003. Skyline with presorting. In Data Engineering, 2003. Pro-
ceedings. 19th International Conference on. 717–719. DOI:http://dx.doi.org/10.1109/ICDE.2003.1260846

Sarah Cohen, Chengkai Li, Jun Yang, and Cong Yu. 2011. Computational Journalism: A Call to Arms to
Database Researchers. In Proceedings of the 5th Biennial Conference on Innovative Data Systems Re-
search (CIDR). 148–151.

Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1993. Fast subsequence matching in time-
series databases. University of Maryland at College Park, College Park, MD, USA.

Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao,
Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A Relational Aggregation Operator Gener-
alizing Group-By, Cross-Tab, and Sub-Totals. Data Min. Knowl. Discov. 1, 1 (Jan. 1997), 29–53.
DOI:http://dx.doi.org/10.1023/A:1009726021843

Bin Jiang and Jian Pei. 2009. Online Interval Skyline Queries on Time Series. In Proceedings of the 2009
IEEE International Conference on Data Engineering (ICDE ’09). IEEE Computer Society, Washington,
DC, USA, 1036–1047. DOI:http://dx.doi.org/10.1109/ICDE.2009.70

Xiao Jiang, Chengkai Li, Ping Luo, Min Wang, and Yong Yu. 2011. Prominent streak discov-
ery in sequence data. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’11). ACM, New York, NY, USA, 1280–1288.
DOI:http://dx.doi.org/10.1145/2020408.2020601

Donald Kossmann, Frank Ramsak, and Steffen Rost. 2002. Shooting stars in the sky: an online algorithm
for skyline queries. In Proceedings of the 28th international conference on Very Large Data Bases (VLDB
’02). VLDB Endowment, 275–286. http://dl.acm.org/citation.cfm?id=1287369.1287394

H. T. Kung, F. Luccio, and F. P. Preparata. 1975. On Finding the Maxima of a Set of Vectors. J. ACM 22, 4
(Oct. 1975), 469–476. DOI:http://dx.doi.org/10.1145/321906.321910

T. Warren Liao. 2005. Clustering of time series data-a survey. Pattern Recogn. 38, 11 (Nov. 2005), 1857–1874.
DOI:http://dx.doi.org/10.1016/j.patcog.2005.01.025

Xuemin Lin, Yidong Yuan, Qing Zhang, and Ying Zhang. 2007. Selecting Stars: The k Most Representative
Skyline Operator. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. 86–
95. DOI:http://dx.doi.org/10.1109/ICDE.2007.367854

T. Oates, L. Firoiu, and P.R. Cohen. 1999. Clustering time series with hidden markov models and dynamic
time warping. In Proceedings of the IJCAI-99 Workshop on Neural, Symbolic and Reinforcement Learn-
ing Methods for Sequence Learning. 17–21.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1007/3-540-57301-1_5
http://dl.acm.org/citation.cfm?id=645921.673155
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1109/TSE.1979.234200
http://dx.doi.org/10.1109/ICDE.2001.914855
http://dx.doi.org/10.1007/11687238_30
http://dx.doi.org/10.1109/ICDE.2003.1260846
http://dx.doi.org/10.1023/A:1009726021843
http://dx.doi.org/10.1109/ICDE.2009.70
http://dx.doi.org/10.1145/2020408.2020601
http://dl.acm.org/citation.cfm?id=1287369.1287394
http://dx.doi.org/10.1145/321906.321910
http://dx.doi.org/10.1016/j.patcog.2005.01.025
http://dx.doi.org/10.1109/ICDE.2007.367854

Discovering General Prominent Streaks in Sequence Data A:37

Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005. Progressive skyline com-
putation in database systems. ACM Trans. Database Syst. 30, 1 (March 2005), 41–82.
DOI:http://dx.doi.org/10.1145/1061318.1061320

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming Chen, Umesh-
war Dayal, and Mei-Chun Hsu. 2004. Mining Sequential Patterns by Pattern-Growth: The Pre-
fixSpan Approach. IEEE Trans. on Knowl. and Data Eng. 16, 11 (Nov. 2004), 1424–1440.
DOI:http://dx.doi.org/10.1109/TKDE.2004.77

Jian Pei, Yidong Yuan, Xuemin Lin, Wen Jin, Martin Ester, Qing Liu, Wei Wang, Yufei Tao, Jeffrey Xu
Yu, and Qing Zhang. 2006. Towards multidimensional subspace skyline analysis. ACM Trans. Database
Syst. 31, 4 (Dec. 2006), 1335–1381. DOI:http://dx.doi.org/10.1145/1189769.1189774

L. Rabiner. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc.
IEEE 77, 2 (1989), 257–286. DOI:http://dx.doi.org/10.1109/5.18626

Young-In Shin and Donald Fussell. 2007. Parametric kernels for sequence data analysis. In Proceedings of
the 20th international joint conference on Artifical intelligence (IJCAI’07). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1047–1052. http://dl.acm.org/citation.cfm?id=1625275.1625445

Padhraic Smyth and others. 1997. Clustering sequences with hidden Markov models. Advances in neural
information processing systems (1997), 648–654.

Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining sequential patterns: Generalizations and per-
formance improvements. (1996), 1–17. DOI:http://dx.doi.org/10.1007/BFb0014140

Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. 2001. Efficient Progressive Skyline Computation. In Pro-
ceedings of the 27th International Conference on Very Large Data Bases (VLDB ’01). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 301–310. http://dl.acm.org/citation.cfm?id=645927.672217

Yufei Tao, Ling Ding, Xuemin Lin, and Jian Pei. 2009. Distance-Based Representative Skyline. In Proceed-
ings of the 2009 IEEE International Conference on Data Engineering. IEEE Computer Society, Wash-
ington, DC, USA, 892–903. DOI:http://dx.doi.org/10.1109/ICDE.2009.84

Yufei Tao, Xiaokui Xiao, and Jian Pei. 2006. SUBSKY: Efficient Computation of Skylines in Subspaces.
In Proceedings of the 22nd International Conference on Data Engineering (ICDE ’06). IEEE Computer
Society, Washington, DC, USA, 65–. DOI:http://dx.doi.org/10.1109/ICDE.2006.149

Min Wang and X. Sean Wang. 2006. Finding the plateau in an aggregated time series. In Proceedings of the
7th international conference on Advances in Web-Age Information Management (WAIM ’06). Springer-
Verlag, Berlin, Heidelberg, 325–336. DOI:http://dx.doi.org/10.1007/11775300 28

Weng-Keen Wong. 2004. Data mining for early disease outbreak detection. Ph.D. Dissertation. Pittsburgh,
PA, USA. Advisor(s) Moore, Andrew.

Tian Xia and Donghui Zhang. 2006. Refreshing the sky: the compressed skycube with effi-
cient support for frequent updates. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data (SIGMOD ’06). ACM, New York, NY, USA, 491–502.
DOI:http://dx.doi.org/10.1145/1142473.1142529

X. Yan, J. Han, and R. Afshar. 2003. CloSpan: Mining closed sequential patterns in large datasets. In Pro-
ceedings of SIAM International Conference on Data Mining. 166–177.

B.-K. Yi, H.V. Jagadish, and C. Faloutsos. 1998. Efficient retrieval of similar time sequences under
time warping. In Data Engineering, 1998. Proceedings., 14th International Conference on. 201–208.
DOI:http://dx.doi.org/10.1109/ICDE.1998.655778

MohammedJ. Zaki. 2001. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning
42, 1-2 (2001), 31–60. DOI:http://dx.doi.org/10.1023/A:1007652502315

Zhenjie Zhang, Xinyu Guo, Hua Lu, Anthony K. H. Tung, and Nan Wang. 2005. Discovering strong
skyline points in high dimensional spaces. In Proceedings of the 14th ACM international confer-
ence on Information and knowledge management (CIKM ’05). ACM, New York, NY, USA, 247–248.
DOI:http://dx.doi.org/10.1145/1099554.1099610

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/1061318.1061320
http://dx.doi.org/10.1109/TKDE.2004.77
http://dx.doi.org/10.1145/1189769.1189774
http://dx.doi.org/10.1109/5.18626
http://dl.acm.org/citation.cfm?id=1625275.1625445
http://dx.doi.org/10.1007/BFb0014140
http://dl.acm.org/citation.cfm?id=645927.672217
http://dx.doi.org/10.1109/ICDE.2009.84
http://dx.doi.org/10.1109/ICDE.2006.149
http://dx.doi.org/10.1007/11775300_28
http://dx.doi.org/10.1145/1142473.1142529
http://dx.doi.org/10.1109/ICDE.1998.655778
http://dx.doi.org/10.1023/A:1007652502315
http://dx.doi.org/10.1145/1099554.1099610

	Introduction
	Problem Definition
	Overview of the Solution
	Summary of Contributions and Outline

	Related Work
	Discovering Prominent Streaks from Local Prominent Streaks
	Local Prominent Streak (LPS)
	LPSPk and LPSPkk
	Non-linear LPS Method
	Linear LPS Method

	Monitoring Prominent Streaks
	Discovering General Prominent Streaks
	Top-k Prominent Streaks
	Multi-sequence Prominent Streaks
	Multi-dimensional Prominent Streaks
	Key Ideas
	Efficient Computation
	A Note on ``Curse of Dimensionality''

	Experiments
	Experimental Results on Basic Prominent Streak Discovery
	Experimental Results on General Prominent Streak Discovery

	Conclusion and Future Work

