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ABSTRACT

This is the first study of crowdsourcing Pareto-optimal obfend-
ing over partial orders and by pairwise comparisons, whiahdp-
plications in public opinion collection, group decisionkiray, and
information exploration. Departing from prior studies amwd-
sourcing skyline and ranking queries, it considers the vdsare
objects do not have explicit attributes and preferencediogis on
objects are strict partial orders. The partial orders arele by ag-
gregating crowdsourcers’ responses to pairwise compagses-
tions. The goal is to find all Pareto-optimal objects by theest

possible questions. It employs an iterative questionetiele frame-
work. Guided by the principle of eagerly identifying nonréta

optimal objects, the framework only chooses candidate topness
which must satisfy three conditions. This design is botliiceht

and efficient, as it is proven to find a short terminal questien

quence. The framework is further steered by two ideas—rmmacro

ordering and micro-ordering. By different micro-orderimguristic-
s, the framework is instantiated into several algorithntbwarying
power in pruning questions. Experiment results using betd r
crowdsourcing marketplace and simulations exhibited mbt or-
ders of magnitude reductions in questions when compardd avit
brute-force approach, but also close-to-optimal perforceafrom
the most efficient instantiation.

1. INTRODUCTION

The growth of user engagement and functionality in crowdsou
ing platforms has made computationally challenging tasksece-
dentedly convenient. The subject of our study is one sudb-tas
crowdsourcingPareto-optimal object finding Consider a set of
objectsO and a set of criterial’ for comparing the objects. An
objectxeO is Pareto-optimalif and only if x is not dominated by
any other object. Objegt dominatesx (denotedy>Xx) if and only
if x is not better thary by any criterion and/ is better tharx by
at least one criterion, i.e¥ceC' : x#.y and3ceC :y =, X.
If x andy do not dominate each other (i.ecy andy¥#x), we
denote it byx~y. The preference (better-than) relatioR. (also
denoted>-.) for eachceC is a binary relation subsumed i6yx O,
in which a tuple(x, y) € P, (also denoted>y) is interpreted asx
is better than (preferred ovey)with regard to criteriore”. Hence,
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if (x,y)¢P. (also denoteat;%.y), X is not better thaiy by criterion
c. We sayx andy areindifferentregardingc (denotedx~.y), if
(X, y)¢P: A (Y, X)¢P.. We consider the setting where eaéhis a
strict partial order, i.e., P. is irreflexive {x : (x,X) ¢ P.)and tran-
sitive (VX,y : (X,Y)€P.A(Y, z)€P.=(X, )€ P.), which together
imply asymmetry Yx,y : (x,y)eP. = (Yy,X)¢F.). We note
that such definition of better-than relation has been widelgd
in modeling preferences (e.g., [20, 13, 28]), and the dé&imiof
Pareto-optimal objects follows the conceptRafreto composition
of preference relations in [13].

Novelty Pareto-optimal queries resembkasy/linequeries [5].
However, except for [23, 4, 17], previous studies on prefeee
and skyline queries do not use the crowd; they focus on query
processing orexistingdata. On the contrary, we examine how
to obtain sufficient data from the crowd for determining Rare
optimal objects. Furthermore, our work differs in severalical
ways, as summarized in Table 1 and explained below.

e The preference relation for a criterionrist governed by explicit
scores or values on object attributes (e.g., sizes of hppsess
of hotels), while prior studies (except [4, 17]) assumedlieitp
attribute representation. For many comparison critetia, dliffi-
cult to model objects by explicit attributes, not to mentasking
people to provide such values or scores; people’s prefeseme
rather based on complex, subtle perceptions, as Example$ 2 a
shall demonstrate. The concept definitions deliberatelynaio
admit notations for attribute or object equivalence.

e Due to the above reason, we request crowdsourcers to perform
pairwise comparisons instead of directly providing atttéoval-
ues or scores. On the contrary, [23] assumes explicit at&ib
representation and thereby answers skyline queries bp@the
crowd to provide missing attribute values. Pairwise congparis
extensively studied in social choice and welfare, prefesspand
voting. It is known that people are more comfortable and eonfi
dent with comparing objects than directly scoring themgasiihis
easier, faster, and less error-prone [30].

e The crowd’s preference relations are modeled as stricigbant

ders, as opposed to total orders. This is not only a direetedff
using pairwise comparisons instead of numeric scores dicéxp
attribute values, but also a reflection of the psychologizdlre
of human'’s preferences [20, 13], since it is not always rtiar
enforce a total order. Most studies on skyline queries asgotal
orders, except for [11, 28, 29, 32] which consider partidies.

Several recent studies used crowdsourcing to comparetsifijec
answering ranking, tog- and group-by queriesCrowd-BT [12]
ranks objects by crowdsourcing pairwise object compasgsewoly-
chronopoulos et al. [25] find tok-tems in an itemset by asking
human workers to rank small subsets of items. Davidson g5l
evaluate togk and group-by queries by asking the crowd to answer



Task Question type Multiple Order among objects | Explicit  attribute
attributes (on each attribute) representation
[12] full ranking pairwise comparison no total order no
[25] topk ranking rank subsets of objects | no total order no
[15] topk ranking and grouping pairwise comparison no total order no
[23] skyline/Pareto-optimal queries | missing value inquiry yes total order yes
[17] skyline/Pareto-optimal queries | pairwise comparison yes total order no
[4], this work || skyline/Pareto-optimal queries | pairwise comparison yes strict partial order no

Table 1: Related work comparison.

story

music

(a) Preference relations (i.e., strict partial orders)hoeé criteria.

acting
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az.c 0l0]5 C-.a
ar.d o213 d-.a
ar.e 2101 a-.e
ar.f 3 1]1 a-.f
b?.c 121712 b~.C
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b7.f a1 1o b .f
c7.d 3210 c~.d
c’.e 2101 C~.€
c?.f 3 1]1 c-.f
dv.e 3]0 2 d-.e
de.f 3 21]o d>-.f
er,f 1113 f-.e

(b) Deriving the preference relation for criteriostory by pairwise
comparisons. Each comparison is performed workers.6 = 60%.

Figure 1: Finding Pareto-optimal movies stpry, music acting

typequestions (whether two objects belong to the same group) andnessandlandscape

valuequestions (ordering two objects). They do not considerimult
ple attributes in modeling objects, while skyline and Rasatimal
objects are defined in a space of multiple attributes. Theyras
total orders instead of partial orders.

To recap, ours is so far the only work on crowdsourcing Pareto
optimal object finding over partial orders, and we reportedhie
extended version of this paper [4] the first study of crowdsou
ing Pareto-optimal queries by pairwise comparisons antowit
explicit attribute representation.

Motivating Applications Pareto-optimal object finding lend-
s itself to applications in several areas, including publinion
collection, group decision making, and information exptan,
exemplified by the following motivating examples.

Example 1 (Collecting Public Opinion and Group Decision Mak-
ing). Consider a set of movie8={a,b,c,d,e,f} and a set of crite-
ria C={story, music, acting (denoted bys, m, a in the ensuing
discussion). Fig.la shows the individual preference imlat(i.e.,
strict partial orders), one per criterion. Each strict ighurder is
graphically represented as a directed acyclic graph (DAtyxe
specifically a Hasse diagram. The existence of a simple path f
x to y in the DAG mean is better than (preferred tg) by the
corresponding criterion. For exampl@, e)€P,, (a>m¢€), i.e.,a

is better thare by music (b,d)¢Ps and(d, b)¢ Ps; henceb~d.

TS JA separation(2011)ENGEThe big Lebowski(1998)8

which movie is better with regard to M‘?

A separation(2011).
The big Lebowski(1998).
no preference.

submit | | skip this question

Figure 2: A question that asks to compare two moviestoyy.

The partial orders define the dominance relation betweeectshj
For instance, movie dominatesd (c>d), becausee is preferred
thand on story and musicand they are indifferent oacting i.e.,
c~sd, c>,.d, andc~,d; a andb do not dominate each other
(a~b), sinceb>;a, a>,,b andb>,a. Based on the three partial
orders,b is the only Pareto-optimal object, since no other objects
dominate it and every other object is dominated by some tbjec
Note that tasks such as the above one may be used in both under-
standing the public’s preference (i.e., the preferencaticels are
collected from a large, anonymous crowd) and making detssio
for a target group (i.e., the preference relations are frosmall
group of people). a

Example 2(Information Exploration) Consider a photography en-
thusiast,Amy, who is drown in a large number of photos she has
taken and wants to select a subset of the better ones. Shisreso
to crowdsourcing for the task, as it has been exploited byyman
for similar tasks such as photo tagging, location/facetifieation,
sorting photos by (guessed) date, and so on. Particulagywsuld

like to choose Pareto-optimal photos with regarccédor, sharp-

|

By definition, the crux of finding Pareto-optimal objectsslia
obtaining the preference relations, i.e., the strict phdrders on
individual criteria. Through crowdsourcing, the prefererrela-
tions are derived by aggregating the crowd’s responspaitwise
comparisortasks. Each such comparison between objectsdy
by criterionc is a question, denoted .y, which has three possible
outcomes—x>_.Y, y>.X, andx~_.y, based on the crowd’s answers.
An example is as follows.

Example 3 (Deriving Preference Relations from Pairwise Com-
parisons by the Crowd)Fig.1b shows the hypothetical results of
all 15 pairwise comparisons between thenovies in Example 1,
by criterion s=story. The outcomes of all comparisons form the
crowd’s preference relation atory (the leftmost DAG in Fig.1a).
Fig.2 is the screenshot of a question form designed for ook su
comparison. A crowdsourcer, when facing this question, ldvou
make a choice among the three possible answers or skip aaquest
if they do not have enough confidence or knowledge to answer it
Fig.1b shows how many crowdsourcers have selected eacteansw
For instance, for questioa?;f, three people preferred movie
one person preferred, and one person is indifferent. By aggre-
gating these answers, it is derived thas better thari with regard

to story, since60% of the crowdsourcers who responded to the



question chose this answer. For questidac, the result ih~c,
since neitheb>;c norb<,c received enough votes. (Assuming a
thresholdd=60%, i.e., eitherb~sc or b<,c should have at least
60% of votes, in order to not declate~c.) a

It is important to point out that, in the aforementioned &ppl
cations, there is an intrinsic lack of the notion of “groumdth”.
Since objects are not explicitly represented by attribalees, the
partial orders are purely reflections of crowdsourcershimpis. For
this reason, we shall not investigate if crowdsourcers daaio
answers close to “ground truth”, which does not exist. Tli® a
means that our techniques may get different answers wheg usi ®
different crowdsourcers or even the same crowdsourceifexeht
times, because people’s opinions alter.

Algorithmic Framework Our goal is to find all Pareto-optimal
objects with as few questions as possible. A brute-forcecamh
will obtain complete preference relations via pairwise panison-

s of all object pairs by every criterion. However, withoutcku
exhaustive comparisons, incomplete knowledge colleatenh fa
small set of questions may suffice in discerning all Pargtintal
objects. Toward this end, it may appear that we can take éalyan
of the transitivity of object dominance—a cost-saving gy of-
ten exploited in skyline query algorithms (e.g., [5]) to kexte dom-
inated objects from participating in any future comparismte
they are detected. But, as also discussed in [13], objectréome
in our case isottransitive (Property 1), due to the lack of explicit
attribute representation. Hence, the aforementionedsanshg
technique is inapplicable.

Aiming at Pareto-optimal object finding by a short sequerfce o
questions, we introduce a general, iterative algorithrmé&aork
(Sec.3). Each iteration goes through four stepstestion selec-
tion, outcome derivationcontradiction resolutionandtermination
test In thei-th iteration, a questio;=x?.y is selected and it-
s outcome is determined based on crowdsourcers’ answers. O
unusual occasions, if the outcome presents a contraditztidine
obtained outcomes of other questions, it is changed to teest
outcome such that the contradiction is resolved. Basedetrain-
sitive closure of the outcomes to the questions so far, thectb
O are partitioned into three sets9, (objects that must be Pareto-
optimal), O« (objects that must be non-Pareto optimal), @nd
(objects whose Pareto-optimality cannot be fully discdrhge the
incomplete knowledge so far). Whefi; becomes emptyD,,
contains all Pareto-optimal objects and the algorithm teates.
The question sequence so far is thusraninal sequence

There are a vast number of terminal sequences. Our goal is to
find one that is as short as possible. We observe that, for a non
Pareto optimal object, knowing that it is dominated by afstea
one object is sufficient, and we do not need to find all its dom-
inating objects. It follows that we do not really care abdug t
dominance relation between non-Pareto optimal objectsvead
can skip their comparisons. Hence, the overriding prircgflour
question selection strategy is to identify non-Paretoroatiobject-

s as early as possible. Guided by this principle, the framiewo
only chooses frontandidate questionwhich must satisfy three
conditions (Sec.3.1). This design is sufficient, as we pritna
an empty candidate question set implies a terminal sequencke
vice versa (Proporty 2). The design is also efficient, as wihéun
prove that, if a question sequence contains non-candidatgions,
there exists a shorter or equally long sequence with onlgidarte
questions that produces the saflg, matching the principle of
eagerly finding non-Pareto optimal objects (Theorem 1).ddwer,
by the aforementioned principle, the framework selectsvierye
iteration such a candidate questint.y that x is more likely to
be dominated by. The selection is steered by two ideasyaero-

ordering and micro-ordering By using different micro-ordering
heuristics, the framework is instantiated into severabalgms
with varying power in pruning questions (Sec.4). We alsdveer
a lower bound on the number of questions required for findlhg a
Pareto-optimal objects (Theorem 2).

In summary, this paper makes the following contributions:
This is the first work on crowdsourcing Pareto-optimal obje-
ing over partial orders and by pairwise comparisons. We defin
preference relations based on pairwise comparisons andmve a
to find all Pareto-optimal objects by fewest possible corispas.
We propose a general, iterative algorithm framework (Seehich
follows the strategy of choosing only candidate questidrat t
must satisfy three conditions. We prove important properthat
establish the advantage of the strategy (Sec.3.1).
We design macro-ordering and micro-ordering heuristicdifal-
ing a short terminal question sequence. Based on the heuwrist
s, the generic framework is instantiated into several élyois
(RandomQ, RandomP, FRQ) with varying efficiency. We also
derive a non-trivial lower bound on the number of required-pa
wise comparison questions. (Sec.4)
We carried out experiments using both simulations and reala:-
sourcing marketplace to compare the amount of comparisgns b
different instantiations of the framework under varyingigem
sizes. The results demonstrate the effectiveness of sejemtly
candidate questions, macro-ordering, and micro-ordefigen
these ideas are stacked together, they use orders of mdgiess
comparisons than a brute-force approach. The results|rdhata
FRQ is nearly optimal and the lower bound is practically tight,
sinceFRQ gets very close to the lower bound. (Sec.5)

2. RELATED WORK

Besides [12], there were multiple studies on ranking objégt

rbair\/\/ise comparisons, which date back to decades ago asgaggr

ing the preferences of multiple agents has always been afned-
tal problem in social choice and welfare [14, 3]. The moresrgc
studies can be categorized into three typgsApproaches such
as [21, 26, 31] predict users’ object ranking by completingser-
object scoring matrix. Their predictions take into accouseérs’
similarities in pairwise comparisons, resemblicglaborative fil-
tering [16]. They thus do not consider explicit attribute repreaen
tion for objects.2) Approaches such as [7, 9, 8] infer query-specific
(instead of user-specific) ranked results to web searchegudfol-
lowing the paradigm ofearning-to-rank[22], they rank a query’s
result documents according to pairwise result comparisbother
queries. The documents are modeled by explicit rankingufeat
3) Approaches such as [6, 19, 1, 2, 24] are similar to [12] as they
use pairwise comparisons to infer a single ranked list thaeither
user-specific nor query-specific. Among them, [19] is sddaia
that it also applies learning-to-rank and requires expfieature
representation. Different from our work, none of these istsids
about Pareto-optimal objects, since they all assume a ootkr
among objects; those using learning-to-rank require eidiature
representation, while the rest do not consider multiplgbaites.
Moreover, except [19, 1, 2], they all assume comparisonltesu
are already obtained before their algorithms kick in. Intcast,
we aim at minimizing the pairwise comparison questions koias
finding Pareto-optimal objects.

3. GENERAL FRAMEWORK

By the definition of Pareto-optimal objects, the key to firgin
such objects is to obtain the preference relations, i.e,sthict
partial orders on individual criteria. Toward this end, thest



outcomes

basic operation is to performairwise comparison-given a pair o)

of objectsx andy and a criterione, determine whether one is
better than the other (i.e(x,y) € P. or (y,x) € P.) or they are
indifferent (i.e.,(X,y) ¢ P- A (Y,X) ¢ P.).

The problem of crowdsourcing Pareto-optimal object findsg
thus essentially crowdsourcing pairwise comparisons.hEaen-
parison task betweer andy by criterion ¢ is presented to the
crowd as a questiog (denotedk?.y). The outcome to the question
(denotedrit(q)) is aggregated from the crowd’s answers. Giv-
en a set of questions, the outcomes thus contain an (inctehple
knowledge of the crowd’s preference relations for variotiteda.
Fig.2 illustrates the screenshot of one such question (admgp Figure 3: The general framework.
two movies bystory) used in our empirical evaluation. We note
that there are other viable designs of question, e.g., didwiag

the first two choicesx-.y andy>.x). Our work is agnostic to the Input: O : the set of objects
specific question design. Output: O, : Pareto-optimal objects of O

=x?
4 oY n/@ outcome rit (a)

B/ -g‘a
crowd

question
selection

derivation

transitive closure R+(Q)

object partitions % %@
- ‘

P

lermination tes!

c1 Pcm

Algorithm 1: The general framework

Givenn objects and- criteria, a brute-force approach will per- 1 R(Q) + @; I* question outcomes */
form pairwise comparisons on all object pairs by every dotg 2 fepea{z ) .
which leads to-n-(n—1) /2 comparisons. The corresponding ques- 3 | X7ey_ < question selection; _
: " 4 rlt(X?.Y) < outcome derivation; I* resolve conflict, if any */
tion outcomes amount to the complete underlying prefereeiee 5 R(Q) < R(Q) U {rlt(X?ey));
tions. The quadratic nature of the brute-force approacteenit 6 (0., 0, O-) « partitioning objects based ot (Q);

wasteful. The bad news is that, in the worst case, we cannot do [ R*(Q) is the transitive closure of R(Q) */
better than it. To understand this, consider the scenariravall 7 until O = {};

objects are indifferent by every criterion. If any companx?.y 8 return O%

is skipped, we cannot determinexiindy are indifferent or if one
dominates another.

In practice, though, the outlook is much brighter. Since oak|
for only Pareto-optimal objects, it is an overkill to obtatom-
plete preference relations. Specifically, for a Paretdnzgdtobject,
knowing it is not dominated by any object is sufficient, anddee
not need to find all the objects dominated by it; for a non-fare
optimal object, knowing it is dominated by at least one objec
sufficient, and we do not need to find all its dominating olgect
Hence, without exhausting all possible comparisons, impieta
knowledge on preference relations collected from a set e$tipns
may suffice in fully discerning all Pareto-optimal objects.

Our objective is to find all Pareto-optimal objects with as fe
questions as possible. By pursuing this goal, we are apgplyiery
simple cost model—the cost of a solution only depends oruits-n
ber of questions. Although the cost of a task in a crowdsogren-
vironment may depend on monetary cost, latency and otherfac
the number of questions is a generic, platform-independest
measure and arguably proportionally correlates with tla cest.

al occasions, if the outcome presents a contradiction toltteened
outcomes of other questions so far, it is changed to the sflose
outcome to resolve contradiction. By computiRg (Q;), thetran-
sitive closureof R(Q;)—the obtained outcomes to questions so far
{q1,---,q), the outcomes to certain questions are derived and such
questions will never be asked. Based Bi(Q);), if every object

is determined to be either Pareto-optimal or non-Paretamgpt
without uncertainty, the algorithm terminates.

Below, we discuss outcome derivation and termination &st. 3.1
examines the framework’s key step—question selectionSaed3.2
discusses contradiction resolution.

Outcome derivation Given a questioR?.y, its outcomerlt(x?.y)
must be aggregated from multiple crowdsourcers, in ordezdaoh
areliable result with confidence. Particularly, one of émeutually-
exclusive outcomes is determined basedkotrowdsourcers’ an-
swers to the question:

£ #X
Therefore, we assume a sequential execution model whichthsk Xrecy if #Ty 20
crowd an ordered sequence of questighs= (g1, ..., gn)—itonly  TE(X7ey) = y = x if 2L > ¢ @
asksq;+1 afterrit(g;) is obtained. Thereby, we do not consider X~y (X YAY #e X) otherwise

asking multiple questions concurrently. In practice, sagarallel-
execution framework will lead to shorter latency but moresju
tions (which may imply higher monetary cost) than our setjaén
execution framework. One interesting direction of futurerkvis
to adapt our algorithms to a parallel framework and inveséghe
tradeoffs between latency and cost. Furthermore, in dssocnof
our approach, the focus shall be on how to find a short queséeon
guence instead of the algorithms’ complexity, since thestieken
by crowdsourcers to answer questions will dominate therdlgos’
execution time.

To find a short sequence, we design a general algorithm frame-
work, as displayed in Fig.3. Alg.1 shows the framework’syske
code. Its execution is iterative. Each iteration goes thhofour

steps—question selectigroutcome derivationcontradiction reso- distribution of crowdsourcers’ responses. An interestlirgction

:gt'sg’ei?gée;n;g]at'rgrs]éifég] ttZetzhteh '(t:i;:,téon’_?hqeueig)s%onx .(;L)J/tcomefor future work is to find Pareto-optimal objects in probait
- and p \ : d sense. The confidence may also reflect the crowdsourcerityqua
rlt(q;) is derived from the crowd’s aggregated answers. On unusu-

and credibility [18].

where 6 is such a predefined threshold thtat50%, #x is the
number of crowdsourcers (out bf preferringx overy on criterion
¢, and #y is the number of crowdsourcers preferriggover x
on c¢. Fig.1b shows the outcomes of dlb questions according
to Equation (1) for comparing movies tstory using k=5 and
6=60%. Other conceivable definitions may be used in determining
the outcome ok?.y. For example, the outcome may be defined
as the choice (out of the three possible choices) that resdhe
most votes from the crowd. The ensuing discussion is agntisti
the specific definition.

The current framework does not consider different levelsoof-
fidence on question outcomes. The confidence on the outcome of
a question may be represented as a probability value bastdon



Termination test In each iteration, Alg.1 partitions the objects
into three sets by their Pareto-optimality based on thesttiaa clo-
sure of question outcomes so far. If every object’s Parptovality
has been determined without uncertainty, the algorithmitzates.
Details are as follows.
Definition 1 (Transitive Closure of Outcomes§iven a set of ques-
tionsQ={(q1, .., gn), the transitive closure of their outcomB$Q )=
{rlt(q), .., lt(gn) } i RY(Q)={ X~y | X~y € R(Q)} U{x>cy
| (x=cy € R(Q))V(IW1,Wa,...,.Wr, T Wi =X, W, =Y A (VO<i<m
TW e Wig1 € R(Q))) }. O

In essence, the transitive closure dictates.z without asking
the questiorx?.z, if the existing outcome®(Q) (and recursive-
ly the transitive closureR™ (Q)) contains bothx>.y andy>.z.
Based onR™(QQ), the objectg) can be partitioned into three sets:
O,={Xx€0|VWeO:(FceC:x~ye R (Q))V(VceC:
x~ey € RT(Q))};
Ox ={X€O[3ycO: (Ve € C:y=eX< RT(Q)V X~ey
ERMQ))NAEFceC:y~xe RT(Q)};
O, = O\(O\/ U OX).
O,/ contains objects that must be Pareto-optinasl, contains ob-
jects that cannot possibly be Pareto-optimal, éhdcontains ob-
jects for which the incomplete knowledge" (Q) is insufficient
for discerning their Pareto-optimality. The objectstn may turn
out to be Pareto-optimal after more comparison questiohthel
setO- for a question sequene@ is empty,O,, contains all Pareto-
optimal objects and the algorithm terminates. We call su¢ha
terminal sequencalefined below.
Definition 2 (Terminal Sequence)A question sequencé is a
terminal sequence if and only if, based B (Q), O-=@.

3.1 Question Selection
Given objectsO and criteriaC, there can be a huge number

of terminal sequences. Our goal is to find a sequence as short a

possible. As Fig.3 and Alg.1 show, the framework is an ifeeat
procedure of object partitioning based on question outsonie
can also be viewed as the process of moving objects ftbnto
O, andOx. Once an object is moved 10,, or O, it cannot be
moved again. With regard to this process, we make two impbrta
observations, as follows.
e In order to declare an object not Pareto-optimal, it is sufficient
to just knowx is dominated by another objectt immediately
follows that we do not really care about the dominance mafati
ship between objects i®« and thus can skip the comparisons
between such objects. Once we kna®wO- is dominated by
another object, it cannot be Pareto-optimal and is immeljiat
moved toO«. Quickly moving objects inta@D« can allow us
skipping many comparisons between object®in.
In order to declare an object Pareto-optimal, it is necessary to
know that no object can dominake This means we may need to
comparex with all other objects including non Pareto-optimal ob-
jects. As an extreme examplemay be dominated by only a non-
Pareto optimal objeat but not by any other object (not even the
objects dominating). This is because object dominance based
on preference relations is intransitive, which is formaiigited in
Property 1. The intransitivity of preference relation faanby
Pareto composition of strict partial orders was discuss4gi3].
Property 1 (Intransitivity of Object Dominance) Object domi-
nance based on the preference relations over a set of @iigarot
transitive. Specifically, ik>-y andy>z, it is not necessarily true
thatx>z. In other words, it is possible that-z or evenz>x. O

We show the intransitivity of object dominance by an example
Consider object®={x,y,z}, criteriaC={c1, c2, c3}, and the pref-
erence relations in Fig.4. Three dominance relationshiplste

c%@ cg@ CE@

Figure 4: Intransitivity of object dominance:-y, y>-z, z>-x.

transitivity: (i) x>y (based onx>., Y, X~c¢,Y, X~¢.Y), (i) y>z
(based o1y~¢, Z, y>c, 7, y~c,Z), and (iii) z>-x (based orz~., X,
Z~ey X, Z-c5X). As another example, in Fig.1as-c (sinceb~c,
b~.c, b>,c, wheres=story, m=musi¢ a=acting) andc>a (s-
incec>;a, c~,,a, C>,a), buta~b (sinceb>,a, a>,.b, b>,a)
where transitivity does not hold.

Differently, transitivity of object dominance holds in dine anal-
ysis [5]. The contradiction is due to the lack of explicitrédtite
representation—in our case two objects may be consideng-eq
ly good on a criterion if they are indifferent, while in skyé
analysis they are equally good regarding an attribute if thear
identical values. Skyline query algorithms exploit thengidivity

of object dominance to reduce execution cost, because aatobj
can be immediately excluded from further comparison once it
found dominated by any other object. However, due to Prggdert
we cannot leverage such pruning anymore.

Based on these observations, the overriding principle ofoes-
tion selection strategy (Alg.2) is to identify non-Paretotimal
objects as early as possible. At every iteration of the fiaonk
(Alg.1), we choose to compaxeandy by criterionc (i.e., ask ques-
tion x7.y) wherex?.y belongs tacandidate questionsSuch candi-
date questions must satisfy three conditions (DefinitionT3)ere
can be many candidate questions. In choosing the next quebgi
the aforementioned principle, we select su€hy that x is more
likely to be dominated by. More specifically, we design two or-
dering heuristics—macro-orderingand micro-ordering Given the
three object partition®, /, O andO-, the macro-ordering idea is
simply that we choosr from O- (required by one of the conditions
on candidate questions) agdrom O, U O (if possible) orOx
(otherwise). The reason is that itis less likely for an obje© « to
dominatex. Micro-ordering further orders all candidate questions
satisfying the macro-ordering heuristic. In Sec.4, wedangate the
framework into a variety of solutions with varying power iruping
questions, by using different micro-ordering heuristics.

Definition 3 (Candidate Question)Given(@), the set of asked ques-
tions so farx?.y is acandidate questioif and only if it satisfies
the following conditions:

(i) The outcome ok?.y is unknown yet, i.ezlt(x?.y) ¢ R (Q);
(i) x must belong ta)-;

(iii) Based onR™(Q), the possibility ofy>=x must not be ruled
outyet,i.e. i € C: x>~y € RT(Q).

Algorithm 2: Question selection

Input: RT(Q;),0,/(Q:), 07(Qs), Ox (Q:)
Output: Qgqp OF QZan

1 Qcan + {X2Y | rlt(X?2Y) & RT(Qi) AX € O2(Qi) A (B € C:
X =Y € RY(Q0)};

2 Q}:an <~ {X?Cy | X?Cy S Qcanyy é OX(QZ)}’

3 ann <~ {X?Cy | X?Cy € Qcan,y € OX(QZ)}’

/* Macro-ordering: consider Q2,,, before Q2,... */
4 if QL,,, # @then
5 | retun micro-orderindQ},,,);
6 else ifQ2,, # @ then
7 | retun micro-orderind@2,,,);




We denote the set of candidate questiongly... Thus,Qcan
={X?y | rlt(x?y) ¢ RF(Q)AX €O A(Bd €C:x =y €
RY(Q))}. O

If no candidate question exists, the question sequé&pds a
terminal sequence. The reverse statement is also trueupen
a terminal sequence, there is no candidate question lefis i$h
formalized in the following property.

Property 2. Qcan = @ ifandonly if O, = @.
Proof. The proof is omitted due to space limitations and can be
found in the technical report [4]. |

Questions violating the three conditions may also lead nmite
nal sequences. However, choosing only candidate questiateh-
es our objective of quickly identifying non-Pareto optinadijects.
Below we justify the conditions.

Condition (i): This is straightforward. IR(Q) or its transitive
closure already contains the outcomexdfy, we do not ask the
same question again.

Condition (ii): This condition essentially dictates thatleast
one of the two objects in comparison is frafy. (If only one
of them belongs t@-, we make itx.) Given a pairx andy, if
neither is fromO-, there are three scenarios—{@g§0./,y€O,,,
(2) x€0,/,yeOx or xeOx,y€0,/, (3) XeOx,yeOx. Once we
know an object is inO,, or O, its membership in such a set
will never change. Hence, we are not interested in knowirgg th
dominance relationship between objects from andOx only. In
all these three scenarios, comparingndy is only useful for indi-
rectly determining (by transitive closure) the outcomearhparing
other objects. Intuitively speaking, such indirect prgnis not as
efficient as direct pruning.

Condition (iii): This condition requires that, whex?.y is cho-
sen, we cannot rule out the possibility pfdominatingx. Other-
wise, if y cannot possibly dominate the outcome ok?.y cannot
help prunex. Note that, in such a case, comparingndy by ¢ may
help pruney, if y still belongs toO, andx may dominatey. Such
possibility is not neglected and is covered by a differeptesenta-
tion of the same questiony2.x, i.e., swapping the positions &f
andy in checking the three conditions. If it is determinedndy
cannot dominate each other, then their further comparisamly
useful for indirectly determining the outcome of comparotper
objects. Due to the same reason explained for conditions(igh
indirect pruning is less efficient.

The following simple Property 3 helps to determine whethex
is possible: I is better thaty by any criterion, then we can already
rule out the possibility of/>-x, without knowing the outcome of
their comparison by every criterion. This allows us to skiptlier
comparisons between them. Its correctness is straighdaforibased
on the definition of object dominance.

Property 3 (Non-Dominance Property)At any given moment,
suppose the set of asked questiong)is Consider two objectg
andy for which the comparison outcome is not known for every
criterion, i.e.,3c such thatrit(x?.y) ¢ R*(Q). It can be deter-
mined thatyy/x if 3¢ € C such thak>~.yc RT(Q). O

In justifying the three conditions in defining candidate spien-
s, we intuitively explained that indirect pruning is lesficént—
if it is known thatx does not belong t@- or y cannot possi-
bly dominatex, we will not ask questiorx?.y. We now justi-
fy this strategy theoretically and precisely. Consider asgjion
sequencel=(qi, ..., qn). We useO (Q), O2(Q), Ox(Q) to
denote object partitions according B (Q). For any questiom;,
the subsequence comprised of its preceding questions ateaten
Qi—1={q1,...,qi—1). If ¢ was not a candidate question when
it was chosen (i.e., afteR(Q;—1) was obtained), we say it is a

non-candidate The following Theorem 1 states that, if a question
sequence contains non-candidate questions, we can réplaca
shorter or equally long sequence without non-candidatstopres

that produces the same set of dominated objéxts Recall that

the key to our framework is to recognize dominated objects an
move them intaD« as early as possible. Hence, the new sequence
will likely lead to less cost when the algorithm terminates.

Theorem 1. If Q contains non-candidate questions, there exists
a question sequenceg’ without non-candidate questions such that
Q'] < 1Q[andOx(Q") = Ox (Q).

Proof. We prove by demonstrating how to transfo@rinto such a

Q'. Given any non-candidate questigr=x?.y in Q, we remove

it and, when necessary, replace several questions. Thsialei
and choices are partitioned into three mutually exclusbemarios,
which correspond to violations of the three conditions irfillie
tion 3. The detailed proof is omitted due to space limitagiand
can be found in the technical report [4]. a

3.2 Resolving Unusual Contradictions in Ques-
tion Outcomes

A preference relation can be more accurately derived, ifemor
input is collected from the crowd. However, under practiath-
straints on budget and time, the limited responses from rithed:

(k answers per question) may present two types of contradictin
preferences.

(i) Supposerit(x?.y)=x>.y andrit(y?.z)=y>.z have been
derived, i.e., they belong t®(Q). They together implyx>.z,
since a preference relation must be transitive. Therefwajties-
tion x?.z will not be asked. If the crowd is nevertheless asked to
further comparex and z, the resultrit(x?.z) might be possibly
z> X, which presents a contradiction.

(i) Supposerit(x?.y)=x~.y andrit(y?.z)=y>.z have been
derived from the crowd. If the crowd is asked to further corepa
andz, the resulirit(x?.z) might be possibly-.x. The outcomes
y=.Z andz>.x together implyy>.x, which contradicts witkx~.y.

(A symmetric case islt(X7:y)=x~.Y, rlt(y?.z)=z>.y, and the
crowd might respond withrlt(x?.z)=x>.z, which also leads to
contradiction withx~.y. The following discussion applies to this
symmetric case, which is thus not mentioned again.)

In practice, such contradictions are uncommon. This is &asy
understand intuitively—as long as the underlying prefeeerela-
tion is transitive, collective wisdom of the crowds will redt it. We
can find evidence of it in [27, 10], which confirmed that prefeze
judgments of relevance in document retrieval are tramsitiv

Nevertheless, contradictions still occur. Type (i) codittions
can be prevented by enforcing the following simple Rule 1¢0 a
sume transitivity and thus skip certain questions. They naler
get into the derived preference relations. In fact, in daling
transitive closure (Definition 1) and defining candidate sjioas
(Sec.3.1), we already apply this rule.

Rule 1 (Contradiction Prevention by Skipping Questiangiven
objectsx, y, z and a criterior, if rlt(x7.y)=x>.y andrit(y?.z)=
y>.z, we assumelt(x?.z)=x>.z and thus will not ask the crowd
to further comparex andz by criterionc. a

To resolve type (ii) contradictions, we enforce the follog/sim-
ple Rule 2.

Rule 2 (Contradiction Resolution by Choosing Outcomeg§)on-
sider objects, y, z and a criteriore. Suppose-lt(X?.y)= X~y
andrlt(y?.z)=y>.z are obtained from the crowd. Ht(x?.z)=
z>.X is obtained from the crowd afterwards, we replace the out-
come of this question by~.z. (Note that we do not replace it by
X2, sincez> X is closer tax~.z.) O
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19 [0~ m€.Crud an,,C 2 [a,b,c,d,e,f o
g>se‘QNsd‘b>a§
g>mevg’”mdvg>sf

10 §>md a-, €

11 C-.a

12 QNSC

13 Crnd C-n€

14-19) dhgg%c‘gwf
a~.df-.ab-.e
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24 a-.f a~f
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e>aa,b>f

26 Q>aC

27 a>mQ

28 b-.e b-e | (a,b,g d,efy

29 C-.a C-.6C-a | o (b,cy @a,d,ef

30 b~..C b-c by o a,c,d,ef

Table 2:RandomQ on Example 1.

4. MICRO-ORDERING IN QUESTION SE-
LECTION

At every iteration of Alg.1, we choose a questiohy from the
set of candidate questions. By macro-ordering, when dlailshe
question selection strategy (Alg.2) chooses a candidastigun in
whichy ¢ O, i.e., it chooses frond).,,,. Otherwise, it chooses
from Q2,,,. The size ofQl,, and Q%,, can be large. Micro-
ordering is for choosing from the many candidates. As dseds
in Sec.3, in order to find a short question sequence, theidiregr
principle of our question selection strategy is to identifjn-Pareto
optimal objects as early as possible. Guided by this priacihis
section discusses several micro-ordering strategiese$ie strate-
gies are the same f@p_,,, andQ?,,,, we will simply use the term
“candidate questions” without distinction betwe@p,,, andQ?,,..

4.1 Random Question RandomQ)

[ rlt(q;) [Derived Resull® ] O~ Oy

1 c-.f » ka,b,c,d,ef o

2 frmC f~c
3 —4d-:€d-,€

5 €-,a a~e
6 —7[C-s€C-€E

s e~,.C c-e o | a,b,c,df (6

9 b-.a b-.e

10 a-..b a-b

T d-.f

= | t.d T~d

13 d>5§ d-.e

14 §>md a~d
15 — 16Q~5C,Q~mc

17 b-.c b.-c | @bdh (C,6}
1s — 19d~.Db.d~,. D

20 b-.d b-d | @b c,d,e

21 g»sf b»sf

22 g’“wnf

23 f>a§ a~f

24 bNmI

25 b .f b .a b-f [(b (Qy c,d.ef
26 — 27C~.d, A~ C

28 Cr.a c-a |y o a,cd.ef

Table 3:RandomP on Example 1.

criterion in C in order to make surg>-x. By skipping questions
according to transitive closure, we do not need to directlypare
them by every criterion. However, Property 4 below statas we
still need at leasfC'| questions involvingc—some are direct com-
parisons withy, others are comparisons with other objects which
indirectly lead to outcomes of comparisons withWhen there is

a candidate questiax?.y, it meansy may dominatex. The fewer
criteria remain for comparing them, the more likglwill dominate

X. Hence, by keeping comparing the same object RandomP
aims at finding more non-Pareto objects by less questions.

Property 4. Given a set of criteri@’ and an objeckeO, at least
|C| pairwise comparison questions involvir@re required in order
to find another objeagt such that/>-x.

RandomQ, as its name suggests, simply selects a random candi-proof. The proof is omitted due to space limitations and can be

date question. Table 2 shows an execution of the genera¢fvank
underRandomQ for Example 1. For each iteration the table
shows the question outcomé(g;). Following the question form
x?.y in Definition 3, the objectX” in a question is underlined when
we present the question outcome. The column “derived slik-
plays derived question outcomes by transitive closure,@:g..e
based omlt(g7)=d>.,e andrit(qi0)=a>.d) and derived object
dominance (e.gh>d aftergso). The table also shows the object
partitions O, ,/, O- andOx) when the execution starts and when the
partitions are changed after an iteration. Multiple itenag may be
presented together if other columns are the same for them.

As Table 2 shows, this particular execution unéamdomQ
requires30 questions. When the execution terminates, it finds the
only Pareto-optimal objedi. This simplest micro-ordering strate-
gy already avoids many questions in the brute-force approBce
example clearly demonstrates the benefits of choosing datedi
questions only and applying macro-strategy.

4.2 Random Pair RandomP)

RandomP randomly selects a pair of objectsandy and keeps
asking questions to compare therY{y or y?.x) until no such
candidate question remains, upon which it randomly picksteer
pair of objects. This strategy echoes our principle of dgdeenti-
fying non-Pareto optimal objects. To declare an obygwn-Pareto
optimal, we must identify another objegsuch thay dominatex.

If we directly comparex andy, it requires comparing them by every

a

Table 3 illustrates an execution &andomP for Example 1.
The initial two questions are betweenandf. Afterwards, it is
concluded that~f by Property 3. ThereforeRandomP moves
on to ask3 questions betweea ande. In total, the execution
requires28 questions. Although it is shorter than Table 2 by obly
questions due to the small size of the example, it clearlyesov
objects intoOx more quickly. (In Table 20« is empty until
the 20th question. In Table 30 already has3 objects after
20 questions.) The experiment results in Sec.5 exhibit sicaniti
performance gain dRandomP overRandomQ on larger data.

4.3 Pair with Fewest Remaining Questions/RQ)

Similar toRandomP, once a pair of objects andy are chosen,
FRQ keeps asking questions betwerrandy until there is no
such candidate questions. Different frdRandomP, instead of
randomly picking a pair of object$;RQ always chooses a pair
with the fewest remaining questions. There may be multiptshs
pairs. To break tieF;RQ chooses such a pair thahas dominated
the fewest other objects agdas dominated the most other objects.
Furthermore, in comparing andy, FRQ orders their remaining
questions (and thus criteria) by how liketyis worse thary on the
criteria. Below we explain this strategy in more detail.

found in the technical report [4].

Selecting Object Pair Consider a question sequen@e so far
and FRQ is to select the next questioi+1. We useCy,y to



denote the set of criteriasuch thaix?.y is a candidate question,
i.e., Cx,y={ceC | X?y€Qtan}. (We assume).,,, is not empty.
Otherwise FRQ chooses fron?,,, in the same way; cf. Alg.2.)
By Definition 3, the outcomes of these questions are unknown,
VeeCyxyy : rit(x?.y)¢R"(Q;). Furthermore, if any remaining
guestion (whose outcome is unknown) betwgeamndy is a candi-
date question, then all remaining questions between thereadi-
date questiong=RQ chooses a pair with the fewest remaining can-
didate questions, i.e., a pair belongingtp=arg min x y) |Cx,y|-

The reason to choose such a pair is intuitive. It requiresastl
|Cx,y| candidate questions to determipex. (The proof would
be similar to that of Property 4.) Thereforajn x,y, |Cx,y| is the
minimum number of candidate questions to further ask, ireord
to determine that an object is dominated, i.e., non-Pangtional.
Thus, a pair inS; may lead to a dominated object by the fewest
questions, matching our goal of identifying non-Paretaroat ob-
jects as soon as possible.

We further justify this strategy in a probabilistic senser ¥-x
to be realized, it is necessary that none of the remaining-que
tions has an outcome-_.y, i.e., VceCyx,y : rit(x?cy) # X>cy.
Make the simplistic assumption that every questidny has an
equal probability of not having outcomes-.y, i.e.,vx?.yeQl, ..
P(rit(x?:y)#x>=cy)=p. Further assuming independence of ques-
tion outcomes, the probability of satisfying the aforenamtd nec-
essary condition ig'“%Y'. By taking a pair belonging ts:, we
have the largest probability of finding a dominated objecte W
note that, fory>x to be realized, in addition to the above neces-
sary condition, another condition must be satisfiedéeisuch that
y=.X € RT(Q;), the outcome of at least one remaining question
should bey-cx, i.e.,dc€Cyx y : Tlt(X?cy)=y~cX. Our informal
probability-based analysis does not consider this extrairement.

Breaking Ties There can be multiple object pairs with the fewest
remaining questions, i.e|S1|>1. To break tiesFRQ chooses
such anx that has dominated the fewest other objects, since it is
more likely to be dominated. If there are still tigsSRQ further
chooses suchythat has dominated the most other objects, since it
is more likely to dominate. More formally, FRQ chooses a pair
belonging taS>={(x,y)€S1 | A(x',y")€S1 such thad(x’)>d(x)V
(d(x")= d(x) A d(y')>d(y))}, where the functiori(-) returns the
number of objects so far dominated by an object, ¥&,.d(x) =
|{y|x>~y based orR*(Q;)}|. This heuristic follows the principle

of detecting non-Pareto optimal objects as early as passhibte
thatS> may still contain multiple object pairs. In such a caSRQ
chooses an arbitrary pair.

Selecting Comparison Criterion Once a pair X,y) is chosen,
FRQ has to select a criterion for the next questidfRQ orders
the remaining criteri@’x y based on the heuristic that the sooner
it understands/>x will not happen, the lower cost it pays. As
discussed beforé(’y y| questions are required in order to conclude
thaty>x; on the other hand, only one question (if asked first) can be
enough for ruling it out. Consider the case thas better thary by
only one remaining criterion, i.edc€Cy,y : Tlt(X7cy)=x>.y and
V' €Oy y, c'#c : rit(x?y)=X#y. If FRQ asksx?.y after all
other remaining questions, it takiSx y| questions to understand
y does not dominate; but if x?.y is asked first, no more questions
are necessary, because there will be no more candidateanseist
the form ofx?.y.

Therefore,FRQ orders the criteria’y,y by a scoring function
that reflects the likelihood af’s superiority thany by the corre-
sponding criteria. More specifically, for eaelCy,y, its score is

re(XY) = re(y)+7'c(Y) =1 c(¥) = (re(})+7"c(x)=r" (X)) where
re(y) = {z | Z-cyeR™(Qi)}, r'e(y)=|{z | y~z€RT(Qi)}],

4 [rlt(q, )|Derived Resul{s(X,Y), nyy O/ O- Ox
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11{bs . d b-d [e,D) (a5, m}| & (b,e.f @,c,dy

12b-.e ©,b). (s, m}

13D-.e ©,b), (m}

14b-.€la-..e.b-elfb).{(a.s.m}] o (b, @a,c,d,e

15 Dy f £.0). (s, m}

1d b T &by, {my

17| bmnf b, f {b} I} a,c,d,e,f)

Table 4:FRQ on Example 1.

andr” .(y)=|{z | y=.z€ R (Q:)}|. In this scoring functionz.(y)

is the number of objects preferred owerby criterion ¢, r'.(y)

is the number of objects equally good (or bad)yaby ¢, and
r"(y) is the number of objects to whighis preferred with regard

to c. FRQ asks the remaining questions in decreasing order of
the corresponding criteria’s scores. This way, it may finchsa
question thatlt(x?.y)=x>y earlier than later.

Table 4 presents the framework’s execution for Example 1, by
applying theFRQ policy. In addition to the same columns in
Tables 2 and 3, Table 4 also includes an extra column to stow, a
each iteration, the chosen object pair for the next quegtign
and the set of remaining comparison criteria between th@&gn.
The criteria inCx y are ordered by the aforementioned ranking
function r(-). At the beginning of the execution, the object pair
is arbitrarily chosen and the criteria are arbitrarily oste In the
example, we assuma? ;b is chosen as the first question. After
q2, FRQ can derive thaa~b. Hence, there is no more candidate
question between them aR@RQ chooses the next paiac). Three
questions are asked for comparing them. At the eng ofultiple
object pairs have the fewest remaining questions. By bngaiés,
(b,c) is chosen as the next pair, since oghhas dominated any
object so far. The remaining criterid, . are ordered asa, s,m},
becauser, (b,c)>r;(b,c) andrq(b,c)>r.(b,c). The execution
sequence terminates after questions, much shorter than tge
and28 questions byRandomQ andRandomP, respectively.

To conclude the discussion on micro-ordering, we derivevefo
bound on the number of questions required for finding all ®are
optimal objects (Theorem 2). The experiment results in Bes.
veal thatFRQ is nearly optimal and the lower bound is practically
tight, since the number of questions usedARQ is very close to
the lower bound.

Theorem 2. Given objectsO and criteriaC', to find all Pareto-
optimal objects in0, at least(|O|—k) x|C|+(k—1)x2 pairwise
comparison questions are necessary, whésehe number of Pareto-
optimal objects irO.

Proof. The proof is omitted due to space limitations and can be
found in the technical report [4]. a

5. EXPERIMENTS

We designed and conducted experiments to compare the efficie
cy of different instantiations of the general framework endary-
ing problem sizes. Our experiments used both a real crowdsou
marketplace and simulations based on a real dataset.
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5.1 Efficiency and Scalability

We studied the efficiency and scalability of various instgtiins
of the general framework. Given the large number of question
required for such a study, we cannot afford using a real csownrt-
ing marketplace. Hence, we performed the following simatat
Each object is an NBA player in a particular year. The objects
are compared byO0 criteria, i.e., performance categories such as
points rebounds assists etc. We simulated the corresponding
10 preference relations based on the players’ real perforenanc
individual years, as follows. Consider a performance categ
and two objectx=(playerl, yearl) angl=(player2, year2)x.c is
playerl’s per-game performance on categoig yearl (similarly
for y.c). Values in each categoryare normalized into the range
[0, 1], where0 and1 correspond to the minimal and maximal val-
ues inc, respectively. Supposec>y.c. We generated a uniform
random numben in [0,1]. If v<1 — e~ @¢7¥9) we setx>.y,
otherwise we set~.y. This way, we introduced a perturbation into
the preference relations in order to make sure they aresparter-
s, as opposed to directly using real performance statigtib&ch
would imply total orders). Fig.5 shows that the number ofelRar
optimal objects increases by the sizes of both objeaDsthjects
are randomly selected) and criteria geéf(the first|C| criteria of
the aforementionedO criteria).

Effectiveness of candidate questions and macro-ordering

To verify the effectiveness of candidate questions and oaamiering,
we compared five methodsBruteForce, —-CQ-MO, —CQ+MO,
+CQ-MO, and+CQ+MO. The notation +/— befor€Q and MO
indicates whether a method only selects candidate ques{)
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Figure 7: No. of questions by different micro-ordering hstics.

and whether it applies the macro-ordering strateg{j, respec-
tively. In all these five methods, qualifying questions anedomly
selected, i.e., no particular micro-ordering heuristios applied.
For instance;+CQ+MO selects only candidate questions and ap-
plies macro-ordering. Hence, it is equivalentRandomQ. Fig.6
shows the numbers of required pairwise comparisons (irribga
mic scale) for each method, varying by object set s|z¥ {rom
500 to 10, 000 for |C'|=4 and|C|=10) and criterion set siz¢ |
from 3 to 10 for |O|=3, 000 and|O|=10, 000). The figure clearly
demonstrates the effectiveness of b6 andMO, as taking out
either feature leads to significantly worse performance fRan-
domQ. Particularly, the gap betweerCQ-MO and —-CQ+MO
suggests that choosing only candidate questions has moda-fu
mental impact than macro-ordering. If neither is applied. (i-
CQ-MO), the performance is equally poor as thaBsfiteForce.
(-CQ-MO uses slightly less questions thBnuteForce, since it
can terminate before exhausting all questions. Howeverdtf
ference is negligible for practical purpose, as their ceirveerlap
under logarithmic scale.)

Effectiveness of micro-ordering

Fig.7 presents the numbers of pairwise comparisons retjojreif-
ferent micro-ordering heuristicRGndomQ, i.e.,+CQ+MO, Ran-
domP, FRQ) and LowerBound (cf. Theorem 2) under varying
sizes of the object sef@| from 500 to 10,000 for |C|=4 and
|C|=10) and the criteria se{| from 3 to 10 for |O|=3, 000 and
|O|=10, 000). In all these instantiations of the general framework,
CQ andMO are applied. The results are averaged acBossxe-
cutions. All these methods outperformBduteForce by orders of
magnitude. BruteForce is not shown in Fig.7 since it is off scale,
but its number can be calculated by equatjefix|O|x(|O]| —
1)/2.) For instance, fos, 000 objects and4 criteria, the ratio
of pairwise comparisons required by even the n&amdomQ to
that used byBruteForce is already as low a8.0048. This clearly
shows the effectiveness 6Q andMO, as discussed for Fig.6. The
ratios forRandomP and FRQ are further several times smaller
(0.00094 and0.00048, respectively). The big gain byRQ justi-
fies the strategy of choosing object pairs with the fewestaiem
ing questions. Especiall[sRQ has nearly optimal performance,
because it gets very close tmwerBound in Fig.7. The small
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100

gap betwee®RQ andLowerBound also indicates that the lower
bound is practically tight. The figure further suggests #zoe
scalability of FRQ as its number of questions grows almost linearly
by both|C| and|O].

5.2 Experiments Using a Real Crowdsourcing
Marketplace

We also studied the performance of the proposed algorittens u
ing the popular crowdsourcing marketplace Amazon Meclanic
Turk (AMT). The task is to comparé00 photos of our institu-
tion with regard tacolor, sharpnessandlandscape To obtain the
ground-truth data, all4, 850 possible pairwise questions were par-
titioned into1, 650 tasks, each containirhjquestions on a criterion.
An AMT crowdsourcer is allowed to perform a task only if they
have responded to at lead20 HITs (Human Intelligence Tasks)
before with at least0% approval rate. Furthermore, we imple-
mented basic quality control by includiriyadditional validation
questions in each task that expect certain answers. Famicest
one such question asks the crowd to compare a colorful pimato a
a dull photo by criteriorcolor. A crowdsourcer’s responses in a
task are discarded if their response to a validation quesiéviates
from our expectation. 236 crowdsourcers failed on this.) The
parameters in Equation (1) were set tokse5 and6=0.6. Hence,
intotal (1, 650x 5+236) x (94+2) = 93, 346 pairwise comparisons
were performed by AMT crowdsourcers. We paid 1 cent for each
comparison and therefore spent close to $1,000 in total.

The responses to all possible questions provide the grouiid-
data. An algorithm execution only needs the responses td-a su
set of the questions. We randomly selected a subset of plibtos
(|O| from 10 to 100) and applied various algorithms to find Pareto-
optimal photos. Figure 8 shows, for varyin@|, the number of
questions (in logarithmic scale) required by each miciedng
strategy. To account for the randomnesRandomP and Ran-
domQ, we repeated these two algorithms, respectivalytimes,
and we reported the average numbers of questions. Confitiméng
results in Figure 7FRQ was close to the theoretical lower bound,
performing better than the other two methods, RashdomP out-
performedRandomQ.

6. CONCLUSIONS

This is the first study on using crowdsourcing to find Pareto-
optimal objects when objects do not have explicit attribuaed
preference relations are strict partial orders. The gavtiders are
obtained by pairwise comparison questions to the crowdntibi
duces an iterative question-selection framework thatstaimtiated
into different methods by exploiting the ideas of candidptestion-
s, macro-ordering and micro-ordering. Experiment werelooted
by simulations on large object sets and by using a real crourds
ing marketplace. The results exhibited not only orders ofmia
tude reductions in questions against a brute-force apbraat also
close-to-optimal performance from the most efficient mdtho
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