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Abstract—Frequent episode mining is a popular framework  2) Testing whether an episode occurs in a sequence is an NP-
for discovering sequential patterns from sequence data. Rwvious complete problem [38].
studies on this topic usually process data offline in a batch ) . . L
mode. However, for fast-growing sequence data, old episosle In this paper, we studynline frequent episode mining
may become obsolete while new useful episodes keep emerging where the sequence of events continuously grows. In such
More importantly, in time-critical applications we need a fast  a scenario, old episodes may become obsolete while newly-
solution to _discovering the latest frequent episodes_fromrgwing emerging episodes may become valuable. More importantly,
data. To this end, we formulate the problem of Online Frequen  for time-critical applications we need efficient methods to
Episode Mining (OFEM). By introducing the concept of last  fing recent, frequent episodes from the growing sequence.
episode occurrence within a time window, our solution can detect This online mining problem is motivated by some real-world

new minimal episode occurrences efficiently, based on which all L . L
recent frequent episodes can be discovered directly. Adddnally, applications, and we describe two of such applicationsvaelo

a trie-based data structure, episode trie, is developed to store The first application is High Frequency Trading (HFT) in
minimal episode occurrences in a compact way. We also formigl ¢ anitative finance. HFT is a type of algorithmic tradingtth
prove the soundness and completeness of our solution and dyze 05 5 nhisticated models to rapidly trade securities Bftdr
its time as we_II as space complexity. Experiment results_ of_dtlh ¢ f . . d vol ies int "
online and offline FEM on real data sets show the superiority b ransiorming price and volume Series Into a Sequence ol&ven
our solution. episode mining can be applied in guiding trading decisi¢ins.
is also worth emphasizing that data-processing speed &nd th
ability of adapting to market variations are key factorshe t
. INTRODUCTION success of HFT. A recent report shows that a high-frequency
trader holds stocks for onl@2 seconds in average [9] since
Ynly the swiftest HFT operations can benefit from existing
(5'pportunities [23]. Therefore, episode mining for HFT reed
an efficient online method to handle fast-growing data and
identify the freshest patterns for prediction.

conducted to analyze data sequences in the domains of
elecommunication [29], [30], manufacturing [20], [21], fi-
nance [33], [18], biology [5], [18], system log analysis [44
[18], and news analysis [3]. An episode (also knowrsesal
episodé is usually defined as a totally ordered set of events, Another application is predictive maintenance of data
and the frequency of an episode is the measure of how often é@enters. Predictive maintenance strives to realize eqeipm
occurs in a sequence. FEM aims at identifying all the frequenfailures beforehand, for preventing unanticipated eqeipm
episodes whose frequencies are larger than a user-specifieddowntime and promoting service quality for operations
threshold. staff [36]. By mining equipment event logs which contain
, . rich operational information, we can generate the preaficti
_There are many ways to define the frequency of an episodesode| to report risky alarms or repair possible malfunction
Existing measures include window-based frequency [3@},[3 aytomatically. In most cases the log data arrive within sdso
minimal occurrence [29], [41], [18], [27], non-overlapped p|sp, with the growth of log data and the variations of
occurence [22], [1], [44], non-interleaved occurrence] [A8d  t5sks and users, meaningful patterns may change dranhatical

total frequency [1]. Since minimal occurrence can capturgyence, we also need an fast episode mining method to discover
the most intense correlation between events, we adopt thige |atest patterns for predictive maintenance.

frequency measure for episode mining. o _
In summary, real-world applications present the following

Previous studies on FEM mostly process dafitinein a  three key challenges in online frequent episode mining:
batch mode. Usually, masses of historical data are proyided

and the mining process may last for hours or even dayss Fast-growing data.A long sequence of events is fast-

Two characteristics make most existing FEM solutions time- growing, and new events often arrive at an interval of sesond
consuming: 1) The anti-monotonicity property may fail to e Recency effecOnly the freshest patterns from recent events
hold for episode frequency [2]. For instance, the frequency are of interests.

of a sub-episode may be less than that of the super-episodedif Time-critical analysisThe mining process is required to be

minimal occurrencés used to measure the episode frequency. fast and responsive. Data-processing speed is critichleset



applications since a delay may lead to drastic loss or everelated to this task, including frequent episode mining and
disaster. online frequent pattern mining.

A naive solution to the online episode mining problemisto  Frequent episode mining [1]4], [6], [11], [18], [22],
continuously perform a batch-mode episode mining algorith [26], [27], [29]-[31], [33]—[35], [38]-[41], [43], [44] on
over the sequences in current time windows. Clearly, thigvent sequences is an important data mining problem for
method allows much room for improvement in time efficiencyvarious forms of data, such as alarm sequences in telecom
since it incurs lots of repeated computations in conseeutivhetworks [30], [35], web navigation logs [6], [30], time-
rounds of mining and fails to reuse the results across éiffer stamped fault reports in car manufacturing plants [22]esal
rounds. Therefore, we aim to develop an efficient method thatansactions [4], [41], stock data [18], [33], news [3], esul

fully leverages the immediate results from the last round. 10n [34], [39]. Depending on different applications, vasou
must tackle the following challenges. definitions of episode frequency were proposed to unearth

different types of frequent episodes. Achar et al. [2] rexdd
e Infrequent events at the current moment may become freg variety of frequency definitions, among whighinimal

quent in the future. Therefore, we cannot simply discardyccurrenceis one of the most widely used definitions.
infrequent events. Instead, we must keep all events anad. ti

This requirement drastically increases the complexitynef t  Given a particular frequency definition, frequent episode
problem. mining algorithms fall into two categories: breadth-firsiue

e Since we have to retain all events in the mining processineration (also known as apriori-based) methods and depth-
the intensive computation will generate lots of episode ocfirst enumeration (also known as pattern-growth) methods.
currences. Thus, we are in need of a compact and effectivine breadth-first algorithms involve two main steps: caagid
data structure for storing all such episode occurrences. ~ generation and frequency counting. Candidate generasion i

e Efficiently mining all minimal occurrences of episodes alsousually improved based on anti-monotonicity or some more

becomes a big challenge over the growing sequence. restricted ant_i-monoton_e_properties of frequerjc_y defingi
However, anti-monotonicity fails to hold for minimal oceur

In this paper, we propose an algorithm named MESELCrences [2]. Particularly, the frequency of a sub-episodg ma
(Mining frEquent Serial Episode via Last Occurrence) forbe less than that of its super-episode if minimal occurrésce
online frequent episode mining. We design a sophisticatedsed in defining episode frequency. We provide an example
data structureepisode trie to compactly store all minimal to explain such an observation in Section IIl. The depth-firs
occurrences of episodes. We also introduce the concept @humeration algorithms discover frequent episodes withou
last episode occurrenceGiven a time-window, there is no candidate generation but by expanding prefix in the sequence
occurrence of the same episode after its last occurrence. Abhey are fit to use minimal occurrence as frequency definition
important property based on this concept is that appendipg a However, most descriptions of such algorithms in the lignea
new event (at a new time point) to a last episode occurrente cdack the details of how to detect a minimal occurrence of an
generate a new minimal episode occurrence. In other worels, wexpanded episode. To our best understanding, these hlgerit
can directly generate all the new minimal episode occueenc usually consider the occurrences of a prefix as independent
for the coming events based on the last episode occurrences. each other while expanding to longer episodes. As a
Thereby, it enables an efficient online method to identifghea consequence, it requires a post-processing step for egsuri
minimal episode occurrence, based on which we count tha detected occurrence is truly a minimal occurrence. Rgent
frequency of each episode and find the frequent ones. In thi&char et al. [1] solved this problem by introducing a detile
study, we also formally prove the correctness and compdsten implementation to compute a minimal occurrence list of an
of the proposed method, and we analyze its time and spa@xpanded episode.

complexity. Experiment results of both online and offlinédba . . . . .
P Patnaik et al. [35] considered episode mining on dynamic
modes on ten real-world data sets demonstrate S'gmf'carétvent streams. However, their work is fundamentally déifer

superior time efficiency of the proposed method over thef om ours. In their work, event sequence grows with a batch
baselines. In addition, we compare our method and somg : ' q 9

state-of-the-art batch mode FEM methods based on minimaFf data, including events happening on a set of consecutive

occurrence. They have not been comprehensively compared jjne stamps. For a new batch of data, any batch_—mode e_p|sode
prior studies mining algorithm can be used to detect the candidate epssode

The main contribution of their work is to identify a frequgnc
The remainder of this paper is organized as follows.lower-bound such that only the episodes with frequencydrigh
Section Il discusses related work. Section Ill presentsepti than this bound are likely the top{frequent ones with a high
definitions and problem statement. In Section IV, we ovewvie probability in a time-window. Since the episode mining s
the framework for online frequent episode mining. In Sectio is only applied on the batch of growing events locally, efieso
V, we describe the details of the MESELO algorithm and provespanning over two consecutive batches cannot be identified.
its soundness and completeness. In Section VI, we analgze thn an extreme case, when each batch of data contains only
time and space complexity of the proposed algorithm. Secthe events from a single time stamp, their method fails to
tion VII presents experiment results. Section VIII condad produce correct results. However, our work actually cosrsid
the paper and discuss the future work. this extreme case where data arrive tick by tick. In this sens
we call our problenonline frequent episode mining

Il RELATED WORK New problems extended from frequent episode mining

We are not aware of prior work on the problem of onlinehave also been studied in [41] and [40] recently. Wu et
frequent episode mining. However, there are several studieal. [41] combine frequent episode mining and utility patter



mining to discover high utility episodes in complex eventej—---ei—---—e) wherek < n. The episode3 is a sub-
sequence. In [40], the authors focus on mining probatilisti episodeof « (correspondinglya is a super-episodeof (),
frequent serial episodes over a sequence of uncertainseventdenoted ass < «, if and only if there existsk integersl
In these problems, minimum support is no longer taken as< i; < ip < --- < iy < n such thate;, = ¢} for everyj
the interesting measure. Instead, they consider other idema € [1, k]. For example2-episode = D—C is a sub-episode
specific metrics. of 3-episodeD—A—C, but 5’ = A—D is not.

Online mining of different kinds of patterns, such as  Definition 4 (Occurrence). Given an episodea =
mining frequent pattern on stream data, has been extepsivet, —...¢;—--- —ey, [t1, -+ -, t;, -+ -, tx] iS @an occurrence of
researched. The proposed algorithms in such studies can beif and only if (1) e; occurs att; for all i € [1,k]; (2) t;
grouped into two classes, namely approximate methods and ¢, < ... < t;; and (3)t; - t; < 6 whered is a user-
exact methods. Approximate algorithms, such as Carma [12kpecified threshold called tmeaximum occurrence window
LCA [28], estDec [7], FP-Stream [10] and FDPM [42], discov- is the start timeandt;, is theend timeof the occurrence. For
er frequent patterns by approximate support counting. Exagexample, in the running example sequence shown in Figure 1,
algorithms, including DSTree [24], SWIM [32], CanTree [25] [1,2,3] constitutes an occurrence of episddlesA—C if § is
CPS-tree [37] and MOMENT [8], usually utilize a prefix-tree set to3 while [2, 3, 4] does not.
structure to store itemsets. They mainly focus on maintgini

prefix-trees upon incoming new data. Definition 5 (Equivalence of occurrences Consider an
o o o episodex = e;—---e;—- - - —e;, and its two different occur-
The main difference between online itemset mining andences[tl, ety ety and [ty -o, t, o, 8], The two

online episode mining is that, in online itemset mining, weoccurrences are considereduivalentif and only if ¢t; = #}

do not need to use the time information of each transactiorand #, = #,. In other words, they are considered the same
However, in online episode mining, every event has an ocpccurrence and we use only the start time and the end time
curring time. It is hard to use only one node to represento represent an occurrence. Based on this concept, we denote
the same event occurring at different times. Thus, in thisan occurrence of episode as («, [t1, t]) hereafter.[t,, t;]
paper, we have to use a group of episode tries to store a# called anoccurrence windovof «. For instance, consider
episode occurrences. This requirement makes the updagng tepisodedD—A—sB in the running example, its two occurrences
structure much harder. Thus, as mentioned earlier, we B®PO|[4, 5. 7] and[4, 6, 7] are equivalent. They are both instances of
the concept ofast episode occurrende reduce the execution occurrencgD—A—B, [4,7])
time of trie updating.

Definition 6 (Minimal occurrence). Consider two time
windows [t1, ta] and [t], t5]. [t},t5] is subsumeddy [t1, to]
Il FREQUENTEPISODEMINING if 1 <t andt, < t,. An occurrence window of episode

This section provides an overview of the definitions and®: [t1,t2], s qminim/al occurrence windowf « if no other
properties used in this paper. For details about the framewo occurrence windowt’, ¢5] of o is subsumed byt,, t5]. The
of episode mining, readers could refer to [30], [2], [41]. We Occurrence ofv in an minimal occurrence windoW,, 5] of

also formulate the problem of online frequent episode ngjnin ¢ iS defined as a minimal occurrencedgfand we denote it by
in this section. (o, [t1, t2]). The set of all distinct minimal occurrences @f

is denotednoSet(«). For example, in Figure InoSet(A—B)

1 2 3 4 5 6 7 = {[5,6], [6,7]} if 6 = 3.

< OO0

D g‘ c D A g B B Definition 7 (Support of an episodg. The support of
, _ an episodey, denoted asp(«), is defined as the number of
Fig. 1. The running example of event sequence. distinct minimal occurrences, i.esp(a) = [moSet(«)|. Thus,

" the support ofA—B is 2 in the running example.
Definition 1 (Event sequence LetE={ey, e, em} be PP 9 P

a finite set of events. Aavent sequencedenotedS=((E1,t1), Definition 8 (Frequent episodg. An episode is called

(Eq,t2), --+, (En,tn)), is an ordered sequence of events,frequent if and only if its support is no less thanin_sup—

where eachE; C £ consists of all events associated with time a user-specifiedninimum support thresholdOtherwise, the

stampt;, andt; < t; for anyl < j < k < n. For example, ~episode is infrequent.

l(:{lglir%)l (s{hs);/v 2)6“2 {i\/}egt) SF{%GB%%S (E?gj 1%) (gf‘é}B}é’)?)’ Minimal occurrence as a frequency measure does not sat-

e P e s e el isfy anti-monotonicity. It means the supports of sub-egéo

Definition 2 (Episode). An episode (also known as a serial may be less than that of their super-episodes if minimal

episode)a is defined as a non-empty totally ordered set ofoccurrence is used to define episode fre.querjcy. For _instance

events of the forne;—- - -e;—--- e, wheree; € £ foralli €  if 0 is set to3, the support ofA—B—C in Figure 2 is2

1, k] and the event; occurs before the event for all 1 < (moSet(A—B—C) = {[1,3], [2,4]}), while the support of

i < j < k. Thelengthof an episode is defined as the numberits sub-episodeA—C is only 1 (moSet(A—C) = {[2,3]}).

of events in the episode. An episodeof length k is called  Neither [1,3] nor [2,4] is a minimal occurrence window of

a k-episode. For exampley = D—A—C is a 3-episode. An A—C becausd2, 3] is subsumed by the two time windows.

eventa can also be viewed as laepisode. Problem statement of frequent episode mining (batch

Definition 3 (Sub-episode and super-episode Con- mode): Given an event sequenéga minimum support thresh-
sider two episodesa = e;—---e;—---—e, and g = old min_sup and a maximum occurrence window threshdld



k k k k H
1 3 4 UM, s UM, U My, U M’} contains all the
minimal episode occurrences in this sequence.

Proof: Since M; contains all minimal occurrences of
episodes starting at time stampfor eachi € [1, k], the set
M does not omit any minimal occurrencesh Since the time
the frequent episode mining problem in batch mode is to findnterval between the start time and the end time of edth
all frequent episodes if. is always smaller thad, i.e.,t; —t; < 4, forall 1 < i <
k ando < j < k, every minimal occurrence itM always
satisfies the constrains in our formulation (See Definitipn 4
Hence, M always contains all valid minimal occurrences of
all episodes inS. [ ]

Fig. 2. A toy event sequence.

Problem statement of online frequent episode mining:
Consider a dynamic, ever-growing event sequeBdcevith
the current time stampt;. We define thevalid sequenceas
Sk = ((Bi,t;), -, (B, tr)), wherei = max(1,k — A +1)
andA € N'* is the time window size within which the users ~ Based on the set of all minimal episode occurrence$fin
would like to find the frequent episodeS% thus contains the we can count the support of each episode and then identify all
events in the latest\ time stamps. The problem of online the frequent episodes whose frequencies exeead sup.
frequent episode mining is to find all the frequent episodes

within the current valid sequencé. Theorem 1 provides a natural way to divide the

elements in M into k separate subsets, namely

Here, the last time stamp, may grow along the time. M, MJ™, - MI=5 MF_ o\ MF ;o - MF_|, M.
When the current time goes tq;, a brute-force and thus These subsets can be further divided into the following two
clearly inefficient solution is to find the frequent episodesgroups:

within Sﬁ“ from the scratch. This paper proposes an online P be1 ok
algorithm to solve the problem based on immediate results Mey ={M7, My™", -+, My 5, M54} 1)

from the last time stamp.
P Min = {MF 500, MF 50 ME L MFY(2)

) ) ) Clearly, M., contains the firsk —J+ 1 components. For any
e 4, the maximum occurrence window threshold. An episodeysi ¢ M., , we havej —i = § — 1. It means thaf//? includes

In summary, we have three user-specified parameters:

occurrence must be within the window size dof _ _ all possible minimal episode occurrences starting frometim
e min_sup, the minimum support threshold. An episode is stampt; and having minimal occurrence window sizes at most
frequent only if its support is not smaller thamin_sup. 8. On the other handM,,, contains the lasi — 1 components.

e A, the window size for the current valid sequence. Onlygor any 7 € M;,, 7 —i < 6 — 1.

the events from the lash time stamps are considered for _ _
frequent episode mining. Consider that the event sét,; at the time stampg;

o ] comes to the sequenceﬁfSince, for every component;
Usua”y, we hav% > 5, |nd|cat|ng that we COI’ISIdeI’ the Mema ] — 7 =0 — 1, the Comblnat|on Of any occurrence |n

sequence in a relatively long time period and each OCCUBreNCy s and any event infy,; results in an occurrence whose
of an episode must be within a much shorter time window  occyrrence window size is bigger thanThus, the new events

For convenience of exposition, in the ensuing discussion wé Ex+1 do not affect the components it.,. However, for
first consider the task wheA = +oo, which means that we any component\/y € My, sincej —i < § — 1, any such
consider the whole event sequence so far. Then, we conside@mbination leads to an occurrence whose occurrence window
the general case wheh is set to any positive integer. When size is at most. Thus, the new events it do affect
discussing this case and its examples, we always set4,  the components inV;,,. Then, it comes to the crux of the

min_sup = 2 and A = 7 for the event sequence in Figure 1. proposed method, namely how to updat€... and M;,, with
the new eventdv, ., appended.

IV. ONLINE FREQUENTEPISODEMINING FRAMEWORK Next, we will first address the question of how to store the

Based on the definitions and problem statements in Se¢omponents inM., and M, and then discuss the updating
tion 111, we introduce the framework of online frequent epie ~ process when new evenis; ., are appended to the end 6f
mining in this section. Prior to that, we first introduce an
important concept used in this framework. A. The Storage Framework

Definition 9 (Minimal episode occurrences starting att; For the traditional batch mode problem of frequent episode
and ending no later thant;). Given a time windowt;, ;], We  mining, all solutions remove infrequent events by scanning
use M to denote the set of all minimal episode occurrenceshe whole sequence in the first round, and then the mining
for which the start time |:equalto t; and the end time isot process performs in the space of frequent events. This pre-
larger thant;. processing step greatly reduces the event space and tress sav

For example, in Figure 1M7 = {(A,[5,5]), (A — much memory consu_mption. However, in the online mode pf
A [5,6]), (A — B,[5,6]), (A = B — B,[5,7]), (A — A — fr_equent gaplsode mining we cannot apply such pre-procgssin
B,[5,7]) }. since an infrequent event in the current sequence may become

. frequent in the future. Thus, the mining process can only be

Theorem 1:Given a sequence with the time stamps conducted in the original event space, which may lead to a

starting from 1 tok, M = {M} U Mrf“ .- u M,f__él sharp increase of memory consumption for storing all mitima



episode occurrences. To tackle this challenge, we propose@ The Solution WheA # +oo

storage management framework, as shown in Figure 3(a). WhenA # +oo, the episodes with the starting time outside

In Figure 3(a), all components it;,, and M., are stored the valid event sequence will expire. Thus, the count of each
by chronological orders. Since tlle- 1 components inM;,,  expired episode should minus 1. Whe,, comes, the valid
will be updated with the new coming events{;, can always event sequence changesSﬁQ“, meaning that all the events
stay in the main memory. (Note that usually is a small in E; (i = max(1,k— A+ 1)) expire. Therefore, the count
number.) For the other pat.,., since the new coming events of each episode inM;*‘L1 should minus 1. Some previous
do not affect any components.ivt.,, we can save the—d+1  frequent episodes may become infrequent after this step.
components into the external storage especially wheis
very large. There are still two simple structures storedhis t V. MESELO ALGORITHM
framework, namelyrequent episode sanhdinfrequent episode ) ) .
set Both of them are tables of which the key records the name _Next, we detail the method of identifying all the new
of episodes and the value records the support count of th@inimal episode occurrences, denoted @yin Equation (9),
corresponding episode. Same wit ., the two structures W|t_h_the coming of Ex11. In this section, we will give its
can also be stored in external storage when the number &fficient solution.
discovered episodes is very large. A. Episode Trie

_ First, we give the description of the data structure, which
B. The Solution Framework stores all minimal occurrences 7. Remind thatl/ is the

Based on the storage framework, Figure 3(b) shows th&€t Of all minimal episode occurrences, starting at timand
solution framework of the proposed method. Specificallghwi ending no later thafy. In our sjo!uuon, we use thieie structure
Er.1 coming this updating process can be detailed into thd® Store all the elements if/] in a compact way.
following two steps: A trie [15], also called prefix tree, is an ordered tree data

_ b+l structure that is used to store a dynamic set where the keys
1) We first add a new componemt/,”7; into M;, of  zre ysually strings. In a trie, all the descendants of a node

Equation (2). Namely, we have have a common prefix of the string associated with that node,
1 and the root is associated with the empty string. In thisystud
Mg = Min U{MT (3)  we utilize the trie structure to record all the minimal episo

occurrences id\/[f associated with the starting timgand the

Then, for each component;” in M, of Equation (3), 44 timet;. We call this data structurepisode trie

update its upper index fromato (k+1). Finally, we have

) Definition 10 (Episode Trie). Given a time-window(t;,

M, = {ME3 o MEFS o MEPEMETLY  (4)  t5], anepisode trie(E-trie for short, denoted?’) is a trie-like

structure defined below.

2) For the first component inM;,, namely M,fj§+2, it

reaches the maximal time range size (6f— 1). Thus,

we remove it from/\/l;n and then put it intoM,, of
Equation (1). Namely, we have

1) Each nodep, denoted byp.cvent:p.time, consists of
two fields: p.event and p.time. Here, p.cvent registers
which event this node represents, antdme registers the
occurrence time stamp of such event.

_ o k+1 2) Theeventfield of the root is associated with the empty
Min = My = {MyZ54 ) string (labeled as “root”), and thieme field of the root is
kb1 equal tot;, the starting time of all the episode occurrences
Mey < Mep U {Mk—6+2} (6) in this set.
foll In short, this updating process can be summarized as \yit this data structure, each noge(except the root) in
ollows, i1 an episode trie actually represents an episode occurréhee.
Meg < Mz U {Mkag} (7)  event sequence along the path from the rogp torresponds
to its content, and its occurrence window|is, p.time]. For
My — {M,i“f§+3, e ’M]ic:l’ M}iﬁrl, M/fﬂ} (8) clarity and convenience, we usp(p) to represent the episode

associated with a nodg in an episode trie, and then the

After these two steps, we update the current set of frequerfiPisode occurrence can be denotedagp), [ti, p.time]).
episodes. AfterE,; comes, the solution finds all the new  For example, Figure 4 shows the episode Tefeto store all
minimal episode occurrences, denoted by the elements i/ for the running example in Figure 1. Here,

M = {(A,[5,5]), (A — A, [5,6]), (A — B, [5,6]), (A — B —
9) B,[5,7]), (A — A — B,[5,7]) }. It contains 5 minimal episode
occurrences. The starting time of all these occurrenceguale
to 5, and their end time is not later than 7. More importantly,
Thus, the count of each episode ¢hwill be addedl. Thus, each element in/? corresponds to a node (except the root)
whenA = +oo (meaning that the valid event sequence coversn 7.'. For example, the occurrence 0% — A — B, [5,7])}
the full size of the sequence until now), some infrequentorresponds to the leftmost leaf node in the trie of Figure 4.
episodes will change to be frequent with the comingpf ;. A — A — B is actually the event sequence along the root to

k k
Q (M) — M 5.0) U (M o — M 5.5)

U UM = M)y uMEH
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77777 (a) The storage framework in our approach. ‘ (b) The soluiion framework when event SBj, 11 is coming.
Fig. 3. The whole framework in our approach, whére max(1,k — A + 1).
this leftmost leaf node. In this way we ca][j is equivalent Check the running example in Figure 1 again. Whgnr-
to M/, denoted ag; < M. 7, with time window/[4, 7], M7 can be divided into two parts.
Namely, 57 = {(A — A,[5,6]), (A = A — B,[5,7]), (A —
o> B—B,[5,7]) }, andS? = {(A,[5,5]), (A — B, [5,6])}.
A Remind thatZ\/[ij is equivalent to its corresponding episode
trie 7. Thus, the nodes iff/ can then be divided into two
CORRCY, groups. If the corresponding episode of a npde 7;” belongs
OG> to S7 we call thatp is a non-last-occurrence nodglo-node
for short); Otherwisep is alast-occurrence nod@o-nodefor
Fig. 4. The episode trig . short). As shown in Figure 5 (a) fofy', all the nlo-nodes are

shaded while the lo-nodes remain blank.

B. The Last Episode Occurrence . L
P It is clear that every lo-node iff’ corresponds to a last

Next, we introduce another important definitiadhge last minimal episode occurrence. Instead, each nlo-node is only
episode occurrencavhich is the key concept to the proposed associated with a minimal occurrence, but not a last one. The
online algorithm. lo-nodes and nlo-nodes have different properties in géingra
the minimal episode occurrences when new events coming.
Thus, we clearly distinguish these types of nodes. In the
following we will detail the proposed algorithm for online
Jrequent episode mining.

Definition 11 (The last episode occurrence Given a time
window [t;, t;], an episode occurrence, [t1,t2]) (t; <t <
to < t;) is thelast episode occurrencef o within this time
window if and only if there does not exist another occurrenc
of (o, [t),t]) (t: <ty <ty <t;) such thatt; > t,. The set
of all the last episode occurrences within the time window ofC. MESELO Algorithm

t;, t:] is denoted byL?. . . . .
[tir 151 Yo In this subsection, we formally introduce the algorithm

See the running example in Figure 1. Consider the timeMESELO. According to the solution framework, there are all
window of [4,7]. (A—B, [6,7]) is the last occurrence of together two steps for updating process in the algorithnh wit
episodeA—B within this time window. Howevel,A—B, [5,6])  Exy; coming, 1) add a new componeﬁl’ff to M;, and
is not the last occurrence because of the existend@-efB, update the upper index of each compongfitin M, from
[6,7]). k to k + 1; 2) transfer the component that reach the maximal
fime range size of —1, i.e. Tt 5 1o M. Since, the second
step is relatively simple, we merely focus on the first step. |
order to explain our algorithm, we will consider the sitoati
that the time stamp, = 7, and Es is following to arrive as
an example in this subsection.

With the definition of the last episode occurrence, the se
of MJ’-C can be divided into two parts. Namely, considering the
time window of [k — § + 1, k], the two disjoint parts oﬂ\/lj’-c
can be represented as

S} =MPN L 511 For the first step, add;*! b leted by build

X the p, add’}' can be completed by bui

Mj =4 _ (10)  an E-trie viaE}. Algorithm 1 shows its pseudo code. For
Sk =M} — (Mf N Li_s11) each event € E,,1, we insert a node associated withas

] o the child of the root node. For example, suppose the event set
Clearly, all the elements i}’ are thelast minimaloccurrences  occurring on time stamp is arriving as the latest event set,
within the time window ofk—d+1, k]. However, the elements now the maximum occurrence window we considef5is3],
in Sj’? are just theminimal occurrences, but not thast ones. and7g is shown as Figure 5 (g).



3 the trie data structure. Then, a new expanded node can refer
T oD | to a new episode with a new minimal occurrence. We also add
- | such a minimal occurrence to the s8tready for the later
5D || use (Line 11 and 12).

(©

Take 74 shown in Figure 5 (b) as an example. Note that
the only event inFg is B. As shown in the figure, since the
node B:6 is a nlo-node, MESELO does not expand it. For
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, the lo-node A:6, since there is already a child node which
is associated with ever, the algorithm does not to expand

TF Goowt ) it. For another two lo-node®:7 on the leaf, MESELO adds
Bf (&D a child nodeB:8 for both of them as they satisfy all the
©
D) ’ episode occurrencgg—B—B, [6,8]) and (B—B—B, [6,8])

are added int@.

constraints in this part. Finally, two new discovered miaim

e e e Algorithm 2: UpdateTries: Mining New Minimal
Episode Occurrences

Fig. 5. The results of update process.i;, from time stamp = 7 to time

stamp = 8. All the nlo-nodes are marked as shaded, and Icsriedee blank. Input: M,,: the set of minimal occurrence still varies
Er+1: the set of events occurring at timg; 1
Algorithm 1: BuildTrie(E)1): Build Episode Trie via Output: SQe:tthe new discovered minimal episode occurrence
Ea L0 i
Input: Ek*;}ilthe new event set 2 foreach evente € Ej41 do
Output: 7,°7": the new E-trie s | Qe QU (e [trsn, taga);

1 create a root nodeoot = rootity1;

2 foreach evente € Ej,, do 41k
s | create a child nodg = e:tj41 of root; s while i > k — 4+ 2 do N
1. 6 foreach lo-nodep € 7;° do
4 return7, 71 7 o « ep(p);
8 foreach evente € Ej41 do
9 if there is no child node gp associated withke
then
Then, MESELO begins to update all upper index7f 10 create a child nodg = ety of p;
from k to k + 1. We perform such a process byraverse 1 L o' + ep(q);
chronological orderthat is we update fron7;* to 7;F ,.,. 12 Q+ QU(d, [tis trsa]);

The updating order is really important since we can use the
concept of last minimal occurrence and minimal occurrence™
to improve the efficiency of algorithm. Briefly speaking, we L

only expand lo-nodes in each®, wherek — 6 +2 < i < k, 15 11— 1
with a simple additional constraint in this process. Meaitevh . 1eturn o

the property of lo-node may change as new minimal episode
occurrence is discovered.

if « is contained byQ then
|_ setp to a nlo-node;

) ) ] After adding nodes to an episode trie, there is another
~_Algorithm 2 shows the pseudo code of this step. First, wgmportant step left which is to check whether the nqde
initialize the new discovered minimal episode occurrerg® s should be change into a nlo-node. The transformation is

Q as an empty set. Sincg}," contains all new discovered triggered when there is a same= ep(p) in Q, which means
minimal occurrences of-episodes, we add each of them to there is some other minimal occurrence wfis behind this

Q (L|ni2—3).kThen, MESELO performska sequential updatinghne (Line 13-14). Continue taking the update Bf as an
from 7,7 to 7,” ;,,. For updating everyf;” (k —6+2 < i < example. Before updatingy, the Q = {(B, [8,8]), (B—B,

k), the operations indeed can be separated into two parts. The g])1. when the expanding of the nod&7 on the rightmost
first part is to expand nodes for adding minimal occurrencegaf of 74 is finished, we check the prefix episode= B—B.

of episodes, and the second part is to update the type of nodesce O contains an element associated with episgees,

in the trie. For the first step, we have two essential com#sai \ESELO change such node into a nlo-node, and it will not
1) only lo-nodes can be expanded, and 2) when preparing f8e expanded in the future. The result §f is shown as
add a node associated with evenbnly the nodes which do  Figure 5 (e). The whole results of update process of this step
not contain child node associated withcan be expanded. je update7., 77 and 77 to 78, 78 and T, are shown as
Specifically, for any lo-nodg in 7* (k =6 +2 < i < k), Figure 5 (a)—(f), respectively. After updatin,,, the next
we first get an episode associated wittp as a prefix ready  step is to moveT 1l , into M., as its time range reaches

to be expanded (Line 7). Then, for each everibelonging s _ 1. we leave its pseudo code for the space limitation.

to Exy1, we can always add a child nodeof p which is ) ] ) )
associated with if there is no child node of associated with After updating episode tries, MESEl_Olperforms_the final
the same event (Line 9 and 10). Note that it is an important step which is to find frequent episodesSfi*". As previously

constraint for both our frequent episode mining problem andnentioned, we need to load the expire episode’fﬁg‘fjf



from M., and minus support count of all episodes in such
E-trie by 1 and add support count of all episodes@nby 1. should find a minimal occurrence i/, [t;,]) such that
Then, episodes whose support count is no less than sup [t;, ] is subsumed byt;, 1] Sincep is a lo-node ofT;¥,
are output. For example, under the parameter settings in theis impossible to exist an occurrenge’, [¢;,t]) such that
running example, the set of frequent episodesinis {A, B,  t; > t;, otherwisep should be a nlo-node. On the other hand,
A—B, A—B}. D, D—A andD—B, which are frequent irf7, it is also impossible to exist an occurren@é, [t;,#]) such
become infrequent ir§® since E; = {D} expires whenFsx thatt; < ¢, since there is no child node pfassociated with

arrives. Algorithm 3 gives the pseudo code of this step. e. Hence, we have; = t; andt; = ty11. (', [ti, tg41]) is the
minimal occurrence of’ in the time window[t,_s12, tx+1].

With all aforementioned algorithms, we can give the pseu- m
do code of the whole solution framework in Algorithm 4. All

algorithms are called as sub-procedures in our approach.

Proof: If (¢, [t;, tx+1]) iS not @ minimal occurrence, we

Theorem 3:(Completeness). An E-trig*, wherek —§+2
< i < k, stores all minimal episodes occurrences whose start
time is equal ta;, and the end time is not bigger thgn After
the updating process of MESELO algorithm when a new event
setFy,1 is coming, the updated E-triﬁ’“+1 stores all minimal
episode occurrences whose start time; iand the end time is

Algorithm 3: OutputF: Output Frequent Episodes

Input: C: the current set of infrequent episodes
F: the current set of frequent episodes

Q: the new discovered minimal episode occurrence set
tr41: current time stamp
A: the window size of valid sequence
min_sup: minimal support threshold
Output: F: the current set of frequent episodes
load 7,501 from M.
foreach nodep € 7,7 do
a <+ ep(p);
sp(a) < sp(a) — 1;
foreach (o, [ti,t;]) € Q do
6 |_ sp(a) < sp(a) + 1;
7 updateF andC by min_sup;
8 return F;

AW N P

o

Algorithm 4: MESELO Algorithm

Input: Ex11: the new event set
d: maximum occurrence window
min_sup: minimum support
A: window size
Output: F: frequent episodes

1 C «+ current set of infrequent episodeg; < current set of
frequent episodes;

2 T < BuildTrie(Erq1);

3 Q <+ UpdateTries(Mn, Ext1);

4 updateM,, and M., by Eq. (5) and (6);

5 F + OutputF(C, F, Q, tk+1, A, min_sup);

not bigger tharty;.

Proof: To prove this theorem, we in fact need to prove all
the new inserted nodes "™ are associated with minimal
episode occurrences whose start time;i@nd the end time
is tx11. Suppose there is an episode minimal occurreface
— e, [ti, tr+1]) and the node associated with events not
in Tik“ wheree € Eiy;. Then, such a node associated
with e must exists in anothe‘?}’€+1 wherej # ¢ if we can
acquire an occurrence ef’. However, it is impossible since
the occurrence window af’ can only belt;, tx41] andj # i.
Hence, all the new discovered episode minimal occurrence
whose the start time is; and the end time i$;,; must be
stored in7,;"™! instead of other tries. [ |

As MESELO sequentially scans over the event sequence,
it finds all and only minimal occurrences of episodes within
every possible time window. Hence, the algorithm is sousdne
and completeness.

In MESELO algorithm, we have marked all last episode
occurrences inftx_si1,te] IN T 5000 T o000 T4,
T at time stampt. Then, when new events on time stamp

tx+1 is coming and the tries ioM,,, are updated td}fj;{ri,,
ot s o TEL, TEAL there will be some lo-nodes be

changed to nlo-nodes since the occurrences associated with
these nodes are no longer the last ones in the current time

window [tx—s42, tr+1]. Hence, we have to prove the following
theorem.

Theorem 4:Given a group of episode trieg” ;. ,,
T 5450 -+, T¥, and 7)F and a new discovered minimal
In this subsection, we prove the correctness and the conmepisode occurrences s€l, when updating the upper index
pleteness of our approach. Not that the essential task aff these tries tok + 1, if a lo-nodep of E-trie 7;* (where
our problem is to find minimal episode occurrences in evenk — 6 + 2 < 7 < k) is in Q, which meansep(p) € Q,
sequence, and our algorithm can detect them efficiently. Byhen(ep(p), [t;, p.time]) is no longer a last episode occurrence,
our algorithm, an episode: associated with a lo-nodg in otherwise, it is still a last episode occurrence.
an E-trie inM;,, can directly be expanded with an evenif
there is no child node of which is associated witla, then
we can get a new episod€. We first prove such a kind of
expansion can derive a minimal occurrencextf

D. Correctness and Completeness of MESELO

Proof: For convenience we assumg(p) = « in the
proof. Since MESELO algorithm updates evét§ in a reverse
chronological order, for a lo-node in 7%, if o € Q, there
must exist a new expanded lo-nagévhich is also a leaf node)
in an episode trig * ! wherej > i andep(q) = a. According
§+2 < i < kand an event sel, 1, for a lo-nodep of T to Definition 11, (704, [t;, p-time]) is not a last occurrence of
with ep(p) = « and an event € Ej.1, if there is no child « in [ty_s42,tr+1] because there is another occurrence of
node ofp associated withe, then we can get a new episode (a, [t;, ¢.time]) such thatt; > ¢;. Hence, the node need
o' = a — e with a new minimal occurrenc&’, [t;, tx+1]). to be changed into a nlo-node. Similarly,df ¢ Q, then we

Theorem 2:(Correctness). Given an E-trig*, wherek —



cannot find another occurrence@fehind of(«, [t;, p.time])  a 2.00GHz Intel Xeon E5-2620 Processor and 16G gigabytes
in [tx—s+2,tk+1]. Hence,p is still a lo-node in this situation. memory running on Linux is used, and the two machines are
m  connected by 100Mb a local area network.

1) Experiments Settingsere, we compare the proposed
VI. COMPLEXITY ANALYSIS algorithm to the baseline methods for frequent episodengini

In this section, we analyze the time and space complexitjn both online and batch mode.

of MESELO. In particular, we focus on analyzing the cost of  qjine mode For online mode comparison, we design an

computation and storage in updating.,, for every new event jyjitive brute force method, denoted as BRUTE, as a baselin
set and only consider the worst case. In BRUTE, every episode minimal occurrence is stored in an

For simplicity, we assume that the number of event type®rdered record tablés. Once an event sek,; occurring
is m, i.e., |€| = m, and each event set always contains allat time stampi,, is arriving, BRUTE always performs
m events. According to node expansion strategy in MESELOthree steps. First, the minimal occurrences of episodesaho
every node at most contaims child nodes. Hence, the worst Start time equals té,_ 41 are loaded from3. Since these
case is that every non-leaf node in each E-trie always amntai €lements expire in the current valid sequence window, we

m child nodes. It leads to the bulkiest structure, and willtcos have to decrease the frequency of these episodes. Secend, th
the longest time for updating operations. minimal occurrences of episodes whose start time ranges fro
) ] [tk—s+2,tr] are loaded from3, and BRUTE performs an ex-

As we mentioned before, when an event d8t., is  haustive generation of new episode occurrences by expandin
coming, the updating process fal,, includes constructing these minimal occurrences with events fif, ;. Third, the
a new E-trie7,"’' and updating thel — 1 episode triesT;*  algorithm checks whether every new episode occurrence is
to 7;’““ wherek — 6 +2 < i < k. For constructingT,ﬁrll, a minimal occurrence and only updates the frequency of the
MESELO will perform m insertions since we assume there episodes with new minimal occurrences.
arem events inEj,. Then, for updating eacfi;* to 7%+
(k—8+2 < i < k), only leaf nodes in7;* can be further
expanded as each non-leaf node has already containgdld
nodes. Given an E-trig*, the number of leaf node iff}* is
mF~+1, Further,m child nodes can be inserted into each lea
node. Hence, in this step the total number of node insertio
is m(m?~t +m=2 + ...+ m2 +m). In sum, for every new
coming event set, the overall time complexity for upda‘ungare considered to be expanded: 2) folcanodep, only if

i § 5—1 6—2 3 2
Min vmvzllléb_el)()(m tm T T " + ) there is no child node ob associated with the input eveat
= O(=5=)- In short, the time complexity i&)(m°). e can be inserted as a child pf However, these two rules
After the update process in the worst case we havér® not considered in node expansion of MESELO-BS. Thus,
discussed, every E-trie inV;, has its bulkiest structure. W€ have to check the minimal occurrences of episodes by a
Then, given an E-trie7;*™!, the maximum number of n- POSt-processing step.
odes is Zf;l mbF=It2 wherek — 6 +2 < i < k+ 1. In both online or traditional frequent episode mining prob-
The total number of nodes of all E-tries iM;, will be  lem, each occurrence of same event has different meanings.
fikl_(;” ’;;1 m*=i+2, Hence, the space complexity for While online frequent pattern algorithms do not use time in-
storing all nodes in memory will b@(m5+2m5;1+3m5*2+ formation of transactions or items, they view every ocaucee
. _ 3 _ 2 _ (mim’=1) _ m§ of a specific item in different transactions as the same. Elenc
(0= 2)m” + (3 =~ 1)m” +om) = O ) we can hardly conduct them to our problem directly or through

To further demonstrate the effectiveness of the proposed
concept of thdast episode occurrenceve deliberately design
another baseline, denoted as MESELO-BS. MESELO-BS per-

fforms the similar steps as MESELO except that it expands
Iqpisode occurrences on every node of any episode trie. In
MESELO, there are two constraints to ensure every expansion
deriving to a minimal episode occurrence: 1) ofbynodes

(m—1)2 m—1
o 5
In short, the space complexity is alét(m?”). a slight modifications. Due to the above reasons, we do not
In most applications, the size of event set and the include these algorithms in such comparison.

maximum occurrence W'ndow. thresh(_)l‘d are both _small.. Batch mode Several state-of-the-art methods for offline
Thus, the proposed method is practically useful in onllnefrequent episode mining, namely MINEPI+ [18], PPS [27],
episode mining. UP-Span [41] and DFS [1], are compared in batch mode. All of
these algorithms directly use minimal occurrence as fraque
VIl.  EXPERIMENTS of episodes or compute minimal episode occurrences during
the process. There are still some differences among theB. PP
can only output thdongest distinct frequent episodeSP-

In this section, we evaluate the performance of the proSpan is originally proposed for mininigigh utility episodes
posed algorithms on both online mode and batch modéiowever computing minimal occurrences of episodes is the
Experiments are performed on a server with a 2.00 GHzore part of this algorithm. DFS computes minimal episode
Intel Xeon E5-2620 Processor and 32G gigabytes memoryccurrences as an important operation though it is intedest
running on Windows Server 2008, and all of the algorithmsin other frequency measures. For UP-Span and DFS we slightly
are implemented in Java. For online mode, as we suppose  modified these two methods to our best knowledge in order to
is always in a dynamically growth and usually has masses dit our problem. It is worth mentioning that these statefuf-t
elements, we store every componentin., to a database. art methods have not compared with each other in previous
In these comparisons, a remote MySQL database server willteratures, and we are the first to compare them in terms of

A. Experiments Settings and Data Preparation



TABLE I.

STATISTICAL INFORMATION ON DIFFERENT DATA SETS

[ Dataset | #Time stamp | #Events [ Avg. #Events per Time stamp |

Stock-1 4 1.0
Stock-2 8 2.4
Stock-3 16 47
Stock-4 2509 24 7.0
Stock-5 32 9.5
Stock-6 40 11.4
Retail 88,162 16,470 10.3
Kosarak 990,002 41,270 8.1
chainStore 1,112,949 46,086 7.3
BMS 59,601 497 2.5

the execution time in one paper.

execution time at each time stamp and use their average value
as the measure for the comparison. It should be mentionéd tha
this average time over all time stamps is only related {the
maximum occurrence window threshold). The reason is identi
fying the new minimal occurrences by updating E-trieg\it},,
dominates the execution time of the MESELO algorithm at
each time stamp. However, the other two parameters sup
and A are only used to maintain the frequent episode set at
every time stamp, which consumes only a small fraction of
time since the set of frequent and infrequent episodes lysual
vary slightly at two consecutive time stamps.

With all aforementioned descriptions, we show the exe-
cution time on6 sequences with different values &fwhen

In this study we do not compare the widely-cited method™""

MINEPI [30] due to the following reasons. First, MINEPI

adopts the apriori-like candidate generation, and thusesorrrsub-figure we also zoom in the area of the execution time for

frequent episodes with longer length will be missed sinee t
minimal occurrence does not hold the anti-monotone prgpert

min_sup = 10 and A = 2500. In Figure 6, the execution
time on different sequences are shown in sub-figures. In each

MESELO and MESELO-BS to clearly show their difference.

In other words, the output of MINEPI is different from that This zooming-in figure is embedded inside each sub-figure.

of the problem considered in this study. Second, some linitia i w00
experiments show that MINEPI always performs the worst %0
among all the methods. 2

300

200

Here, the proposed MESELO performs to process a dy- s
namic event sequence. For fair comparison, in this batchemod 10
we can perform a prior scan to find frequent events, then 5
all compared methods perform the mining on the sequence 01
containing only frequent events.

100

2) Data Preparation:Ten real data sets are used to evaluate ’g 12000
the performance of the algorithms, and the data sets can b¢ g '™
divided into two groups according to mining tasks, namely
online mode data set@ndbatch mode data setsespectively.

8000
6000

4000

The online mode data setmclude six sequences from
China Stock Exchange Daily Trading list (denoted as Stock-
1 to 6) over2509 trading days from Januaryst, 2004 to
May 9th, 2014. Each sequence contains the events from
the stocks of the corresponding industry (1-pharmacdsatica
industry, 2—security industry, 3—electricity power intys4—
iron and steel industry, 5—-nonferrous-material industrgt 6—
estate industry). The events for a stock are generated base
on its everyday closing price. Specifically, we calculate th
increase ratio' of price between two consecutive trading days
and then discretize the values ofinto 4 levels: UH ¢ >=

2000

Execution Time(ms)

Execution Time(

3.5%), UL (0% < r < 3.5%), DL (-3.5% < r < 0%),
DH (r < —3.5%). Thus, every day each stock can generate
one of the four above events, and the events from the stoc

Stock-5

Stock-6

‘ ={& = MESELO-BS =42 = Brute

MESELO |

|ﬁg. 6. The execution time for varying by fixing min_sup = 10 and A

belonging to a specific industry are put together to form the="2500.

event sequence for the corresponding industry. ]
From the figure, we can clearly observe that MESELO-

The batch mode data setmclude four classic real data Bs and MESELO have better performance compared with the
sets, namely Retail [16], ChainStore [13], Kosarak [16] andgrRUTE as the maximum occurrence window increases. The
BMS [17]. Among them, Retail and chainStore are marketya, petween the execution time of BRUTE and that of other
stream data from some web sites. The processing method QRESELO series algorithms outperform BRUTE at least one
these data sets are detailed in [41]. Table | shows thet&tatis magnitude of order and ovel00 times whens = 6. Also,
information of all data sets used in the experiments. MESELO always outperforms MESELO-BS under different
parameter settings, and the gap in terms of the executian tim
becomes more significant asincreases. It clearly shows that

. . , . the strategies used in MESELO to reduce the number of node
1) Online Mode Comparisonlin this comparison, we se- expansions greatly reduce the execution time.

quentially read every event set of the coming time stamp,
and perform online frequent episode mining. We record the To further demonstrate the effectiveness of the strategies

B. Experiment Results



for reducing the number of node expansions in MESELO, weFigure 8. We can see that MESELO holds the lowest value in
compare the average size of the E-tries (the number of nodexecution time compared with the other algorithms3iof 4

in trie) from MESELO and MESELO-BS. Here, the episodedata sets with different values afin_sup. In the data sets of
tries completing all their node expansions are considéfétth. =~ Retail and ChainStore, the gap between MESELO and other
the strategies to reduce the node expansions, MESELO willlgorithms become more significant asin_sup increases.
have the smaller episode tries. Thus, in Figure 7 we showhe bigger value ofnin_sup remove more infrequent events
the relative size of the episode tries from MESELO comparedor MESELO. Since the time complexity of MESELO is
to those from MESELO-BS. This relative size equals to 10(m’) (wherem is the size of event set at a time stamp),
means that the two tries have the same size. As shown in ththe reduction in the size of event set will significantly redu
figure, the tries from MESELO is much smaller than thosethe execution time. In the Kosarak data set, MESELO still
from MESELO-BS. This saving is much more significantly outperforms all baselines. However, in the BMS data set PPS
when § increase. Wher = 10 only 20% — 50% of the trie  and UP-Span are slightly better than MESELO, and their
nodes are needed in MESELO compared to MESELO-BS. Wgerformances are similar with the same order of magnitude.

can observe that the strategies for reducing node expansion
in MESELO perform well especially in the cases with small E/E/E/a

s,
S,

Execution Time(ms)
Execution Time(ms)

event set size and large The direct reason for that is there
are more non-last-occurrence nodes in such a situation. We .
emphasize that a small event set as well as adbigads

to a deep episode trie with limited kinds of events on the
nodes. It makes many last-occurrence nodes transfer to the
non-last-occurrence nodes during the updating procestheia 5 : . :
definition of last episode occurrence. Note that once a net3-| Retail ChainStore
occurrence node is typed, it will not be expanded any further
and that is why the strategies can contribute much on space
saving in these cases.

s
s

Execution Time(ms)
Execution Time(ms)
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Figure 9 shows the execution time on thelata sets with

o3 4 s 67 89 10 different settings of when min_sup is fixed (i.e. min_sup
Maximum Occurrence Window (3) = 400 in Retail, min_sup = 3000 in ChainStore,min_sup
Fig. 7. The relative size of E-trie from MESELO compared to ¥ O-BS. = 4000 in Kosarak andmin_sup —6in BI\/IS). Since thed

sequences have different length, we select different gatde

g 10° g 10 min_sup for different data sets such thatin_sup/|S| is in
5 5 the range 0f0.01%, 0.45%]. The scale of y-axis is in log style
E E 10, in Figure 9. As shown in the figure, the execution time of all
o = these methods increasesdmcreases. MESELO outperforms
2 2w the baselines wheth < 4 except on BMS data set. The steeper
§ § growth slope of MESELO compared with other algorithms
& T T TR T indicates that MESELO is more sensitive @0
ChainStore By looking closer on BMS data set, we observe that UP-
) 20, Span performs extremely well compared with its performance
% % on other three data sets. We conjecture what makes this data
E E set different is because its distinct smaller event setrteho
2 t- 1o sequence length, and most importantly, obviously less mumb
.S .S f of events per timestamp. By analyzing all compared batch
£ o9 2 2 & v mode FEM algorithms, we learn that the performance of UP-
E o X 5 . | Span and PPS is related to the number of events per timestamp,
40003000 6"“;(07:;;;00“ 2000 10000 o8 '};M; o83 and BMS has obviously less value on such criterion.
[~ Up-spm —@— PP —— DFs —©— MINEPI- MESFLO | The comparison on batch mode data show that: 1) the
Fig. 8. The execution time vsnin_sup. overall performance of MESELO for batch mode episode

mining is better than the existing state-of-the-art meth@&j
2) Batch Mode ComparisonFigure 8 shows the execu- MESELO is more sensitive tonin_sup and J. It is more
tion time on4 different sequences with different settings of appropriate for discovering short episodes in which theetim
min_sup whend = 3. The scale ofy-axis is in log style in interval between the first and the last events is not big.



VIII.

In this paper, we formulate the online frequent episodqﬂ]
mining problem, which is especially useful to time-critica 4
applications with growing sequences. We propose an efficien
algorithm (named MESELO) for this problem. By the concepty;g
of last episode occurrence, MESELO can detect the mini-
mal episode occurrences without performing a post-process
checking. Also, utilizing the proposed episode trie, MESEL [20]
stores all the minimal episode occurrences in a compact way.
Experiments on ten real data sets show the efficiency of the
proposed algorithm, which is at least one magnitude of ordef!]
faster than other baseline methods. 22]

In our future work we will consider attributes on events
to identify more interesting episodes. Additionally, tather
increase time efficiency and reduce memory consumption

C ONCLUSION AND FUTURE WORK [16]

[23]

we will develop theapproximatemethod for online frequent [24]
episode mining based on the curremfctsolution. [25]
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