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ABSTRACT
This is the first study of crowdsourcing Pareto-optimal object find-
ing over partial orders and by pairwise comparisons, which has ap-
plications in public opinion collection, group decision making, and
information exploration. Departing from prior studies on crowd-
sourcing skyline and ranking queries, it considers the casewhere
objects do not have explicit attributes and preference relations on
objects are strict partial orders. The partial orders are derived by ag-
gregating crowdsourcers’ responses to pairwise comparison ques-
tions. The goal is to find all Pareto-optimal objects by the fewest
possible questions. It employs an iterative question-selection frame-
work. Guided by the principle of eagerly identifying non-Pareto
optimal objects, the framework only chooses candidate questions
which must satisfy three conditions. This design is both sufficient
and efficient, as it is proven to find a short terminal questionse-
quence. The framework is further steered by two ideas—macro-
ordering and micro-ordering. By different micro-orderingheuristic-
s, the framework is instantiated into several algorithms with varying
power in pruning questions. Experiment results using both real
crowdsourcing marketplace and simulations exhibited not only or-
ders of magnitude reductions in questions when compared with a
brute-force approach, but also close-to-optimal performance from
the most efficient instantiation.

1. INTRODUCTION
The growth of user engagement and functionality in crowdsourc-

ing platforms has made computationally challenging tasks unprece-
dentedly convenient. The subject of our study is one such task—
crowdsourcingPareto-optimal object finding. Consider a set of
objectsO and a set of criteriaC for comparing the objects. An
objectx∈O is Pareto-optimalif and only if x is not dominated by
any other object. Objecty dominatesx (denotedy≻x) if and only
if x is not better thany by any criterion andy is better thanx by
at least one criterion, i.e.,∀c∈C : x⊁cy and ∃c∈C : y ≻c x.
If x and y do not dominate each other (i.e.,x⊁y and y⊁x), we
denote it byx∼y. The preference (better-than) relationPc (also
denoted≻c) for eachc∈C is a binary relation subsumed byO×O,
in which a tuple(x, y)∈Pc (also denotedx≻cy) is interpreted as “x
is better than (preferred over)y with regard to criterionc”. Hence,
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if (x, y)/∈Pc (also denotedx⊁cy), x is not better thany by criterion
c. We sayx andy are indifferent regardingc (denotedx∼cy), if
(x, y)/∈Pc ∧ (y, x)/∈Pc. We consider the setting where eachPc is a
strict partial order, i.e.,Pc is irreflexive (∀x : (x, x) /∈ Pc) and tran-
sitive (∀x, y : (x, y)∈Pc∧(y, z)∈Pc⇒(x, z)∈Pc), which together
imply asymmetry (∀x, y : (x, y)∈Pc ⇒ (y, x)/∈Pc). We note
that such definition of better-than relation has been widelyused
in modeling preferences (e.g., [20, 13, 28]), and the definition of
Pareto-optimal objects follows the concept ofPareto composition
of preference relations in [13].

Novelty Pareto-optimal queries resemblesskylinequeries [5].
However, except for [23, 4, 17], previous studies on preference
and skyline queries do not use the crowd; they focus on query
processing onexistingdata. On the contrary, we examine how
to obtain sufficient data from the crowd for determining Pareto-
optimal objects. Furthermore, our work differs in several radical
ways, as summarized in Table 1 and explained below.

• The preference relation for a criterion isnot governed by explicit
scores or values on object attributes (e.g., sizes of houses, prices
of hotels), while prior studies (except [4, 17]) assumed explicit
attribute representation. For many comparison criteria, it is diffi-
cult to model objects by explicit attributes, not to mentionasking
people to provide such values or scores; people’s preferences are
rather based on complex, subtle perceptions, as Examples 1 and 2
shall demonstrate. The concept definitions deliberately donot
admit notations for attribute or object equivalence.

• Due to the above reason, we request crowdsourcers to perform
pairwise comparisons instead of directly providing attribute val-
ues or scores. On the contrary, [23] assumes explicit attribute
representation and thereby answers skyline queries by asking the
crowd to provide missing attribute values. Pairwise comparison is
extensively studied in social choice and welfare, preferences, and
voting. It is known that people are more comfortable and confi-
dent with comparing objects than directly scoring them, since it is
easier, faster, and less error-prone [30].

• The crowd’s preference relations are modeled as strict partial or-
ders, as opposed to total orders. This is not only a direct effect of
using pairwise comparisons instead of numeric scores or explicit
attribute values, but also a reflection of the psychologicalnature
of human’s preferences [20, 13], since it is not always natural to
enforce a total order. Most studies on skyline queries assume total
orders, except for [11, 28, 29, 32] which consider partial orders.

Several recent studies used crowdsourcing to compare objects for
answering ranking, top-k and group-by queries.Crowd-BT [12]
ranks objects by crowdsourcing pairwise object comparisons. Poly-
chronopoulos et al. [25] find top-k items in an itemset by asking
human workers to rank small subsets of items. Davidson et al.[15]
evaluate top-k and group-by queries by asking the crowd to answer



Task Question type Multiple
attributes

Order among objects
(on each attribute)

Explicit attribute
representation

[12] full ranking pairwise comparison no total order no
[25] top-k ranking rank subsets of objects no total order no
[15] top-k ranking and grouping pairwise comparison no total order no
[23] skyline/Pareto-optimal queries missing value inquiry yes total order yes
[17] skyline/Pareto-optimal queries pairwise comparison yes total order no

[4], this work skyline/Pareto-optimal queries pairwise comparison yes strict partial order no

Table 1: Related work comparison.

(a) Preference relations (i.e., strict partial orders) on three criteria.

ANSWER
QUESTION ≻ ∼ ≺ OUTCOME

a?sb 1 0 4 b≻sa
a?sc 0 0 5 c≻sa
a?sd 0 2 3 d≻sa
a?se 4 0 1 a≻se
a?sf 3 1 1 a≻sf
b?sc 1 2 2 b∼sc
b?sd 1 3 1 b∼sd
b?se 5 0 0 b≻se
b?sf 4 1 0 b≻sf
c?sd 3 2 0 c≻sd
c?se 4 0 1 c≻se
c?sf 3 1 1 c≻sf
d?se 3 0 2 d≻se
d?sf 3 2 0 d≻sf
e?sf 1 1 3 f≻se

(b) Deriving the preference relation for criterionstory by pairwise
comparisons. Each comparison is performed by5 workers.θ = 60%.

Figure 1: Finding Pareto-optimal movies bystory, music, acting.

typequestions (whether two objects belong to the same group) and
valuequestions (ordering two objects). They do not consider multi-
ple attributes in modeling objects, while skyline and Pareto-optimal
objects are defined in a space of multiple attributes. They assume
total orders instead of partial orders.

To recap, ours is so far the only work on crowdsourcing Pareto-
optimal object finding over partial orders, and we reported in the
extended version of this paper [4] the first study of crowdsourc-
ing Pareto-optimal queries by pairwise comparisons and without
explicit attribute representation.

Motivating Applications Pareto-optimal object finding lend-
s itself to applications in several areas, including publicopinion
collection, group decision making, and information exploration,
exemplified by the following motivating examples.
Example 1 (Collecting Public Opinion and Group Decision Mak-
ing). Consider a set of moviesO={a,b,c,d,e,f} and a set of crite-
ria C={story, music, acting} (denoted bys, m, a in the ensuing
discussion). Fig.1a shows the individual preference relations (i.e.,
strict partial orders), one per criterion. Each strict partial order is
graphically represented as a directed acyclic graph (DAG),more
specifically a Hasse diagram. The existence of a simple path from
x to y in the DAG meansx is better than (preferred to)y by the
corresponding criterion. For example,(a, e)∈Pm (a≻me), i.e.,a
is better thane by music. (b, d)/∈Ps and(d, b)/∈Ps; henceb∼sd.

Figure 2: A question that asks to compare two movies bystory.

The partial orders define the dominance relation between objects.
For instance, moviec dominatesd (c≻d), becausec is preferred
thand on story andmusicand they are indifferent onacting, i.e.,
c≻sd, c≻md, and c∼ad; a and b do not dominate each other
(a∼b), sinceb≻sa, a≻mb andb≻aa. Based on the three partial
orders,b is the only Pareto-optimal object, since no other objects
dominate it and every other object is dominated by some object.

Note that tasks such as the above one may be used in both under-
standing the public’s preference (i.e., the preference relations are
collected from a large, anonymous crowd) and making decisions
for a target group (i.e., the preference relations are from asmall
group of people).

Example 2(Information Exploration). Consider a photography en-
thusiast,Amy, who is drown in a large number of photos she has
taken and wants to select a subset of the better ones. She resorts
to crowdsourcing for the task, as it has been exploited by many
for similar tasks such as photo tagging, location/face identification,
sorting photos by (guessed) date, and so on. Particularly, she would
like to choose Pareto-optimal photos with regard tocolor, sharp-
nessandlandscape.

By definition, the crux of finding Pareto-optimal objects lies in
obtaining the preference relations, i.e., the strict partial orders on
individual criteria. Through crowdsourcing, the preference rela-
tions are derived by aggregating the crowd’s responses topairwise
comparisontasks. Each such comparison between objectsx andy
by criterionc is a question, denotedx?cy, which has three possible
outcomes—x≻cy, y≻cx, andx∼cy, based on the crowd’s answers.
An example is as follows.

Example 3 (Deriving Preference Relations from Pairwise Com-
parisons by the Crowd). Fig.1b shows the hypothetical results of
all 15 pairwise comparisons between the6 movies in Example 1,
by criterions=story. The outcomes of all comparisons form the
crowd’s preference relation onstory (the leftmost DAG in Fig.1a).
Fig.2 is the screenshot of a question form designed for one such
comparison. A crowdsourcer, when facing this question, would
make a choice among the three possible answers or skip a question
if they do not have enough confidence or knowledge to answer it.
Fig.1b shows how many crowdsourcers have selected each answer.
For instance, for questiona?sf, three people preferred moviea,
one person preferredf , and one person is indifferent. By aggre-
gating these answers, it is derived thata is better thanf with regard
to story, since60% of the crowdsourcers who responded to the



question chose this answer. For questionb?sc, the result isb∼sc,
since neitherb≻sc nor b≺sc received enough votes. (Assuming a
thresholdθ=60%, i.e., eitherb≻sc or b≺sc should have at least
60% of votes, in order to not declareb∼sc.)

It is important to point out that, in the aforementioned appli-
cations, there is an intrinsic lack of the notion of “ground truth”.
Since objects are not explicitly represented by attribute values, the
partial orders are purely reflections of crowdsourcers’ opinions. For
this reason, we shall not investigate if crowdsourcers can obtain
answers close to “ground truth”, which does not exist. This also
means that our techniques may get different answers when using
different crowdsourcers or even the same crowdsourcers at different
times, because people’s opinions alter.

Algorithmic Framework Our goal is to find all Pareto-optimal
objects with as few questions as possible. A brute-force approach
will obtain complete preference relations via pairwise comparison-
s of all object pairs by every criterion. However, without such
exhaustive comparisons, incomplete knowledge collected from a
small set of questions may suffice in discerning all Pareto-optimal
objects. Toward this end, it may appear that we can take advantage
of the transitivity of object dominance—a cost-saving property of-
ten exploited in skyline query algorithms (e.g., [5]) to exclude dom-
inated objects from participating in any future comparisononce
they are detected. But, as also discussed in [13], object dominance
in our case isnot transitive (Property 1), due to the lack of explicit
attribute representation. Hence, the aforementioned cost-saving
technique is inapplicable.

Aiming at Pareto-optimal object finding by a short sequence of
questions, we introduce a general, iterative algorithm framework
(Sec.3). Each iteration goes through four steps—question selec-
tion, outcome derivation, contradiction resolution, andtermination
test. In the i-th iteration, a questionqi=x?cy is selected and it-
s outcome is determined based on crowdsourcers’ answers. On
unusual occasions, if the outcome presents a contradictionto the
obtained outcomes of other questions, it is changed to the closest
outcome such that the contradiction is resolved. Based on the tran-
sitive closure of the outcomes to the questions so far, the objects
O are partitioned into three sets—O√ (objects that must be Pareto-
optimal), O× (objects that must be non-Pareto optimal), andO?

(objects whose Pareto-optimality cannot be fully discerned by the
incomplete knowledge so far). WhenO? becomes empty,O√

contains all Pareto-optimal objects and the algorithm terminates.
The question sequence so far is thus aterminal sequence.

There are a vast number of terminal sequences. Our goal is to
find one that is as short as possible. We observe that, for a non-
Pareto optimal object, knowing that it is dominated by at least
one object is sufficient, and we do not need to find all its dom-
inating objects. It follows that we do not really care about the
dominance relation between non-Pareto optimal objects andwe
can skip their comparisons. Hence, the overriding principle of our
question selection strategy is to identify non-Pareto optimal object-
s as early as possible. Guided by this principle, the framework
only chooses fromcandidate questionswhich must satisfy three
conditions (Sec.3.1). This design is sufficient, as we provethat
an empty candidate question set implies a terminal sequence, and
vice versa (Proporty 2). The design is also efficient, as we further
prove that, if a question sequence contains non-candidate questions,
there exists a shorter or equally long sequence with only candidate
questions that produces the sameO×, matching the principle of
eagerly finding non-Pareto optimal objects (Theorem 1). Moreover,
by the aforementioned principle, the framework selects in every
iteration such a candidate questionx?cy that x is more likely to
be dominated byy. The selection is steered by two ideas—macro-

ordering and micro-ordering. By using different micro-ordering
heuristics, the framework is instantiated into several algorithms
with varying power in pruning questions (Sec.4). We also derive
a lower bound on the number of questions required for finding all
Pareto-optimal objects (Theorem 2).

In summary, this paper makes the following contributions:
• This is the first work on crowdsourcing Pareto-optimal object find-

ing over partial orders and by pairwise comparisons. We define
preference relations based on pairwise comparisons and we aim
to find all Pareto-optimal objects by fewest possible comparisons.

• We propose a general, iterative algorithm framework (Sec.3) which
follows the strategy of choosing only candidate questions that
must satisfy three conditions. We prove important properties that
establish the advantage of the strategy (Sec.3.1).

• We design macro-ordering and micro-ordering heuristics for find-
ing a short terminal question sequence. Based on the heuristic-
s, the generic framework is instantiated into several algorithms
(RandomQ, RandomP, FRQ) with varying efficiency. We also
derive a non-trivial lower bound on the number of required pair-
wise comparison questions. (Sec.4)

• We carried out experiments using both simulations and real crowd-
sourcing marketplace to compare the amount of comparisons by
different instantiations of the framework under varying problem
sizes. The results demonstrate the effectiveness of selecting only
candidate questions, macro-ordering, and micro-ordering. When
these ideas are stacked together, they use orders of magnitude less
comparisons than a brute-force approach. The results reveal that
FRQ is nearly optimal and the lower bound is practically tight,
sinceFRQ gets very close to the lower bound. (Sec.5)

2. RELATED WORK
Besides [12], there were multiple studies on ranking objects by

pairwise comparisons, which date back to decades ago as aggregat-
ing the preferences of multiple agents has always been a fundamen-
tal problem in social choice and welfare [14, 3]. The more recent
studies can be categorized into three types:1) Approaches such
as [21, 26, 31] predict users’ object ranking by completing auser-
object scoring matrix. Their predictions take into accountusers’
similarities in pairwise comparisons, resemblingcollaborative fil-
tering [16]. They thus do not consider explicit attribute representa-
tion for objects.2) Approaches such as [7, 9, 8] infer query-specific
(instead of user-specific) ranked results to web search queries. Fol-
lowing the paradigm oflearning-to-rank[22], they rank a query’s
result documents according to pairwise result comparisonsof other
queries. The documents are modeled by explicit ranking features.
3) Approaches such as [6, 19, 1, 2, 24] are similar to [12] as they
use pairwise comparisons to infer a single ranked list that is neither
user-specific nor query-specific. Among them, [19] is special in
that it also applies learning-to-rank and requires explicit feature
representation. Different from our work, none of these studies is
about Pareto-optimal objects, since they all assume a totalorder
among objects; those using learning-to-rank require explicit feature
representation, while the rest do not consider multiple attributes.
Moreover, except [19, 1, 2], they all assume comparison results
are already obtained before their algorithms kick in. In contrast,
we aim at minimizing the pairwise comparison questions to ask in
finding Pareto-optimal objects.

3. GENERAL FRAMEWORK
By the definition of Pareto-optimal objects, the key to finding

such objects is to obtain the preference relations, i.e., the strict
partial orders on individual criteria. Toward this end, themost



basic operation is to performpairwise comparison—given a pair
of objectsx and y and a criterionc, determine whether one is
better than the other (i.e.,(x, y) ∈ Pc or (y, x) ∈ Pc) or they are
indifferent (i.e.,(x, y) /∈ Pc ∧ (y, x) /∈ Pc).

The problem of crowdsourcing Pareto-optimal object findingis
thus essentially crowdsourcing pairwise comparisons. Each com-
parison task betweenx and y by criterion c is presented to the
crowd as a questionq (denotedx?cy). The outcome to the question
(denotedrlt(q)) is aggregated from the crowd’s answers. Giv-
en a set of questions, the outcomes thus contain an (incomplete)
knowledge of the crowd’s preference relations for various criteria.
Fig.2 illustrates the screenshot of one such question (comparing
two movies bystory) used in our empirical evaluation. We note
that there are other viable designs of question, e.g., only allowing
the first two choices (x≻cy andy≻cx). Our work is agnostic to the
specific question design.

Givenn objects andr criteria, a brute-force approach will per-
form pairwise comparisons on all object pairs by every criterion,
which leads tor·n·(n−1)/2 comparisons. The corresponding ques-
tion outcomes amount to the complete underlying preferencerela-
tions. The quadratic nature of the brute-force approach renders it
wasteful. The bad news is that, in the worst case, we cannot do
better than it. To understand this, consider the scenario where all
objects are indifferent by every criterion. If any comparison x?cy
is skipped, we cannot determine ifx andy are indifferent or if one
dominates another.

In practice, though, the outlook is much brighter. Since we look
for only Pareto-optimal objects, it is an overkill to obtaincom-
plete preference relations. Specifically, for a Pareto-optimal object,
knowing it is not dominated by any object is sufficient, and wedo
not need to find all the objects dominated by it; for a non-Pareto
optimal object, knowing it is dominated by at least one object is
sufficient, and we do not need to find all its dominating objects.
Hence, without exhausting all possible comparisons, incomplete
knowledge on preference relations collected from a set of questions
may suffice in fully discerning all Pareto-optimal objects.

Our objective is to find all Pareto-optimal objects with as few
questions as possible. By pursuing this goal, we are applying a very
simple cost model—the cost of a solution only depends on its num-
ber of questions. Although the cost of a task in a crowdsourcing en-
vironment may depend on monetary cost, latency and other factors,
the number of questions is a generic, platform-independentcost
measure and arguably proportionally correlates with the real cost.
Therefore, we assume a sequential execution model which asks the
crowd an ordered sequence of questionsQ = 〈q1, ..., qn〉—it only
asksqi+1 after rlt(qi) is obtained. Thereby, we do not consider
asking multiple questions concurrently. In practice, sucha parallel-
execution framework will lead to shorter latency but more ques-
tions (which may imply higher monetary cost) than our sequential-
execution framework. One interesting direction of future work is
to adapt our algorithms to a parallel framework and investigate the
tradeoffs between latency and cost. Furthermore, in discussion of
our approach, the focus shall be on how to find a short questionse-
quence instead of the algorithms’ complexity, since the time taken
by crowdsourcers to answer questions will dominate the algorithms’
execution time.

To find a short sequence, we design a general algorithm frame-
work, as displayed in Fig.3. Alg.1 shows the framework’s pseudo-
code. Its execution is iterative. Each iteration goes through four
steps—question selection, outcome derivation, contradiction reso-
lution, andtermination test. In thei-th iteration, a questionqi=x?cy
is selected and presented to the crowd. The question outcome
rlt(qi) is derived from the crowd’s aggregated answers. On unusu-

Figure 3: The general framework.

Algorithm 1: The general framework

Input : O : the set of objects
Output : O√ : Pareto-optimal objects of O

1 R(Q)← ∅; /* question outcomes */
2 repeat
3 x?cy ← question selection;
4 rlt(x?cy)← outcome derivation; /* resolve conflict, if any */
5 R(Q)← R(Q) ∪ {rlt(x?cy)};
6 (O√, O×, O?)← partitioning objects based onR+(Q);

/* R+(Q) is the transitive closure of R(Q) */
7 until O? = {};
8 return O√;

al occasions, if the outcome presents a contradiction to theobtained
outcomes of other questions so far, it is changed to the closest
outcome to resolve contradiction. By computingR+(Qi), thetran-
sitive closureof R(Qi)—the obtained outcomes to questions so far
〈q1, . . . , qi〉, the outcomes to certain questions are derived and such
questions will never be asked. Based onR+(Qi), if every object
is determined to be either Pareto-optimal or non-Pareto optimal
without uncertainty, the algorithm terminates.

Below, we discuss outcome derivation and termination test.Sec.3.1
examines the framework’s key step—question selection, andSec.3.2
discusses contradiction resolution.
Outcome derivation Given a questionx?cy, its outcomerlt(x?cy)
must be aggregated from multiple crowdsourcers, in order toreach
a reliable result with confidence. Particularly, one of three mutually-
exclusive outcomes is determined based onk crowdsourcers’ an-
swers to the question:

rlt(x?cy) =







x ≻c y if #x
k

≥ θ

y ≻c x if #y
k

≥ θ
x ∼c y (x ⊁c y ∧ y ⊁c x) otherwise

(1)

where θ is such a predefined threshold thatθ>50%, #x is the
number of crowdsourcers (out ofk) preferringx overy on criterion
c, and #y is the number of crowdsourcers preferringy over x
on c. Fig.1b shows the outcomes of all15 questions according
to Equation (1) for comparing movies bystory using k=5 and
θ=60%. Other conceivable definitions may be used in determining
the outcome ofx?cy. For example, the outcome may be defined
as the choice (out of the three possible choices) that receives the
most votes from the crowd. The ensuing discussion is agnostic to
the specific definition.

The current framework does not consider different levels ofcon-
fidence on question outcomes. The confidence on the outcome of
a question may be represented as a probability value based onthe
distribution of crowdsourcers’ responses. An interestingdirection
for future work is to find Pareto-optimal objects in probabilistic
sense. The confidence may also reflect the crowdsourcers’ quality
and credibility [18].



Termination test In each iteration, Alg.1 partitions the objects
into three sets by their Pareto-optimality based on the transitive clo-
sure of question outcomes so far. If every object’s Pareto-optimality
has been determined without uncertainty, the algorithm terminates.
Details are as follows.
Definition 1 (Transitive Closure of Outcomes). Given a set of ques-
tionsQ=〈q1, ..., qn〉, the transitive closure of their outcomesR(Q)=
{rlt(q1), ..., rlt(qn)} isR+(Q)={ x∼cy | x∼cy ∈ R(Q)}

⋃

{ x≻cy
| (x≻cy ∈ R(Q))∨(∃w1,w2,...,wm : w1=x, wm=y ∧ (∀0<i<m
: wi ≻c wi+1 ∈ R(Q))) }.

In essence, the transitive closure dictatesx≻cz without asking
the questionx?cz, if the existing outcomesR(Q) (and recursive-
ly the transitive closureR+(Q)) contains bothx≻cy and y≻cz.
Based onR+(Q), the objectsO can be partitioned into three sets:
O√ = {x ∈ O | ∀y ∈ O : (∃c ∈ C : x≻cy ∈ R+(Q))∨(∀c ∈ C :

x∼cy ∈ R+(Q))};
O× = {x ∈ O | ∃y ∈ O : (∀c ∈ C : y≻cx ∈ R+(Q)∨ x∼cy
∈ R+(Q)) ∧ (∃c ∈ C : y≻cx ∈ R+(Q))};
O? = O\(O√ ∪ O×).
O√ contains objects that must be Pareto-optimal,O× contains ob-
jects that cannot possibly be Pareto-optimal, andO? contains ob-
jects for which the incomplete knowledgeR+(Q) is insufficient
for discerning their Pareto-optimality. The objects inO? may turn
out to be Pareto-optimal after more comparison questions. If the
setO? for a question sequenceQ is empty,O√ contains all Pareto-
optimal objects and the algorithm terminates. We call such aQ a
terminal sequence, defined below.
Definition 2 (Terminal Sequence). A question sequenceQ is a
terminal sequence if and only if, based onR+(Q), O?=∅.

3.1 Question Selection
Given objectsO and criteriaC, there can be a huge number

of terminal sequences. Our goal is to find a sequence as short as
possible. As Fig.3 and Alg.1 show, the framework is an iterative
procedure of object partitioning based on question outcomes. It
can also be viewed as the process of moving objects fromO? to
O√ andO×. Once an object is moved toO√ or O×, it cannot be
moved again. With regard to this process, we make two important
observations, as follows.

• In order to declare an objectx not Pareto-optimal, it is sufficient
to just knowx is dominated by another object. It immediately
follows that we do not really care about the dominance relation-
ship between objects inO× and thus can skip the comparisons
between such objects. Once we knowx∈O? is dominated by
another object, it cannot be Pareto-optimal and is immediately
moved toO×. Quickly moving objects intoO× can allow us
skipping many comparisons between objects inO×.

• In order to declare an objectx Pareto-optimal, it is necessary to
know that no object can dominatex. This means we may need to
comparex with all other objects including non Pareto-optimal ob-
jects. As an extreme example,x may be dominated by only a non-
Pareto optimal objecty but not by any other object (not even the
objects dominatingy). This is because object dominance based
on preference relations is intransitive, which is formallystated in
Property 1. The intransitivity of preference relation formed by
Pareto composition of strict partial orders was discussed in [13].
Property 1 (Intransitivity of Object Dominance). Object domi-
nance based on the preference relations over a set of criteria is not
transitive. Specifically, ifx≻y andy≻z, it is not necessarily true
thatx≻z. In other words, it is possible thatx∼z or evenz≻x.

We show the intransitivity of object dominance by an example.
Consider objectsO={x,y,z}, criteriaC={c1, c2, c3}, and the pref-
erence relations in Fig.4. Three dominance relationships violate

Figure 4: Intransitivity of object dominance:x≻y, y≻z, z≻x.

transitivity: (i) x≻y (based onx≻c1y, x∼c2y, x∼c3y), (ii) y≻z
(based ony∼c1z, y≻c2z, y∼c3z), and (iii) z≻x (based onz∼c1x,
z∼c2x, z≻c3x). As another example, in Fig.1a,b≻c (sinceb∼sc,
b∼mc, b≻ac, wheres=story, m=music, a=acting) andc≻a (s-
incec≻sa, c∼ma, c≻aa), buta∼b (sinceb≻sa, a≻mb, b≻aa)
where transitivity does not hold.

Differently, transitivity of object dominance holds in skyline anal-
ysis [5]. The contradiction is due to the lack of explicit attribute
representation—in our case two objects may be considered equal-
ly good on a criterion if they are indifferent, while in skyline
analysis they are equally good regarding an attribute if they bear
identical values. Skyline query algorithms exploit the transitivity
of object dominance to reduce execution cost, because an object
can be immediately excluded from further comparison once itis
found dominated by any other object. However, due to Property 1,
we cannot leverage such pruning anymore.

Based on these observations, the overriding principle of our ques-
tion selection strategy (Alg.2) is to identify non-Pareto optimal
objects as early as possible. At every iteration of the framework
(Alg.1), we choose to comparex andy by criterionc (i.e., ask ques-
tion x?cy) wherex?cy belongs tocandidate questions. Such candi-
date questions must satisfy three conditions (Definition 3). There
can be many candidate questions. In choosing the next question, by
the aforementioned principle, we select suchx?cy that x is more
likely to be dominated byy. More specifically, we design two or-
dering heuristics—macro-orderingandmicro-ordering. Given the
three object partitionsO√, O× andO?, the macro-ordering idea is
simply that we choosex fromO? (required by one of the conditions
on candidate questions) andy from O√ ∪ O? (if possible) orO×
(otherwise). The reason is that it is less likely for an object in O× to
dominatex. Micro-ordering further orders all candidate questions
satisfying the macro-ordering heuristic. In Sec.4, we instantiate the
framework into a variety of solutions with varying power in pruning
questions, by using different micro-ordering heuristics.

Definition 3 (Candidate Question). GivenQ, the set of asked ques-
tions so far,x?cy is acandidate questionif and only if it satisfies
the following conditions:

(i) The outcome ofx?cy is unknown yet, i.e.,rlt(x?cy) /∈ R+(Q);

(ii) x must belong toO?;

(iii) Based onR+(Q), the possibility ofy≻x must not be ruled
out yet, i.e.,∄c′ ∈ C : x ≻c′ y ∈ R+(Q).

Algorithm 2: Question selection

Input : R+(Qi), O√(Qi), O?(Qi), O×(Qi)

Output : Q1
can or Q2

can

1 Qcan ← {x?cy | rlt(x?cy) /∈ R+(Qi)∧ x ∈ O?(Qi)∧ (∄c′ ∈ C :

x ≻c′ y ∈ R+(Qi))};
2 Q1

can ← {x?cy | x?cy ∈ Qcan, y /∈ O×(Qi)};
3 Q2

can ← {x?cy | x?cy ∈ Qcan, y ∈ O×(Qi)};

/* Macro-ordering: consider Q1
can before Q2

can. */
4 if Q1

can 6= ∅ then
5 return micro-ordering(Q1

can);
6 else ifQ2

can 6= ∅ then
7 return micro-ordering(Q2

can);



We denote the set of candidate questions byQcan. Thus,Qcan

= {x?cy | rlt(x?cy) /∈ R+(Q) ∧ x ∈ O? ∧ (∄c′ ∈ C : x ≻c′ y ∈
R+(Q))}.

If no candidate question exists, the question sequenceQ is a
terminal sequence. The reverse statement is also true, i.e., upon
a terminal sequence, there is no candidate question left. This is
formalized in the following property.
Property 2. Qcan = ∅ if and only ifO? = ∅.

Proof. The proof is omitted due to space limitations and can be
found in the technical report [4].

Questions violating the three conditions may also lead to termi-
nal sequences. However, choosing only candidate questionsmatch-
es our objective of quickly identifying non-Pareto optimalobjects.
Below we justify the conditions.

Condition (i): This is straightforward. IfR(Q) or its transitive
closure already contains the outcome ofx?cy, we do not ask the
same question again.

Condition (ii): This condition essentially dictates that at least
one of the two objects in comparison is fromO?. (If only one
of them belongs toO?, we make itx.) Given a pairx and y, if
neither is fromO?, there are three scenarios—(1)x∈O√, y∈O√,
(2) x∈O√, y∈O× or x∈O×, y∈O√, (3) x∈O×, y∈O×. Once we
know an object is inO√ or O×, its membership in such a set
will never change. Hence, we are not interested in knowing the
dominance relationship between objects fromO√ andO× only. In
all these three scenarios, comparingx andy is only useful for indi-
rectly determining (by transitive closure) the outcome of comparing
other objects. Intuitively speaking, such indirect pruning is not as
efficient as direct pruning.

Condition (iii): This condition requires that, whenx?cy is cho-
sen, we cannot rule out the possibility ofy dominatingx. Other-
wise, if y cannot possibly dominatex, the outcome ofx?cy cannot
help prunex. Note that, in such a case, comparingx andy by c may
help pruney, if y still belongs toO? andx may dominatey. Such
possibility is not neglected and is covered by a different representa-
tion of the same question—y?cx, i.e., swapping the positions ofx
andy in checking the three conditions. If it is determinedx andy
cannot dominate each other, then their further comparison is only
useful for indirectly determining the outcome of comparingother
objects. Due to the same reason explained for condition (ii), such
indirect pruning is less efficient.

The following simple Property 3 helps to determine whethery≻x
is possible: Ifx is better thany by any criterion, then we can already
rule out the possibility ofy≻x, without knowing the outcome of
their comparison by every criterion. This allows us to skip further
comparisons between them. Its correctness is straightforward based
on the definition of object dominance.

Property 3 (Non-Dominance Property). At any given moment,
suppose the set of asked questions isQ. Consider two objectsx
andy for which the comparison outcome is not known for every
criterion, i.e.,∃c such thatrlt(x?cy) /∈ R+(Q). It can be deter-
mined thaty⊁x if ∃c ∈ C such thatx≻cy∈ R+(Q).

In justifying the three conditions in defining candidate question-
s, we intuitively explained that indirect pruning is less efficient—
if it is known that x does not belong toO? or y cannot possi-
bly dominatex, we will not ask questionx?cy. We now justi-
fy this strategy theoretically and precisely. Consider a question
sequenceQ=〈q1, . . . , qn〉. We useO√(Q), O?(Q), O×(Q) to
denote object partitions according toR+(Q). For any questionqi,
the subsequence comprised of its preceding questions is denoted
Qi−1=〈q1, . . . , qi−1〉. If qi was not a candidate question when
it was chosen (i.e., afterR(Qi−1) was obtained), we say it is a

non-candidate. The following Theorem 1 states that, if a question
sequence contains non-candidate questions, we can replaceit by a
shorter or equally long sequence without non-candidate questions
that produces the same set of dominated objectsO×. Recall that
the key to our framework is to recognize dominated objects and
move them intoO× as early as possible. Hence, the new sequence
will likely lead to less cost when the algorithm terminates.

Theorem 1. If Q contains non-candidate questions, there exists
a question sequenceQ′ without non-candidate questions such that
|Q′| ≤ |Q| andO×(Q

′) = O×(Q).
Proof. We prove by demonstrating how to transformQ into such a
Q′. Given any non-candidate questionqi=x?cy in Q, we remove
it and, when necessary, replace several questions. The decisions
and choices are partitioned into three mutually exclusive scenarios,
which correspond to violations of the three conditions in Defini-
tion 3. The detailed proof is omitted due to space limitations and
can be found in the technical report [4].

3.2 Resolving Unusual Contradictions in Ques-
tion Outcomes

A preference relation can be more accurately derived, if more
input is collected from the crowd. However, under practicalcon-
straints on budget and time, the limited responses from the crowd
(k answers per question) may present two types of contradicting
preferences.

(i) Supposerlt(x?cy)=x≻cy and rlt(y?cz)=y≻cz have been
derived, i.e., they belong toR(Q). They together implyx≻cz,
since a preference relation must be transitive. Therefore the ques-
tion x?cz will not be asked. If the crowd is nevertheless asked to
further comparex and z, the resultrlt(x?cz) might be possibly
z≻cx, which presents a contradiction.

(ii) Supposerlt(x?cy)=x∼cy andrlt(y?cz)=y≻cz have been
derived from the crowd. If the crowd is asked to further compare x
andz, the resultrlt(x?cz) might be possiblyz≻cx. The outcomes
y≻cz andz≻cx together implyy≻cx, which contradicts withx∼cy.
(A symmetric case isrlt(x?cy)=x∼cy, rlt(y?cz)=z≻cy, and the
crowd might respond withrlt(x?cz)=x≻cz, which also leads to
contradiction withx∼cy. The following discussion applies to this
symmetric case, which is thus not mentioned again.)

In practice, such contradictions are uncommon. This is easyto
understand intuitively—as long as the underlying preference rela-
tion is transitive, collective wisdom of the crowds will reflect it. We
can find evidence of it in [27, 10], which confirmed that preference
judgments of relevance in document retrieval are transitive.

Nevertheless, contradictions still occur. Type (i) contradictions
can be prevented by enforcing the following simple Rule 1 to as-
sume transitivity and thus skip certain questions. They will never
get into the derived preference relations. In fact, in calculating
transitive closure (Definition 1) and defining candidate questions
(Sec.3.1), we already apply this rule.

Rule 1 (Contradiction Prevention by Skipping Questions). Given
objectsx, y, z and a criterionc, if rlt(x?cy)=x≻cy andrlt(y?cz)=
y≻cz, we assumerlt(x?cz)=x≻cz and thus will not ask the crowd
to further comparex andz by criterionc.

To resolve type (ii) contradictions, we enforce the following sim-
ple Rule 2.

Rule 2 (Contradiction Resolution by Choosing Outcomes). Con-
sider objectsx, y, z and a criterionc. Supposerlt(x?cy)= x∼cy
andrlt(y?cz)=y≻cz are obtained from the crowd. Ifrlt(x?cz)=
z≻cx is obtained from the crowd afterwards, we replace the out-
come of this question byx∼cz. (Note that we do not replace it by
x≻cz, sincez≻cx is closer tox∼cz.)



i rlt(qi) Derived ResultsO√ O? O×
1-9 b≻me, c∼ad, a∼mc ∅ {a,b,c,d,e,f} ∅

c≻se, b∼sd, b≻aa
d≻me, b∼md, b≻sf

10 a≻md a≻me
11 c≻aa
12 b∼sc
13 c≻md c≻me

14-19 d≻se, e∼ac, d∼af
a∼ad, f≻aa, b≻ae

20 b≻ad b≻d ∅ {a,b,c,e,f} {d}

21-23 c≻sf, a≻se, f∼mb
24 a≻sf a∼f
25 e≻af b≻af, b≻aa ∅ {a,b,c,e} {d,f}

e≻aa, b≻f
26 b≻ac
27 a≻mb
28 b≻se b≻e ∅ {a,b,c} {d,e,f}

29 c≻sa c≻se, c≻a ∅ {b,c} {a,d,e,f}

30 b∼mc b≻c {b} ∅ {a,c,d,e,f}

Table 2:RandomQ on Example 1.

4. MICRO-ORDERING IN QUESTION SE-
LECTION

At every iteration of Alg.1, we choose a questionx?cy from the
set of candidate questions. By macro-ordering, when available, the
question selection strategy (Alg.2) chooses a candidate question in
which y /∈ O×, i.e., it chooses fromQ1

can. Otherwise, it chooses
from Q2

can. The size ofQ1
can andQ2

can can be large. Micro-
ordering is for choosing from the many candidates. As discussed
in Sec.3, in order to find a short question sequence, the overriding
principle of our question selection strategy is to identifynon-Pareto
optimal objects as early as possible. Guided by this principle, this
section discusses several micro-ordering strategies. Since the strate-
gies are the same forQ1

can andQ2
can, we will simply use the term

“candidate questions” without distinction betweenQ1
can andQ2

can.

4.1 Random Question (RandomQ)
RandomQ, as its name suggests, simply selects a random candi-

date question. Table 2 shows an execution of the general framework
underRandomQ for Example 1. For each iterationi, the table
shows the question outcomerlt(qi). Following the question form
x?cy in Definition 3, the object “x” in a question is underlined when
we present the question outcome. The column “derived results” dis-
plays derived question outcomes by transitive closure (e.g., a≻me
based onrlt(q7)=d≻me andrlt(q10)=a≻md) and derived object
dominance (e.g.,b≻d after q20). The table also shows the object
partitions (O√,O? andO×) when the execution starts and when the
partitions are changed after an iteration. Multiple iterations may be
presented together if other columns are the same for them.

As Table 2 shows, this particular execution underRandomQ
requires30 questions. When the execution terminates, it finds the
only Pareto-optimal objectb. This simplest micro-ordering strate-
gy already avoids many questions in the brute-force approach. The
example clearly demonstrates the benefits of choosing candidate
questions only and applying macro-strategy.

4.2 Random Pair (RandomP)
RandomP randomly selects a pair of objectsx andy and keeps

asking questions to compare them (x?cy or y?cx) until no such
candidate question remains, upon which it randomly picks another
pair of objects. This strategy echoes our principle of eagerly identi-
fying non-Pareto optimal objects. To declare an objectx non-Pareto
optimal, we must identify another objecty such thaty dominatesx.
If we directly comparex andy, it requires comparing them by every

i rlt(qi) Derived ResultsO√ O? O×
1 c≻sf ∅ {a,b,c,d,e,f} ∅

2 f≻mc f∼c
3 − 4 a≻se, a≻me

5 e≻aa a∼e
6 − 7 c≻se, c≻me

8 e∼ac c≻e ∅ {a,b,c,d,f} {e}

9 b≻sa b≻se
10 a≻mb a∼b
11 d≻sf
12 f≻md f∼d
13 d≻sa d≻se
14 a≻md a∼d

15 − 16b∼sc, b∼mc
17 b≻ac b≻c ∅ {a,b,d,f} {c,e}

18 − 19d∼sb, d∼mb
20 b≻ad b≻d ∅ {a,b,f} {c,d,e}

21 a≻sf b≻sf
22 a∼mf
23 f≻aa a∼f
24 b∼mf
25 b≻af b≻aa, b≻f {b} {a} {c,d,e,f}

26 − 27c≻sa, a∼mc
28 c≻aa c≻a {b} ∅ {a,c,d,e,f}

Table 3:RandomP on Example 1.

criterion inC in order to make surey≻x. By skipping questions
according to transitive closure, we do not need to directly compare
them by every criterion. However, Property 4 below states that we
still need at least|C| questions involvingx—some are direct com-
parisons withy, others are comparisons with other objects which
indirectly lead to outcomes of comparisons withy. When there is
a candidate questionx?cy, it meansy may dominatex. The fewer
criteria remain for comparing them, the more likelyy will dominate
x. Hence, by keeping comparing the same object pair,RandomP
aims at finding more non-Pareto objects by less questions.

Property 4. Given a set of criteriaC and an objectx∈O, at least
|C| pairwise comparison questions involvingx are required in order
to find another objecty such thaty≻x.

Proof. The proof is omitted due to space limitations and can be
found in the technical report [4].

Table 3 illustrates an execution ofRandomP for Example 1.
The initial two questions are betweenc and f. Afterwards, it is
concluded thatc∼f by Property 3. Therefore,RandomP moves
on to ask3 questions betweena and e. In total, the execution
requires28 questions. Although it is shorter than Table 2 by only2
questions due to the small size of the example, it clearly moves
objects intoO× more quickly. (In Table 2,O× is empty until
the 20th question. In Table 3,O× already has3 objects after
20 questions.) The experiment results in Sec.5 exhibit significant
performance gain ofRandomP overRandomQ on larger data.

4.3 Pair with Fewest Remaining Questions (FRQ)
Similar toRandomP, once a pair of objectsx andy are chosen,

FRQ keeps asking questions betweenx and y until there is no
such candidate questions. Different fromRandomP, instead of
randomly picking a pair of objects,FRQ always chooses a pair
with the fewest remaining questions. There may be multiple such
pairs. To break ties,FRQ chooses such a pair thatx has dominated
the fewest other objects andy has dominated the most other objects.
Furthermore, in comparingx andy, FRQ orders their remaining
questions (and thus criteria) by how likelyx is worse thany on the
criteria. Below we explain this strategy in more detail.

Selecting Object Pair Consider a question sequenceQi so far
and FRQ is to select the next questionQi+1. We useCx,y to



denote the set of criteriac such thatx?cy is a candidate question,
i.e.,Cx,y={c∈C | x?cy∈Q1

can}. (We assumeQ1
can is not empty.

Otherwise,FRQ chooses fromQ2
can in the same way; cf. Alg.2.)

By Definition 3, the outcomes of these questions are unknown,i.e.,
∀c∈Cx,y : rlt(x?cy)/∈R+(Qi). Furthermore, if any remaining
question (whose outcome is unknown) betweenx andy is a candi-
date question, then all remaining questions between them are candi-
date questions.FRQ chooses a pair with the fewest remaining can-
didate questions, i.e., a pair belonging toS1=argmin(x,y) |Cx,y|.

The reason to choose such a pair is intuitive. It requires at least
|Cx,y| candidate questions to determiney≻x. (The proof would
be similar to that of Property 4.) Therefore,min(x,y) |Cx,y| is the
minimum number of candidate questions to further ask, in order
to determine that an object is dominated, i.e., non-Pareto optimal.
Thus, a pair inS1 may lead to a dominated object by the fewest
questions, matching our goal of identifying non-Pareto optimal ob-
jects as soon as possible.

We further justify this strategy in a probabilistic sense. For y≻x
to be realized, it is necessary that none of the remaining ques-
tions has an outcomex≻cy, i.e., ∀c∈Cx,y : rlt(x?cy) 6= x≻cy.
Make the simplistic assumption that every questionx?cy has an
equal probabilityp of not having outcomex≻cy, i.e.,∀x?cy∈Q1

can,
P (rlt(x?cy) 6=x≻cy)=p. Further assuming independence of ques-
tion outcomes, the probability of satisfying the aforementioned nec-

essary condition isp
|Cx,y|

. By taking a pair belonging toS1, we
have the largest probability of finding a dominated object. We
note that, fory≻x to be realized, in addition to the above neces-
sary condition, another condition must be satisfied—if∄c such that
y≻cx ∈ R+(Qi), the outcome of at least one remaining question
should bey≻cx, i.e.,∃c∈Cx,y : rlt(x?cy)=y≻cx. Our informal
probability-based analysis does not consider this extra requirement.

Breaking Ties There can be multiple object pairs with the fewest
remaining questions, i.e.,|S1|>1. To break ties,FRQ chooses
such anx that has dominated the fewest other objects, since it is
more likely to be dominated. If there are still ties,FRQ further
chooses such ay that has dominated the most other objects, since it
is more likely to dominatex. More formally,FRQ chooses a pair
belonging toS2={(x,y)∈S1 | ∄(x’,y’)∈S1 such thatd(x’)>d(x)∨
(d(x’)= d(x) ∧ d(y’)>d(y))}, where the functiond(·) returns the
number of objects so far dominated by an object, i.e.,∀x, d(x) =
|{y|x≻y based onR+(Qi)}|. This heuristic follows the principle
of detecting non-Pareto optimal objects as early as possible. Note
thatS2 may still contain multiple object pairs. In such a case,FRQ
chooses an arbitrary pair.

Selecting Comparison Criterion Once a pair (x,y) is chosen,
FRQ has to select a criterion for the next question.FRQ orders
the remaining criteriaCx,y based on the heuristic that the sooner
it understandsy≻x will not happen, the lower cost it pays. As
discussed before,|Cx,y| questions are required in order to conclude
thaty≻x; on the other hand, only one question (if asked first) can be
enough for ruling it out. Consider the case thatx is better thany by
only one remaining criterion, i.e.,∃c∈Cx,y : rlt(x?cy)=x≻cy and
∀c′∈Cx,y, c′ 6=c : rlt(x?c′y)=x⊁c′y. If FRQ asksx?cy after all
other remaining questions, it takes|Cx,y| questions to understand
y does not dominatex; but if x?cy is asked first, no more questions
are necessary, because there will be no more candidate questions in
the form ofx?cy.

Therefore,FRQ orders the criteriaCx,y by a scoring function
that reflects the likelihood ofx’s superiority thany by the corre-
sponding criteria. More specifically, for eachc∈Cx,y, its score is
rc(x,y) = rc(y)+r′c(y)−r′′c(y)−(rc(x)+r′c(x)−r′′c(x)) where
rc(y) = |{z | z≻cy∈R+(Qi)}|, r′c(y)=|{z | y∼cz∈R+(Qi)}|,

i rlt(qi)Derived Results(x,y), Cx,y O√ O? O×

(a,b),{s,m, a} ∅ {a,b,c,d,e,f} ∅

1 b≻sa (a,b),{m,a}
2 a≻mb a∼b (a,c), {s, a,m}
3 c≻sa (a,c), {a,m}
4 c∼aa (a,c), {m}
5 c≻ma c≻a (b,c), {a, s,m} ∅ {b,c,d,e,f} {a}

6 b∼ac (b,c), {s,m}
7 b∼sc (b,c), {m}
8 b≻mc b≻ma, b≻c (d,b),{a, s,m} ∅ {b,d,e,f} {a,c}

9 b∼ad (d,b),{s,m}
10 b∼sd (d,b), {m}
11b≻md b≻d (e,b),{a, s,m} ∅ {b,e,f} {a,c,d}

12 b≻ae (e,b),{s,m}
13 b≻se (e,b),{m}
14b≻me a≻me, b≻e (f,b),{a, s,m} ∅ {b,f} {a,c,d,e}

15 b≻af (f,b), {s,m}
16 b≻sf (f,b),{m}
17 b≻mf b≻f {b} ∅ {a,c,d,e,f}

Table 4:FRQ on Example 1.

andr′′c(y)=|{z | y≻cz∈R+(Qi)}|. In this scoring function,rc(y)
is the number of objects preferred overy by criterion c, r′c(y)
is the number of objects equally good (or bad) asy by c, and
r′′c(y) is the number of objects to whichy is preferred with regard
to c. FRQ asks the remaining questions in decreasing order of
the corresponding criteria’s scores. This way, it may find such a
question thatrlt(x?cy)=x≻cy earlier than later.

Table 4 presents the framework’s execution for Example 1, by
applying theFRQ policy. In addition to the same columns in
Tables 2 and 3, Table 4 also includes an extra column to show, at
each iteration, the chosen object pair for the next question(x,y)
and the set of remaining comparison criteria between them (Cx,y).
The criteria inCx,y are ordered by the aforementioned ranking
function r(·). At the beginning of the execution, the object pair
is arbitrarily chosen and the criteria are arbitrarily ordered. In the
example, we assumea?sb is chosen as the first question. After
q2, FRQ can derive thata∼b. Hence, there is no more candidate
question between them andFRQ chooses the next pair (a,c). Three
questions are asked for comparing them. At the end ofq5, multiple
object pairs have the fewest remaining questions. By breaking ties,
(b,c) is chosen as the next pair, since onlyc has dominated any
object so far. The remaining criteriaCb,c are ordered as{a, s,m},
becausera(b,c)>rs(b,c) and ra(b,c)>rm(b,c). The execution
sequence terminates after17 questions, much shorter than the30
and28 questions byRandomQ andRandomP, respectively.

To conclude the discussion on micro-ordering, we derive a lower
bound on the number of questions required for finding all Pareto-
optimal objects (Theorem 2). The experiment results in Sec.5 re-
veal thatFRQ is nearly optimal and the lower bound is practically
tight, since the number of questions used byFRQ is very close to
the lower bound.

Theorem 2. Given objectsO and criteriaC, to find all Pareto-
optimal objects inO, at least(|O|−k)×|C|+(k−1)×2 pairwise
comparison questions are necessary, wherek is the number of Pareto-
optimal objects inO.

Proof. The proof is omitted due to space limitations and can be
found in the technical report [4].

5. EXPERIMENTS
We designed and conducted experiments to compare the efficien-

cy of different instantiations of the general framework under vary-
ing problem sizes. Our experiments used both a real crowdsourcing
marketplace and simulations based on a real dataset.
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Figure 6: No. of questions byBruteForce and basic methods.

5.1 Efficiency and Scalability
We studied the efficiency and scalability of various instantiations

of the general framework. Given the large number of questions
required for such a study, we cannot afford using a real crowdsourc-
ing marketplace. Hence, we performed the following simulation.
Each object is an NBA player in a particular year. The objects
are compared by10 criteria, i.e., performance categories such as
points, rebounds, assists, etc. We simulated the corresponding
10 preference relations based on the players’ real performance in
individual years, as follows. Consider a performance category c
and two objectsx=(player1, year1) andy=(player2, year2).x.c is
player1’s per-game performance on categoryc in year1 (similarly
for y.c). Values in each categoryc are normalized into the range
[0, 1], where0 and1 correspond to the minimal and maximal val-
ues inc, respectively. Supposex.c>y.c. We generated a uniform
random numberv in [0, 1]. If v<1 − e−(x.c−y.c), we setx≻cy,
otherwise we setx∼cy. This way, we introduced a perturbation into
the preference relations in order to make sure they are partial order-
s, as opposed to directly using real performance statistics(which
would imply total orders). Fig.5 shows that the number of Pareto-
optimal objects increases by the sizes of both object setO (objects
are randomly selected) and criteria setC (the first |C| criteria of
the aforementioned10 criteria).

Effectiveness of candidate questions and macro-ordering
To verify the effectiveness of candidate questions and macro-ordering,
we compared five methods—BruteForce, –CQ–MO, –CQ+MO,
+CQ–MO, and+CQ+MO. The notation +/– beforeCQ andMO
indicates whether a method only selects candidate questions (CQ)

RandomQ (+CQ+MO) RandomP FRQ LowerBound
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Figure 7: No. of questions by different micro-ordering heuristics.

and whether it applies the macro-ordering strategy (MO), respec-
tively. In all these five methods, qualifying questions are randomly
selected, i.e., no particular micro-ordering heuristics are applied.
For instance,+CQ+MO selects only candidate questions and ap-
plies macro-ordering. Hence, it is equivalent toRandomQ. Fig.6
shows the numbers of required pairwise comparisons (in logarith-
mic scale) for each method, varying by object set size (|O| from
500 to 10, 000 for |C|=4 and|C|=10) and criterion set size (|C|
from 3 to 10 for |O|=3, 000 and|O|=10, 000). The figure clearly
demonstrates the effectiveness of bothCQ andMO, as taking out
either feature leads to significantly worse performance than Ran-
domQ. Particularly, the gap between+CQ–MO and –CQ+MO
suggests that choosing only candidate questions has more funda-
mental impact than macro-ordering. If neither is applied (i.e., –
CQ–MO), the performance is equally poor as that ofBruteForce.
(–CQ–MO uses slightly less questions thanBruteForce, since it
can terminate before exhausting all questions. However, the dif-
ference is negligible for practical purpose, as their curves overlap
under logarithmic scale.)

Effectiveness of micro-ordering
Fig.7 presents the numbers of pairwise comparisons required by dif-
ferent micro-ordering heuristics (RandomQ, i.e.,+CQ+MO, Ran-
domP, FRQ) and LowerBound (cf. Theorem 2) under varying
sizes of the object set (|O| from 500 to 10, 000 for |C|=4 and
|C|=10) and the criteria set (|C| from 3 to 10 for |O|=3, 000 and
|O|=10, 000). In all these instantiations of the general framework,
CQ andMO are applied. The results are averaged across30 exe-
cutions. All these methods outperformedBruteForce by orders of
magnitude. (BruteForce is not shown in Fig.7 since it is off scale,
but its number can be calculated by equation|C|×|O|×(|O| −
1)/2.) For instance, for5, 000 objects and4 criteria, the ratio
of pairwise comparisons required by even the naiveRandomQ to
that used byBruteForce is already as low as0.0048. This clearly
shows the effectiveness ofCQ andMO, as discussed for Fig.6. The
ratios for RandomP and FRQ are further several times smaller
(0.00094 and0.00048, respectively). The big gain byFRQ justi-
fies the strategy of choosing object pairs with the fewest remain-
ing questions. Especially,FRQ has nearly optimal performance,
because it gets very close toLowerBound in Fig.7. The small



101

102

103

 10  20  30  40  50  60  70  80  90  100

N
u

m
b

er
 o

f 
Q

u
es

ti
o

n
s 

(l
o

g
sc

al
e)

Number of Objects

RandomQ
RandomP

FRQ
LowerBound

Figure 8: No. of questions by different micro-ordering heuristics.
|C| = 3, varying|O|.

gap betweenFRQ andLowerBound also indicates that the lower
bound is practically tight. The figure further suggests excellent
scalability ofFRQ as its number of questions grows almost linearly
by both|C| and|O|.

5.2 Experiments Using a Real Crowdsourcing
Marketplace

We also studied the performance of the proposed algorithms us-
ing the popular crowdsourcing marketplace Amazon Mechanical
Turk (AMT). The task is to compare100 photos of our institu-
tion with regard tocolor, sharpnessand landscape. To obtain the
ground-truth data, all14, 850 possible pairwise questions were par-
titioned into1, 650 tasks, each containing9 questions on a criterion.
An AMT crowdsourcer is allowed to perform a task only if they
have responded to at least100 HITs (Human Intelligence Tasks)
before with at least90% approval rate. Furthermore, we imple-
mented basic quality control by including2 additional validation
questions in each task that expect certain answers. For instance,
one such question asks the crowd to compare a colorful photo and
a dull photo by criterioncolor. A crowdsourcer’s responses in a
task are discarded if their response to a validation question deviates
from our expectation. (236 crowdsourcers failed on this.) The
parameters in Equation (1) were set to bek=5 andθ=0.6. Hence,
in total(1, 650×5+236)×(9+2) = 93, 346 pairwise comparisons
were performed by AMT crowdsourcers. We paid 1 cent for each
comparison and therefore spent close to $1,000 in total.

The responses to all possible questions provide the ground-truth
data. An algorithm execution only needs the responses to a sub-
set of the questions. We randomly selected a subset of photosO
(|O| from 10 to 100) and applied various algorithms to find Pareto-
optimal photos. Figure 8 shows, for varying|O|, the number of
questions (in logarithmic scale) required by each micro-ordering
strategy. To account for the randomness inRandomP andRan-
domQ, we repeated these two algorithms, respectively,30 times,
and we reported the average numbers of questions. Confirmingthe
results in Figure 7,FRQ was close to the theoretical lower bound,
performing better than the other two methods, andRandomP out-
performedRandomQ.

6. CONCLUSIONS
This is the first study on using crowdsourcing to find Pareto-

optimal objects when objects do not have explicit attributes and
preference relations are strict partial orders. The partial orders are
obtained by pairwise comparison questions to the crowd. It intro-
duces an iterative question-selection framework that is instantiated
into different methods by exploiting the ideas of candidatequestion-
s, macro-ordering and micro-ordering. Experiment were conducted
by simulations on large object sets and by using a real crowdsourc-
ing marketplace. The results exhibited not only orders of magni-
tude reductions in questions against a brute-force approach, but also
close-to-optimal performance from the most efficient method.
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