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1 Introduction
“Big data” have arrived. The increasing abundance of data brings
many opportunities for journalism, from discovering interesting sto-
ries to fact-checking claims. Unfortunately, the skill of making
sense out of data is in short supply; software tools suitable for non-
technical users are sorely lacking. The gap between the abundance
of data and the shortage of human expertise seems to be widening.
Unless we find a way to close this gap, big data will not achieve its
potential for journalism. Moreover, the public may become more
susceptible to “lies, d—ed lies, and statistics” that nitpick data to
advance their own arguments.

The following examples illustrate the use of data in finding sto-
ries and checking facts, as well as the associated challenges.

Example 1 (Finding and Monitoring Interesting Claims). Attention-
seizing claims backed up by data can benefit reporting in many
ways. When used in stories, these “factlets” help make stories
more concrete and memorable. Such factlets can also serve as
leads that help reporters identify newsworthy stories. While factlets
take many different forms, we consider the following three types
commonly used in the media across a variety of domains, such as
sports, weather, technology, crime, and finance.

• Situational facts [10], e.g.: “The social world’s most viral photo
ever generated 3.5 million likes, 170,000 comments and 460,000
shares by Wednesday afternoon.” (cnbc. com/ id/ 49728455 )
A “situational fact” is about an object not being less impressive
than any other object within a certain context (e.g., all photos
posted to Facebook) when they are compared by several mea-
sures (e.g., numbers of “likes”, “comments” and “shares”).

• One-of-the-few claims [12], e.g.: “Victor Oladipo scored 30
points and handed out 14 assists... only three other rookies
have recorded at least 30 points and 14 assists in a game...”
(espn. go. com/ espn/ elias? date= 20140222 ) This state-
ment is about an entity that is only dominated by at most three
other entities.

• Prominent streak factlets [9, 15], e.g.: “This month the Chinese
capital has experienced 10 days with a maximum temperature
in around 35 degrees Celsius—the most for the month of July
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in a decade.” (chinadaily. com. cn/ china/ 2010-07/ 27/
content_ 11055675. htm ) A “prominent streak” is a long con-
secutive subsequence (e.g., 10 days of temperature) consisting
of only large (small) values (e.g., all above a value close to 35
degrees) within a sequence of values (e.g., daily maximum tem-
perature of Beijing).

Methods for finding factlets automatically from data are crucial
in reducing the burden posed by ever-growing data given limited
reporting resources. Today, discovery of interesting claims in news
relies largely on intuition and effort of domain experts. An expert,
impressed by an event such as outstanding performance of a player
in a game, would hypothesize a factlet and then manually craft a
database query to check it. This approach appears to the one taken
by Elias Sports Bureau in supplying factlets to sports media [3].
However, manual discovery is laborious and error-prone. It leads
to poor coverage of local or non-mainstream events, and it ties up
precious human expertise that could be otherwise devoted to more
important journalistic activities.

Another challenge is automatic, real-time monitoring of factlets
from data that come fast. The value of a news piece diminishes
rapidly after an event takes place. For example, sports reporters
need to present sensational factlets quickly as they emerge during
a game; delays make fans less interested in the records and risk
losing them to rival media. For another example, to help investors
make timely decisions, financial reporters must be able to identify
and present new factlets at the speed of the market.

Example 2 (Fact-Checking Claims in Political Campaign Ads).
This example is straight from factcheck. org . A TV ad in the
2010 elections claimed that Jim Marshall, a Democratic incumbent
from Georgia, “is a long way from Nancy Pelosi,” as he “voted the
same as Republican leaders 65 percent of the time.”1 This com-
parison was made with Republican Leader John Boehner over the
votes in 2010. If we start the comparison from 2007, however, the
number would have been only 56 percent, which is not very high
considering that even the Democratic Whip, Jim Clyburn, voted 44
percent of the time with Boehner during that period.

Several challenges are evident from this example. First, the claim
may be vague. In this example, the claim does not specify the
exact target and period of comparison. The reason for omitting
such details might be to make the claim short and memorable, but
in some cases vagueness can be a way of hiding the fact that the
claim cherry-picked data. Currently, seeking clarification to vague
claims is mostly a manual process that can significantly hold up
fact-checking.

1This ad was in response to an earlier ad attacking Marshall for voting with
Nancy Pelosi “almost 90 percent of the time,” which, not surprisingly, also
tailored the claim in ways to further its own argument.



The second challenge is that fact-checking goes beyond checking
correctness—a correct claim can still mislead. For example, as we
have seen in the discussion above, the claim about Marshall’s vot-
ing record is correct (once we resolve the ambiguity), but it fails to
present the overall picture fairly—it uses a period of comparison
that exaggerates the percentage of agreement, and it does not put
this percentage in a proper context (that the percentage of agree-
ment between Republicans and Democrats is actually not low when
we consider all votes including non-controversial ones).

Finally, an important part of a fact-checker’s job is to convey the
conclusion of fact-checking effectively to an audience. A proven
strategy is to construct short counterarguments that are derived
from the same data but lead to conclusions that differ from the orig-
inal claim. For example, factcheck. org uses two counterargu-
ments against the original claim on Marshall’s voting record—one
that shows a lower percentage of agreement when the period of
comparison is changed, and another that shows a comparable per-
centage when substituting Marshall with somebody (Clyburn) who
represents Democrats’ voting pattern. Constructing effective coun-
terarguments from data requires expertise and currently demands
a lot of manual effort.

Today, these challenges are limiting the scale and scope of fact-
checking despite availability of data. Imagine if we could automate
the fact-checking process such that we can disambiguate vague
claims, assess the quality of claims beyond correctness, and come
up with counterarguments automatically using data. Journalists
would be able to check more claims faster and more accurately, al-
lowing them to expand fact-checking to levels previously unattain-
able with purely manual efforts.

We have developed a suite of computational techniques for find-
ing and checking claims based on structured data [13, 9, 12, 10, 15].
Our techniques are able to capture human intuition of what consti-
tutes “good” (not just correct) claims, and allows us to specify rele-
vant domain knowledge and formulate various journalistic tasks—
such as finding interesting claims from data, monitoring evolv-
ing data for such claims, disambiguating vague claims, and con-
structing counterarguments—as computational problems that can
be solved automatically. Our framework is surprisingly versatile:
it is able to capture various notions of claim quality, and can be
applied to many claim types across different domains.

This demonstration showcases two systems, uClaim and iCheck.
uClaim focuses on finding interesting claims from data. It automat-
ically maintains the set of interesting claims, in real time, as new
data become available. iCheck focuses on checking claims based
on data. It can automatically “reverse-engineer” vague claims to
remove ambiguity, and come up with counterarguments to low-
quality claims. Both systems include visualization and social fea-
tures that help users understand the claims and share their insights.
Earlier versions of these systems have been demonstrated in other
venues [7, 14].

2 uClaim: Finding and Monitoring Claims
The uClaim system automates finding and monitoring of the three
types of facts discussed in Example 1. uClaim integrates the var-
ious algorithms in [9, 12, 10, 15]. It incorporates all three types
of facts into a unified suite of data model, algorithm framework
and fact ranking measure. Figure 1 illustrates the components of
uClaim. Given an ever-growing database table, upon the arrival of
a new tuple t into the table, uClaim checks if t triggers any new sit-
uational facts, one-of-the-few facts, and prominent streaks. It also
ranks these facts together by several different ranking measures.
Furthermore, uClaim provides multiple features in striving for an

Situational Facts (<*,*,DAL>,{pts,reb})

One-of-the-Few (<Jordan,**>, {pts, reb})

Prominent Streaks (<Jordan,**>, {pts})

Facts

id player team … pts reb …

t1 Larmar Clippers … 12 9 …

t2 Larmar Clippers … 8 11 …

… … … … … … …

t7 House Heat … 8 6 …

t8 Larmar Clippers … 10 11 …

Algorithms

RankingTranslation
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Rules & Templates

Situational Facts

No other player scored more pts and reb against DAL than Jordan
One-of-the-Few

Jordan scored 10 pts & 10 reb. Only 3 others have similar performance
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Jordan scored 8+ pts in 5 consecutive games

Search

User

Figure 1: uClaim System Architecture

end-to-end system. By using rules and templates, the discovered
facts are translated into textual news leads and presented to users;
it provides a faceted interface for browsing the discovered facts;
it supports keyword-based search of facts; it also allows checking
the profiles of entities and comparing the entities based on the facts
triggered by them.

Figure 2 shows uClaim’s customized GUI for NBA (National
Basketball Association) data, where tuples—players’ statistics in
individual games—are updated during and after the games. The
GUI’s structure is dataset-agnostic and can be adapted to data from
other domains. We will demonstrate uClaim on an NBA dataset and
a weather dataset. The NBA dataset has 317,371 tuples of NBA
box scores from 1991-2004, on 8 dimension attributes (e.g., player,
team, year, etc.) and 7 measure attributes (e.g., points, rebounds,
etc.) The weather dataset has 7.8 million daily weather forecast
records for 5,365 locations of UK from Dec. 2011 to Nov. 2012. It
has 7 dimension attributes and 7 measure attributes.

The GUI consists of four areas, as follows.
1. Stories This area shows a ranked list of textual news leads

(stories) translated from facts that have ever been discovered and
are still valid. It also allows users search for translated stories by
keywords. The translation is guided by a set of templates and rules.
If the “More Like This” button beside a story is clicked, uClaim
shows similar stories in a pop-up window (top-right corner of Fig-
ure 2). The pop-up window also presents bar charts to compare the
stories by their values on measure attributes.

2. Ranking uClaim allows users to choose from several ways
of ranking facts and their corresponding stories.

Interestingness This default option ranks facts by significance of
measure attribute values in the facts.
Popularity This option ranks facts by numbers of times users click
the thumb-up buttons beside the stories.
Recentness This option simply orders facts by their triggering tu-
ples’ timestamps.

3. Exploration This area presents a faceted interface for explor-
ing the stories. Each facet corresponds to a dimension or measure
attribute. Under the facet for a dimension attribute, the attribute
values are associated with and ordered by numbers, which indi-
cate how many facts involve the values. For instance, Figure 2
shows that there are 4,259 facts related to team=Houston Rockets.
uClaim places a checkbox beside each attribute value. A user can
select/unselect the checkboxes across multiple facets. The selected
values within one facet correspond to a disjunctive condition, and
the disjuncts from different facets form a conjunctive condition.
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Figure 2: uClaim User Interface

They together correspond to multiple constraints. Each fact (story)
displayed in the “stories” area must satisfy one such constraint.

Beside the facet for a measure attribute, uClaim presents a slide-
bar and a button (not shown in Figure 2). A user can click the
button to enable/disable a measure attribute. Accordingly the “sto-
ries” area displays stories related to one or more enabled measure
attributes. The user can also use the slidebar to set minimum and
maximum desired values on an enabled attribute. Accordingly the
displayed facts must have values on that attribute within the range.

4. Analytics This area visualizes the statistics on facts related
to entities selected by a user. The “stories” area highlights the en-
tities in stories, e.g., Jason Kidd and David Robinson in Figure 2.
When a user clicks on an entity, it is added to the entity list in the
“analytics” area. The user can remove an entity by clicking the
crossmark beside it. The bottom part of the “analytics” area is a
line chart, which shows one line per selected entity that represents
the number of facts (among the displayed facts in the “stories” area)
triggered by the entity over each time period (e.g., each NBA sea-
son). When the user hovers the mouse on a data point, a pop-up box
shows, for each measure attribute, the number of facts related to the
measure attribute. The top part of this area is a radar chart, which
shows one polygon per selected entity that represents how many
facts triggered by the entity are related to each measure attribute.

Computational Challenges The algorithmic problem that uClaim
solves is finding constraint-measure pairs that qualify a new tuple
t as a fact. A straightforward brute-force approach would compare
t with every historical tuple to determine if t stands out, repeat-
edly for every relevant constraint-measure pair. The obvious low-
efficiency of this approach has three culprits—exhaustive compar-
ison with every tuple, under every constraint, and over every com-
bination of measure attributes. [9, 12, 10, 15] presented efficient
algorithms to counter these issues. For example, in [10] the algo-
rithm finds and monitors situational facts by pruning from consid-
eration clearly weak tuples, constraints, and measures. The key to
the algorithm is to substantially reduce the search space of possible
facts while at the same time make sure all valid facts are found.

For a dataset with modest size (such as the aforementioned NBA
data), the brute-force approach would take months to finish, while
the developed algorithm only requires hours.

With regard to prominent streaks, the solution in [9, 15] hinges
upon the idea of separating two steps—candidate streak gener-
ation which generates a small number of candidate streaks end-
ing at the new tuple without exhaustively considering all possible
streaks, and skyline operation which maintains a dynamic set of
prominent streaks by performing dominance comparison between
existing prominent streaks and candidate streaks. A brute-force ap-
proach to candidate streak generation would enumerate all n(n+1)
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possible streaks in an n-tuple sequence as candidates. On the con-
trary, the algorithm in [9, 15] only needs to produce at most n can-
didate streaks.

An additional challenge is to make the algorithms incremental in
order to monitor claims. Instead of redoing everything from scratch
whenever a new database tuple comes, our algorithms are capable
of leveraging the results computed for previous tuples and only in-
curring computational cost for the delta due to the latest tuple.

3 iCheck: Checking Claims
The iCheck system automatically “checks” claims based on struc-
tured data. This demonstration of iCheck focuses on two types of
claims from two domains: “one-of-the-few” claims about players
in Major League Baseball (similar in form to the one described in
Example 1), and vote correlation claims about United State legis-
lators (similar to the one described in Example 2). A user can ask
iCheck to analyze a claim of either type. If this claim is vague,
iCheck will first show a list of precisely stated claims representing
the most probable ways of resolving the ambiguity. Once the user
selects a precisely stated claim for analysis, iCheck will present a
list of claims supporting or countering it. From this list, the user
can get an intuitive sense of how strong or misleading the claim is.

The iCheck demonstration features data from two domains: Ma-
jor League Baseball and congressional voting records. Major League
Baseball dataset consists of season statistics of teams, pitchers, bat-



Figure 3: iCheck claim centric political view

ters, and fielding dating back to the start of the league. Congres-
sional voting records, in brief, consist of representatives voting on
bills. A bill can have many votes as it propagates through Congress,
and there are many different bill types and designations.

The iCheck interface provides entity-centric and claim-centric
views to users. The entity-centric view allows a user to browse the
list of claims known to iCheck about an entity (be it a player in
Major League Baseball or a US legislator). These claims include
those entered by users as well as those generated automatically by
iCheck itself (as in uClaim). These claims can be sorted by popular-
ity (based on the level of user activities on each claim) and quality
(based on either objective measures or votes by users), allowing the
user to spot interesting claims easily. From the entity-centric view,
the user can also enter a claim about an entity; iCheck will disam-
biguate the newly entered claim if necessary, and compare it with
known claims to avoid duplication.

The claim-centric view allows a specific claim to be scrutinized.
For a precisely stated claim, this view lists the counterarguments
that iCheck generates. For a vague claim, this view lists the pre-
cisely stated claims that iCheck reverse-engineers from the vague
claim. On the claim-centric view, users can comment on the claim,
and vote on which counterarguments are the most effective, or which
reverse-engineered claims are the most probable precise versions of
vague claims.

For example, Figure 3 shows the iCheck claim-centric view for
a political vote-correlation claim. Arguments can be voted on and
sorted based on relative quality of their arguments, and can be sup-
portive or counter to the original claim. Figure 4 shows the entity-
centric view in the MLB domain. In this domain, a player generates
‘one of the few’ claims.

Figure 4: iCheck MLB player centric view

Computational Challenges The key insight behind our approach
to fact-checking is that we tweak the view in which a claim presents

underlying data, and then observe how its conclusion changes. To
this end, we treat a claim as parameterized query over a database;
the parameters of the query correspond to how the claim “picks”
its view of data, and the answer of the query correspond to the con-
clusion of the claim. For example, the vote correlation claim in
Example 2 can be considered as a query that computes the similar-
ity between two time series of votes over a given time interval, over
the database of Congressional votes. The query has four parame-
ters: the two legislators being compared, and the starting and end
times of the comparison period. The original claim is represented
by a particular combination of settings for these four parameters.
By perturbing the settings of these four parameters, we get many
insights. If slight changes to the period of comparison cause the
percentage of vote agreement between Marshall and Boehner to
drop significantly, we know that the original claim is not robust. If
we replace Marshall with other well-known Democrats and observe
that the percentage of vote agreement with Boehner remains high,
we know that percentage in the original claim is not as high as

Technically, we model all possible perturbations of parameters
in a query as a parameter space, and the variation of query an-
swer over this space as a query response surface. Over the param-
eter space, we use a relative claim strength function to measure
how much a perturbed claim strengthens/weakens the conclusion
of the original claim, and a relative claim sensibility function to
measure how well a perturbed claim captures the context of the
original claim. One way to think of the sensibility function is to
view it as a pdf/pmf on the parameter space. Using these two func-
tions, we can define quantitative measures for various properties of
a claim as aggregated properties of the query response surface. We
can also model the tasks of reverse-engineering vague claims and
finding counterarguments as optimization problems over the query
response surface. For example, given a vague claim with a conclu-
sion and a rough guess of its parameter settings, we can attempt to
reverse-engineer it by searching for high-sensibility parameter set-
tings that lead to a query result matching that of the vague claim.

However, these problems are not computationally trivial tasks.
A brute-force approach has to evaluate the query for every possible
parameter setting. For example, for the vote correlation claim, the
number of possible parameter settings is quadratic in the number
of legislators and in the number of votes. Even if we perturb only
one out of the four parameters (one of the legislator being com-
pared), it would take about 5 seconds to consider all possibilities,



which would not satisfy the needs for real-time analysis. However,
by exploiting the properties of the parameter sensibility function
to prioritize the search, we are able to find satisfactory solutions
under one second. For the general case, we have developed an al-
gorithmic framework that enables efficient instantiations of “meta”
algorithms by supplying appropriate algorithmic building blocks,
such as prioritized search and group evaluation of multiple pertur-
bations; for details, see [13].

4 Conclusion
Related Work The problem of finding interesting claims from
data is broadly related to the field of data mining [11, 6]. Our
framework allows flexible mining tasks to be specified using query
templates (e.g., in SQL). Although data mining, machine learn-
ing, and statistics offer many alternative approaches towards find-
ing patterns in data, our approach has the appealing feature that
the discovered patterns readily translate to claims that are easy to
understand by a lay person. In contrast, results from more sophis-
ticated approaches (say, SVM classification) are harder to explain
and cannot be directly cited in stories.

Companies such as Narrative Science and Automated Insights
are able to automatically generate news stories based on data for
domains such as business and sports, thereby alleviating humans
from writing narratives that are largely template-based. We do not
seek to generate complete stories; instead, we focus on supplying
reporters with interesting leads and factlets that can be used in full
stories. Thus, our work can complement what these companies
offer. Other companies such as Elias Sports Bureau provides data
as well as statistics and factlets derived from data. They usually
focus on particular domains and provide their service for a fee. We
have a more general framework for automation, and additionally
support fact-checking.

Organizations such as factcheck.org and PolitiFact.com
rely on their expert editorial staff to check claims. However, man-
ual approaches are costly to scale because of the demand on hu-
man expertise and effort. FactMinder [5] is a tool that assists fact-
checkers in annotating text, extracting entities, linking sources, and
collaboratively building a knowledge base. Truth Goggles (truthgoggl.
es/demo.html) and Dispute Finder [4] detect claims on the Web
that have already been checked or refuted by authoritative sources.
However, computational tools for checking claims directly using
data are still sorely lacking.

Using question answering systems, such as IBM’s Watson and
WolframAlpha, and natural language querying systems, we can
check the correctness of some claims in natural language. However,
these systems are not yet capable of handling claims that corre-
spond to complex queries. Furthermore, they can be used to check
only the correctness of claims, but as we have argued earlier, fact-
checking goes beyond checking correctness.

Future Work Our work to date is only a first step toward a com-
putational approach to fact-checking. We have not addressed a
number of related issues, such as automatically mapping natural-
language claims to known templates, identifying and extracting
data from relevant sources, and assessing the quality of these sources.

Furthermore, finding stories and checking facts in general are
very challenging. Not all leads come from data. Not all lies can be
detected by inspecting data and numbers alone (see, e.g., [8, 1, 2]).
Nonetheless, our demonstration illustrates the potential of compu-
tational techniques—in reducing cost and increasing effectiveness—
for certain types of investigation tasks with growing importance to-
day, as more structured datasets become available either directly or
by information extraction.
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