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ABSTRACT
We study the problem of continuous object dissemination—given
a large number of users and continuously arriving new objects,
deliver an object to all users who prefer the object. Many real
world applications analyze users’ preferences for effective object
dissemination. For continuously arriving objects, timely finding
users who prefer a new object is challenging. In this paper, we
consider an append-only table of objects with multiple attributes
and users’ preferences on individual attributes are modeled as
strict partial orders. An object is preferred by a user if it belongs
to the Pareto frontier with respect to the user’s partial orders.
Users’ preferences can be similar. Exploiting shared computation
across similar preferences of different users, we design algorithms
to find target users of a new object. In order to find users of
similar preferences, we study the novel problem of clustering
users’ preferences that are represented as partial orders. We also
present an approximate solution of the problem of finding target
users which is more efficient than the exact one while ensuring
sufficient accuracy. Furthermore, we extend the algorithms to oper-
ate under the semantics of sliding window. We present the results
from comprehensive experiments for evaluating the efficiency and
effectiveness of the proposed techniques.

1 INTRODUCTION
Many applications serve users better by disseminating objects
to the users according to their preferences. User preferences
can be modeled via a variety of means including collaborative
filtering [19], top-k ranking [7, 8], skyline [2], and general pref-
erence queries [5, 12]. In various scenarios, users’ preferences
stand or only change occasionally, while the objects keep coming
continuously. Such scenarios warrant the need for a capability
of continuous monitoring of preferred objects. While previous
studies have made notable contributions on continuous evaluation
of skyline [14, 28] and top-k queries [29], we note that two
important considerations are missing from prior works:
• Many users: There may be a large number of users and the

users may have similar preferences. Prior studies focus on the
query needs of one user and thus their algorithmic solutions
can only be applied separately on individual users. A solution
can potentially attain significant query performance gain by
leveraging users’ common preferences.

• Partially ordered attributes: Prior works focus on top-k and
skyline queries. In multi-objective optimization, a more general
concept than skyline is Pareto frontier. Consider a table of
objects with a set of attributes. An object is Pareto-optimal (i.e.,
it belongs to the Pareto frontier) if and only if it is not dominated
by any other object [1, 13]. Object y dominates x if and only
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if y is better than or equal to x on every attribute and is better
on at least one attribute. In defining the better-than relations,
most studies on skyline queries assume a total order on the
ordinal or numeric values of an attribute, except for [17, 30]
which consider strict partial orders. The psychological nature
of human’s preferences determines that it is not always natural
to enforce a total order. Oftentimes real-world preferences can
only be modeled as strict partial orders [5, 12, 17].

Consider the following motivating applications which monitor
Pareto frontiers on partially ordered attributes for many users.
• Social network content and news delivery: It is often impossible

and unnecessary for a user to keep up with the plethora of
updates (e.g., news feeds in Facebook) from their social circles.
When a new item is posted, if the item is Pareto-optimal with
respect to a user, it can be displayed above other updates in
the user’s view. Similar ideas can be adopted by mass media to
ensure their news reaches the right audience. User preferences
can be modeled on content creator, topic, location, and so on.
Enforcing total orders on such attributes is both cumbersome
and unnatural.
• Publication alerts: Bibliography servers such as PubMed and

Google Scholar can notify users about newly published articles
matching their preferences on venues and keywords. Such
attributes do not welcome total orders either.
• Product recommendation: When a new product becomes avail-

able, a retailer can notify customers who may be interested.
It can distill customers’ preferences on product specifications
(e.g., brand, display and memory for laptops) from profiles, past
transactions and website browsing logs. Example 1.1 discusses
this application more concretely.
Example 1.1. Consider an inventory of laptops in Table 1 and

customers’ preferences on individual product attributes (display,
brand and CPU) modeled as strict partial orders in Table 2. For
an attribute, the corresponding strict partial order is depicted as a
directed acyclic graph (DAG), more specifically a Hasse diagram.
Given two values x and y in the attribute’s domain, the existence of
a path from x to y in the DAG implies that x is preferred to y. With
respect to customer c1 and attribute brand, the path from Lenovo to
Toshiba implies that c1 prefers Lenovo to Toshiba. There is no path
between Toshiba and Samsung, which indicates c1 is indifferent
between the two brands.

The strict partial orders on various attributes together represent
a customer’s preferences on objects. For instance, c1 prefers
o2=⟨14, Apple, dual⟩ to o1=⟨12, Apple, single⟩, since they prefer
13−15.9 to 10−12.9 on display and dual to single on CPU. With
regard to o1 and o3=⟨15, Samsung, dual⟩, c1 does not prefer one
over the other because, though they prefer 13−15.9 to 10−12.9 and
dual to single, they prefer Apple to Samsung on brand.

According to the data in Tables 1 and 2, if the existing products
are o1 to o14 (ignore o15 and o16 for now), the Pareto frontiers of
c1 and c2 are {o2} and {o2, o3}, respectively. Suppose o15=⟨16.5,
Lenovo, quad⟩ just becomes available. For c1, o15 does not belong



display brand CPU
o1 12 Apple single
o2 14 Apple dual
o3 15 Samsung dual
o4 19 Toshiba dual
o5 9 Samsung quad
o6 11.5 Sony single
o7 9.5 Lenovo quad
o8 12.5 Apple dual
o9 19.5 Sony single
o10 9.5 Lenovo triple
o11 9 Toshiba triple
o12 8.5 Samsung triple
o13 14.5 Sony dual
o14 17 Sony single

o15 16.5 Lenovo quad

o16 16 Toshiba single

Table 1: Product table.

display brand CPU

c1

13−15.9

10−12.9

16−18.9 19−up

9.9−under

Apple

Lenovo

Sony

Toshiba Samsung

dual

triple quad

single

c2

13−15.9

10−12.9 16−18.9

19−up

9.9−under

Apple

Lenovo

Sony

Toshiba

Samsung

dual

triple

quad

single

U

13−15.9

10−12.9 16−18.9

19−up

9.9−under

Apple Lenovo

SonyToshiba Samsung

dual triple quad

single

Û

13−15.9

10−12.9

16−18.9

19−up

9.9−under

Apple Lenovo

Sony Toshiba

Samsung

dual

triple

quad

single

Table 2: User preferences. U={c1,c2}.

to the Pareto frontier. It is dominated by o2, because c1 prefers
14-inch display over 16.5-inch, Apple over Lenovo, and dual-core
CPU over quad-core CPU. However, o15 is a Pareto-optimal object
for c2 since it is not dominated by any other object according to
c2’s preferences. It is thus recommended to c2, and the Pareto
frontier of c2 is updated to {o2, o3, o15}. △

This paper formulates the problem of continuous monitor-
ing of Pareto frontiers: given a large number of users and continu-
ously arriving new objects, for each newly arrived object, discover
all users for whom the object is Pareto-optimal. Users’ preferences
are modeled as strict partial orders, one for each attribute domain
of the objects.

It is key to devise an efficient approach to this problem. The
value of a Pareto-optimal object diminishes quickly; the earlier it
is found to be worth recommendation, the better. For instance, a
status update in a social network keeps getting less relevant since
the moment it is posted; a customer’s need for a product may be
fulfilled by a less preferred choice, if an even better option was
not shown to the customer in time.

A simple, brute-force approach is to, given a newly arrived
object, compute for every user if the object belongs to the Pareto

Apple

Lenovo

Samsung

Toshiba Apple

Lenovo

Samsung

Toshiba Apple

Lenovo

Samsung

Toshiba

c1 c2 U1

Samsung

Apple

Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

c3 c4 U2
Lenovo

Apple Toshiba

Samsung

Lenovo

Apple

Toshiba Samsung

Lenovo

Apple Toshiba

Samsung

c5 c6 U3
Table 3: User preferences with respect to brand. U1={c1,c2 },
U2={c3,c4 }, U3={c5,c6 }.

frontier with respect to the user’s preferences. This entails contin-
uous maintenance of Pareto frontier for each and every user. The
brute-force approach is subject to a clear drawback—repeated and
wasteful maintenance of Pareto frontier for every user.

Sharing computation across users To tackle the aforemen-
tioned drawback, we partly resort to sharing computation across
users. The challenge lies in the diversity of corresponding partial
orders—a Pareto-optimal object with respect to one user may or
may not be in the Pareto frontier for another user. Nonetheless,
users have common preferences. In Table 2, both c1 and c2 prefer
13 − 15.9 inch display the most. Both prefer Apple and Lenovo
to Toshiba and Sony, and they both prefer single-core CPU the
least. In Table 2,U is a virtual user whose partial orders depict the
common preferences of c1 and c2. Intuitively, users having similar
preferences can be clustered together.

We thus design algorithms to mitigate repetitive computation
via sharing computation across similar preferences of users. To
intuitively understand the idea, consider two example scenarios. i)
If o is dominated by o′ with respect to the common preferences
of a set of users, then o is disqualified in Pareto-optimality for all
users in the set. In Example 1.1, consider o16=⟨16,Toshiba, single⟩
as the new object. With respect to U , o16 is dominated by both
o2=⟨14,Apple, dual⟩ and o15=⟨16.5, Lenovo, quad⟩. Therefore,
o16 belongs to the Pareto frontier of neither c1 nor c2. ii) Before the
arrival of o2, obviously o1=⟨12, Apple, single⟩ is the only Pareto-
optimal object for U , c1 and c2. Now consider the entrance of o2.
As o1 is dominated by o2 with respect to U , o1 is replaced by o2
in the Pareto frontier. This comparison is sufficient to decide that
o1 is dominated by o2 for both c1 and c2.

Clustering users To find users sharing similar preferences,
we study the novel problem of clustering strict partial orders,
which are used to model the preferences of both users and clusters.
We measure the similarity between clusters and users by their
common preferences. Such similarity measures factor in the dif-
ferent significance of preferences at various levels of the partial
orders. Table 3 depicts six customers’ preferences on brand, in
which c4, c5, and c6 prefer Lenovo to all other brands except that
c4 prefers Samsung over Lenovo. Consider the objects in Table 1.
For both c5 and c6, the Pareto frontiers contain {o7,o10,o15}, while
c4 has {o3,o5,o12} as its Pareto frontier. We can say that c5 and c6
are more similar than c4 and c5 or c4 and c6.

Approximation The clustering algorithm may produce clus-
ters that comprise few users, due to diverse preferences. With



small clusters, the shared computation mentioned above may not
pay off its overhead. Our response to this challenge is to use
approximation. As in many data retrieval scenarios, insisting on
exact answers is unnecessary and answers in close vicinity of the
exact ones can be just good enough. Specifically, given a set of
users, if a sizable subset of the users agree with a preference, the
preference can be considered an approximate common preference.
This relaxation eases the aforementioned concern regarding small
clusters as more approximate common preferences lead to larger
clusters. As an example, in Table 2, while c2 does not share with
c1 the preference of Apple over Samsung, its preference does not
oppose it either. We can consider “Apple over Samsung” as an
approximate common preference. A possible set of approximate
common preferences of c1 and c2 form the strict partial orders in
the row for virtual user Û .

Alive objects Objects can have limited lifetime. The trends
in social networks and news media change rapidly. Similarly, in
any inventory, products become unavailable over time. In these
scenarios users look for alive objects only. To meet this real-world
requirement, we further extend our algorithms to operate under the
semantics of a sliding window and thus to disseminate an object
only during its lifespan.

In summary, the contributions of this paper are as follows:
• We study the problem of continuous object dissemination and

formalize it as finding Pareto-optimal objects regarding partial
orders. Given a large number of users and continuously arriving
objects, our goal is to swiftly disseminate a newly arrived object
to a user if the user’s preferences—modeled as strict partial
orders on individual attributes—approve the object as Pareto-
optimal.
• We devise efficient solutions exploiting shared computation

across similar preferences of different users.
• We study the novel challenge of clustering user preferences rep-

resented as strict partial orders. Particularly we design similarity
measures for such preferences.
• To address performance degradation due to small clusters, we

present an approximate similarity measure that achieves high
efficiency and accuracy of answers.
• We extend our proposed solutions to deal with Pareto frontier

maintenance under sliding window.
• We conduct extensive experiments using simulations on two

real datasets (a movie dataset and a publication dataset). The re-
sults demonstrate clear strengths of our solutions in comparison
with baselines, in terms of execution time and efficacy.

2 RELATED WORK
Pareto-optimality is a subject of extensive investigation. Its study
in the computing fields can be dated back to admissible points [1]
and maximal vectors [13]. Börzsönyi et al. [2] introduced the
concept of skyline—a special case of Pareto frontier—in which all
attributes are numeric and amenable to total orders. Kießling [12]
defined preferences as strict partial orders on which preference
queries operate. After that, several studies specialized on skyline
query evaluation over categorical attributes [3, 17, 18, 30], among
which [17, 18, 30] particularly considered query answer mainte-
nance and only [17, 30] allow partial orders on attribute values.
Nevertheless, they all consider only one user and none utilizes
shared computation across multiple users’ partial orders.

Given a set of objects, Wong et al. [25–27] identify the mini-
mum set of preference relations that preclude an object from being
in the Pareto frontier. This minimum set is the combination of
each possible preference relation with regard to the values of all

unique objects in the set. In case of any update in the object set,
the minimum disqualifying condition must be recomputed. Hence,
it is not designed for continuously arriving objects.

Vlachou et al. [23, 24] and Yu et al. [29] aimed at finding all
users who view a given object as one of their top-k favourites, i.e.,
the results of a reverse top-k query. Dellis et al. [6] studied reverse
skyline query—selecting users to whom a given object is in the
skyline. These works consider only numeric attributes. There is no
clear way to extend them for categorical attributes or even partial
orders.

All these studies, while about object dissemination, focused
on different aspects of the problem than ours. Particularly, no
previous studies on Pareto frontier maintenance have exploited
shared computation across users’ preferences. Besides, as Sec. 5
shall explain, no prior work studied similarity measures for partial
orders or how to cluster partial orders.

3 PROBLEM STATEMENT
Consider a set of users C and a table of objects O that are described
by a set of attributes D. For each user c ∈ C, their preference re-
garding O is represented by strict partial orders. For each attribute
d ∈ D, the strict partial order corresponding to c’s preference on
d is a binary relation over dom(d )—the domain of d, as follows.

Definition 3.1 (Preference Relation and Tuple). Given a user
c ∈ C and an attribute d ∈ D, the corresponding preference
relation is denoted ≻dc . For two attribute values x ,y ∈ dom(d ), if
(x ,y) belongs to ≻dc (i.e., (x ,y) ∈≻dc , also denoted x ≻dc y), it is
called a preference tuple. It is interpreted as “user c prefers x to
y on attribute d”. A preference relation is irreflexive ((x ,x ) <≻dc )
and transitive ((x ,y) ∈≻dc ∧(y, z) ∈≻

d
c⇒ (x , z) ∈≻dc ), which

together also imply asymmetry ((x ,y) ∈≻dc⇒ (y,x ) <≻dc ). △

Definition 3.2 (Object Dominance). A user c’s preferences
regarding all attributes induce another strict partial order ≻c that
represents c’s preferences on objects. Given two objects o,o′ ∈ O,
c prefers o′ to o if o′ is identical or preferred to o on all attributes
and o′ is preferred to o on at least one attribute. More formally,
o′ ≻c o (called o′ dominates o), if and only if (∀d ∈ D : o.d =
o′.d ∨ o′.d ≻dc o.d ) ∧ (∃d ∈ D : o′.d ≻dc o.d ). If (∀d ∈ D : o.d =
o′.d ), we say that o and o′ are identical, denoted as o = o′. △

Definition 3.3 (Pareto Frontier). An object o is Pareto-optimal
with respect to c, if no other object in O dominates it. The set
of Pareto-optimal objects (i.e., the Pareto frontier) in O for c is
denoted Pc , i.e., Pc = {o ∈ O|∄o′ ∈ O s.t. o′ ≻c o}. Note that
the concept of skyline points [2] is a specialization of the more
general Pareto frontier, in that the preference relations for skyline
points are defined as total orders (with ties) instead of general
strict partial orders. △

Definition 3.4 (Target Users). Given an object o, the set of
all users for whom o belongs to their Pareto frontiers are called
the target users. The target user set is denoted Co , i.e., Co =
{c ∈ C|o ∈ Pc }. △

Example 3.5. Consider Table 1 and Table 2. O = {o1, o2,
. . ., o15} (ignore o16 for now), C = {c1, c2}, and D = {display,
brand, CPU}. With respect to c1, (10−12.9, 16−18.9), (Apple,
Samsung) and (dual, triple) are some of the preference tuples
on attributes display, brand and CPU, respectively. Similarly, for
c2, (16−18.9, 19−up), (Toshiba, Sony) and (triple, dual) are some
sample preference tuples.
Pc1 = {o2}, since all other objects are dominated by o2 with

respect to c1. Pc2 = {o2, o3, o15}, as o2, o3 and o15 dominate {o1,



o4, o6, o8, o9, o13}, {o4, o6, o8, o13} and {o4, o5, o7, o10, o11, o12,
o14}, respectively. Therefore, Co2 = {c1, c2} and Co3 = Co15 = {c2}.
Objects other than o2, o3, o15 do not have target users in C, i.e.,
Co = ϕ, ∀o ∈ O − {o2,o3,o15}. △

Problem Statement The problem of continuous monitoring
of Pareto frontiers is, given a set of users C, their preference
relations on attributes D, and a set of continuously growing
objects O with the latest object o, find Co—the target users of
o.

In this problem setting, we assume a sizable preference re-
lation is available for each user. In reality, we have insufficient
information about the preferences of a less active user, i.e., the
corresponding partial orders may contain very few preference
tuples. In the extreme case, a new user, for whom we have no
information regarding their preferences, admits all objects as
Pareto-optimal. Such less active users and new users are the
subject of the well-known cold-start problem in recommendation
systems, which is outside of the scope of this work.

4 SHARING COMPUTATION ACROSS
USERS

Algorithm Baseline A simple method to our problem will
check, for every user, whether a new object belongs to the cor-
responding Pareto frontier. The pseudo code of this approach,
named Baseline, is shown in Alg. 1. Upon the arrival of a new
object o, for every user c, it sequentially compares o with the
current Pareto-optimal objects in Pc . 1) If o is dominated by any
o′ or o is identical to o′, further comparison with the remaining
objects in Pc is skipped. In the case of o being dominated by
o′, o is disqualified from being a Pareto-optimal object; if o is
identical to o′, then o is Pareto-optimal, i.e., it is inserted into
Pc . 2) If o dominates any o′, o′ is discarded from Pc . It can
be concluded already that o belongs to Pc , but the comparisons
should continue since o may dominate other existing objects in Pc .
3) If o is not dominated by any object in Pc , it becomes an element
of Pc . Readers familiar with the literature on skyline queries may
have realized that the gist of the algorithm is essentially the basic
skyline query algorithm [2]. The crux of its operation is based on
an important property, that it suffices to compare new objects with
only the Pareto-optimal objects, since any new object dominated
by a non Pareto-optimal object must be dominated by some Pareto-
optimal objects too.

Algorithm 1: Baseline
Input: C: all users; O: existing objects; o: a new object
Output: Co : target users of o

1 Co ← ∅;
2 foreach c ∈ C do
3 updateParetoFrontier(c, o);

4 return Co ;

Procedure: updateParetoFrontier (c, o)
1 isPareto ← true;
2 foreach o′ ∈ Pc do
3 if o ≻c o′ then
4 Pc ← Pc − {o′ }; Co′ ← Co′ − {c };
5 else if o′ ≻c o then isPareto ← false;break ;
6 else if o′.D = o.D then isPareto ← true;break ;

7 if isPareto then
8 Pc ← Pc ∪ {o }; Co ← Co ∪ {c };

With regard to a user c, the complexity of finding the Pareto
frontier among n objects isO (n2). Alg. 1 needsO (n2 · |C|) time to
compute the Pareto frontiers for all users in C. The drawback of
Baseline is it repeatedly applies the same procedure for every user.
In terms of computation efficiency, the approach may become
particularly unappealing when there are a large number of users
and new objects constantly arrive. To counter this drawback, our
idea is to share computations across the users that exhibit similar
preferences. To this end, our method is simple and intuitive. If
several users share a set of preference tuples, it is only necessary
to compare two objects once, if they attain the attribute values in
the preference tuples. If an object is dominated by another object
according to these common preference tuples, it is dominated
with respect to all users sharing the same preferences. This idea
guarantees to filter out only “true negatives” for these users, and it
only needs to further discern “false positives” for each individual
user.

Definition 4.1 (Common Preference Tuple and Relation). Given
a set of users U ⊆ C, an attribute d ∈ D, and two values x ,y ∈
dom(d ), if (x ,y) belongs to preference relation ≻dc for all c ∈ U ,
then it is called a common preference tuple. The set of common
preference tuples of U on attribute d is denoted ≻dU , i.e., ≻dU =⋂
c ∈U ≻

d
c . By definition, ≻dU also represents a strict partial order

(Theorem 4.2, proof omitted). We call it a common preference
relation. It can be viewed as the preference of a virtual user that is
denoted U . △

THEOREM 4.2. ≻dU is a strict partial order. △

Since, for each d, ≻dU is a strict partial order, the set of users’
preferences (i.e., the virtual user U ’s preferences) regarding all
attributes in D induce another strict partial order ≻U on objects.

Definition 4.3 (Pareto Frontier for U ). An object o is Pareto-
optimal with respect toU if no other object dominates it according
to ≻U . The Pareto frontier of O for U is denoted PU , i.e., PU =
{o ∈ O|∄o′ ∈ O s.t. o′ ≻U o}. △

Example 4.4. From Table 2, ≻CPU
c1 = {(dual, single), (dual,

quad), (dual, triple), (triple, single), (quad, single)} and ≻CPU
c2 =

{(dual, single), (triple, single), (quad, single), (triple, dual), (quad,
dual), (quad, triple)}. According to Def. 4.1, the common pref-
erence relation of c1 and c2 is ≻CPU

{c1,c2 }
= {(dual, single), (triple,

single), (quad, single)}. Similarly we can derive ≻display
{c1,c2 }

and

≻brand
{c1,c2 }

. In Table 2, the three partial orders are depicted in a row
labeled as a virtual user U . The Pareto frontier of U is PU = {o2,
o3, o10, o15}. △

THEOREM 4.5. Given any set of users U , for all c ∈ U , PU ⊇
Pc and PU ⊆

⋂
c ∈U Pc . △

Proof: We prove by contradiction. Suppose that there exists c
∈ U such that PU ⊉ Pc , which would mean there exists o ∈ O
such that o ∈ Pc and o < PU . That implies the existence of an
o′ ∈ O such that o′ ≻U o and o′ ⊁c o. However, by Def. 4.1, o′

≻U o implies o′ ≻c o. Therefore, the existence of o′ is impossible.
This contradiction eventually leads to that PU ⊇ Pc . Hence,
PU ⊇

⋃
c ∈U Pc , which implies PU ⊆

⋂
c ∈U Pc according to

De Morgan’s laws.

LEMMA 4.6. Given any set of users U , for all c ∈ U , Pc =
{o ∈ PU |∄o′ ∈ PU s.t. o′ ≻c o}. △



Example 4.7. In Table 2, PU = {o2, o3, o10, o15} and Pc1 ∪
Pc2 = {o2, o3,o15}. PU ⊇ Pc1 ∪ Pc2 . Moreover, PU = {o1, o4, o5,
o6, o7, o8, o9, o11, o12, o13, o14} and Pc1 ∩ Pc2 = {o1, o4, o5, o6,
o7, o8, o9, o10, o11, o12, o13, o14, o15}. PU ⊆ Pc1 ∩ Pc2 . △

Theorem 4.5 suggests an appealing quality of the common
preference relations of U . By PU ⊇ Pc , the Pareto frontier of U
subsumes the Pareto frontier of every user member in U . What it
means is that, if we simply compute the Pareto frontier of U , we
get to retain all the objects that we eventually look for. Consider
Pc as the ground truth and PU as the predictions. The objects
that are filtered out (PU ) are all “true negatives” and there are no
“false negatives”. The set PU may contain “false positives”, which
we just need to throw out after further verification, as Lemma 4.6
suggests.

This approach’s merit is the potential saving on object compar-
isons. For a cluster of users, many non Pareto-optimal objects may
be filtered out altogether for all the users, without incurring the
same comparisons repeatedly for each user.

To capitalize on the above ideas, our method must answer three
questions. (1) How to find users sharing similar preferences? (2)
For a set of similar users U , how to maintain the corresponding
Pareto frontier PU based on their common preference relations
≻dU for different attributes d? (3) For each user c in U , how to
discern the “false positives” in PU and thus find Pc . Note that the
second and the last challenges need to be addressed for constantly
arriving new objects.

For (1), our method is to cluster users based on the similarity be-
tween their preference relations. While many clustering methods
have been developed for various types of data, none is specialized
in clustering partial orders. Our clustering method is discussed
in Sec. 5. For (2) and (3), our algorithm takes a filter-then-verify
approach and is thus named FilterThenVerify, of which the pseudo
code is displayed in Alg 2.

Alg. FilterThenVerify Upon the arrival of a new object o,
for every cluster U , FilterThenVerify compares o with the current
members of PU based on the preference relations of the virtual
user U . Various actions are taken, depending on the comparison
outcomes, as follows:

I) If o dominates any o′ in PU according to ≻dU of all relevant
d , o′ is removed from PU (Line 7 of Procedure updateParetoFron-
tierU in Alg. 2). For every c ∈ C such that o′ ∈ Pc , o′ is also
discarded from Pc (Line 6 of Procedure updateParetoFrontierU).

II) If o is dominated by any o′ in PU , then o does not oc-
cupy the Pareto frontier of any user in U (Theorem 4.5). Further
operations involving o are unnecessary (Line 8 of Procedure
updateParetoFrontierU).

III) After comparing o with all current objects in PU , if it
is realized that o is not dominated by any o′, then o becomes a
member of PU (Line 9 of updateParetoFrontierU). Furthermore,
for each c ∈ U , o is further compared with the members of
Pc based on the preference relations of c, by using Procedure
updateParetoFrontier of Alg.1 (Line 6 of Alg.2).

Example 4.8. In this example we explain the execution of
FilterThenVerify on Table 1 and Table 2. Suppose users c1 and c2
form a cluster U , of which the preference relations are depicted
in Table 2. The existing objects are o1 to o14, and o15 = ⟨16.5′′,
Lenovo, quad⟩ is the object that just becomes available. Before
o15 arrives, the Pareto frontier of U is PU = {o2, o3, o7, o10}.
The algorithm starts by comparing o15 with each element in PU .
As o15 dominates o7 = ⟨9.5′′, Lenovo, quad⟩ according to U ’s

Algorithm 2: FilterThenVerify
Input: U1, U2,..., Un : clusters of users; O: existing objects; o: a new

object
Output: Co : target users of o

1 Co ← ∅;
2 foreach U ∈ {U1, U2, ..., Un } do
3 isPareto ← updateParetoFrontierU(U , o);
4 if isPareto then
5 foreach c ∈ U do
6 updateParetoFrontier(c, o); //Algorithm 1

7 return Co ;

Procedure: updateParetoFrontierU (U , o)
1 isPareto ← true;
2 foreach o′ ∈ PU do
3 if o ≻U o′ then
4 foreach c ∈ U do
5 if o′ ∈ Pc then
6 Pc ← Pc − {o′ }; Co′ ← Co′ − {c };

7 PU ← PU − {o′ };
8 else if o′ ≻U o then isPareto ← false; break ;

9 if isPareto then PU ← PU ∪ {o } ;
10 return isPareto;

preference relations, o7 is discarded from PU . Before o15 arrives,
o7 belongs to Pc2 and Co7={c2}. Hence, o7 is removed from Pc2
and Co7 becomes empty. o15 does not dominate any other object
in PU . It is not dominated by any either. Therefore, it is inserted
into PU .

o15 is further compared with the existing members of Pc1 and
Pc2 . It is dominated by o2=⟨14′′, Apple, dual⟩ according to c1’s
preference relations. Thus it is not part of Pc1 . According to c2’s
preferences, o15 does not dominate any existing Pareto optional
object (except the aforementioned o7 which by now is already
discarded). Therefore Pc2 is not further changed and o15 becomes
part of Pc2 . Overall, Co15={c2}.

Moreover, consider the arrival of o16 = ⟨16′′, Toshiba, single⟩
after o15. In the process of comparing o16 with PU = {o2, o3, o10,
o15}, it is realized that o16 is dominated by o2 according to U ’s
preference relations. Therefore, it does not belong to PU . It is
thus unnecessary to further compare o16 with Pc1 or Pc2 . Co16=∅.
Thereby, updateParetoFrontierU acts as a sieve to filter out non
Pareto-optimal objects such as o16. In this way FilterThenVerify
reduces computation cost by avoiding repeated comparisons with
such objects. △

Complexity Analysis of Alg. 2 As we discussed earlier, given
a user c, the complexity of finding Pareto frontier among the
n objects is O (n2). Assume k is the number of clusters. With
regard to the virtual user for each cluster U , the complexity of
finding Pareto frontier PU among the n objects isO (n2 ·k ) (calling
Procedure updateParetoFrontierU in Line 3 of Alg. 2). Assume
each PU on average has m objects. In Lines 4-6, Alg. 2 finds
Pc from PU for each user c in U (recall that PU ⊇ Pc ). As
Lines 4-6 iterate for each cluster (Line 2), the algorithm eventually
computes Pc for each c ∈ C. Therefore, the complexity of finding
Pareto frontier Pc among the m objects is O (m2 · |C|). Overall,
FilterThenVerify needs O (n2 · k +m2 · |C|) time to find the target
users for all objects. We compare FilterThenVerify and Baseline in
terms of time complexity. Apparently k < |C| and m < n. Thus,
n2 · k < n2 · |C| andm2 · |C| < n2 · |C|.



5 SIMILARITY MEASURES FOR
CLUSTERING USER PREFERENCES

This section discusses how to cluster users based on their prefer-
ence relations. Our focus is on the similarity measures rather than
the clustering method. The method we adopt is the conventional
hierarchical agglomerative clustering algorithm [9]. At every
iteration, the method merges the two most similar clusters. The
common preference relation of the merged cluster U on each
attribute d, i.e., ≻dU , is computed. It then calculates the similarity
between U and each remaining cluster. Given two clusters U1 and
U2, their similarity sim(U1, U2) is defined as the summation of
the similarities between their preference relations on individual
attributes, as follows. This resembles the high-level idea of using
L1 norm distance between centroids for measuring inter-cluster
similarity in conventional hierarchial clustering.

sim(U1,U2) =
∑
d ∈D

simd (U1,U2) (1)

Individual users’ and clusters’ preference relations on attributes
are strict partial orders. No prior work studied clustering ap-
proaches or similarity measures for partial orders. Similarity
measures commonly used in clustering algorithms assume nu-
meric or categorical attributes. Kamishima et al. [10, 11] and
Ukkonen et al. [22] cluster total orders but not partial orders. Given
two totally ordered attributes, these works use the comparative
ranks of the corresponding values to measure similarity. Clearly,
such similarity measures are not applicable for partially ordered
attributes.

In this section we propose four different similarity functions
for defining simd (U1,U2).

1) Intersection size This is simply the size of the intersection
of ≻dU1

and ≻dU2
, i.e., the number of common preference tuples of

all users in the two clusters U1 and U2. It is defined as

simd
i (U1,U2) = | ≻

d
U1
∩ ≻dU2

| (2)

Example 5.1. Table 3 shows three clusters U1 ({c1, c2}), U2
({c3, c4}), and U3 ({c5, c6}) and the common preference relation
associated with each cluster on attribute brand. U1 and U2 do
not share any preference tuple and thus simbrand

i (U1,U2) = 0.
U1 and U3 have (Apple, Samsung) and (Lenovo, Samsung) as
common preference tuples, i.e., simbrand

i (U1,U3) = 2. Similarly,
U2 and U3 share (Lenovo, Apple) and (Lenovo, Toshiba), i.e.,
simbrand

i (U2,U3) = 2. △

2) Jaccard similarity The measure simi captures the abso-
lute size of the intersection of two preference relations. It does not
take into account their differences. Consider three clusters U1, U2
andU3 such that simd

i (U1,U2) = simd
i (U1,U3) (i.e., | ≻dU1

∩ ≻dU2
|

= | ≻dU1
∩ ≻dU3

|) and | ≻dU1
∪ ≻dU2

| < | ≻dU1
∪ ≻dU3

|. We can
argue that the similarity between U1 and U2 should be higher than
(instead of equal to) that between U1 and U3, because U1 and U2
have a larger percentage of common preference tuples than U1
and U3. To address this limitation of simi , we define the Jaccard
similarity between two preference relations as their intersection
size over their union size, i.e., the ratio of common preference
tuples to all preference tuples in the two preference relations.
Formally,

simd
j (U1,U2) =

| ≻dU1
∩ ≻dU2

|

| ≻dU1
∪ ≻dU2

|
=

simd
i (U1,U2)

| ≻dU1
∪ ≻dU2

|
(3)

Example 5.2. Continue Example 5.1. ≻brand
U1

and ≻brand
U3

have

6 preference tuples in total while ≻brand
U2

and ≻brand
U3

have 7. Thus,

simbrand
j (U1,U3)=2/6 and simbrand

j (U2,U3)=2/7. △

3) Weighted intersection size Intersection size and Jaccard
similarity are based on the cardinalities of intersection and union
sets of preference relations. In counting the cardinalities, they
both treat all preference tuples equal. We argue that this is counter-
intuitive. Values at the top of a partial order matter more than
those at the bottom, in terms of their impact on which objects
belong to the Pareto frontier. Accordingly we introduce weighted
intersection size, a modified version of intersection size simi .
In counting the common preference tuples of two preference
relations, it assigns a weight to each preference tuple. Formally,

simd
wi (U1, U2) =

∑
(v,v ′)∈≻dU1

∩≻dU2

1
2
× (

1
min
s∈SdU1

D (s, v )+1
+

1
min
s∈SdU2

D (s, v )+1
) (4)

In the above equation, with regard to an attribute d , the similar-
ity between two clusters’ preference relations is a summation over
their common preference tuples. For each common preference
tuple (v,v ′), it computes the average weight of the better value
v with respect to U1 and U2, respectively. Given a cluster U , SdU
is the set of maximal values in the partial order ≻dU and D (s,v )

for each s ∈ SdU is the shortest distance from s to v in ≻dU . The
weight of v in U is the inverse of the minimal distance from any
maximal value tov (plus 1, to avoid division by zero). The concept
of maximal value is defined as follows.

Definition 5.3 (Maximal Value). With regard to ≻dU , value x ∈
dom(d ) is a maximal value if no other value in dom(d ) is preferred
over x . The set of maximal values for ≻dU is denoted SdU . Formally,
SdU = {x ∈ dom(d ) | ∄y ∈ dom(d ) s .t . (y,x ) ∈ ≻dU }. △

Example 5.4. Continue Example 5.1. The maximal values in
≻brand
U1

, ≻brand
U2

and ≻brand
U3

are Sbrand
U1

={Apple, Toshiba}, Sbrand
U2

=

{Samsung} and Sbrand
U3

={Lenovo}, respectively. In the partial order

corresponding to ≻brand
U1

, the minimal shortest distances to Apple,
Lenovo, Samsung, and Toshiba from the maximal values {Apple,
Toshiba} are 0, 1, 1 and 0, respectively. The corresponding weights
are 1, 1/2, 1/2 and 1. Similarly, in ≻brand

U2
, the weights of Apple,

Lenovo, Samsung and Toshiba are 1/3, 1/2, 1 and 1/3, respectively.
In ≻brand

U3
, the corresponding weights are 1/2, 1, 1/3 and 1/2,

respectively.
U1 and U3 have (Apple, Samsung) and (Lenovo, Samsung) as

common preference tuples. For the two better-values in these pref-
erence tuples—Apple and Lenovo, the average weights are both

3/4. The similarity simbrand
wi (U1,U3)=

1+ 1
2

2 +
1
2+1
2 =

3
2 . Similarly,U2

and U3 have (Lenovo, Apple) and (Lenovo, Toshiba) as common
preference tuples. In U2 and U3, the average weight of Lenovo—
the better-value in both common preference tuples—is 3/4. The

similarity simbrand
wi (U2,U3)=

1
2+1
2 +

1
2+1
2 =

3
2 . △

4) Weighted Jaccard similarity This measure is a combi-
nation of the last two ideas—Jaccard similarity and weighted
intersection size. As in Jaccard similarity, weighted Jaccard simi-
larity computes the ratio of intersection size to union size. Similar
to weighted intersection size, the values in a preference relation
are assigned weights corresponding to their minimal shortest dis-
tances to the preference relation’s maximal values. The measure’s
definition is as follows.



simd
w j (U1, U2) =

∑
(v,v ′)∈≻dU1

∩≻dU2

1
2
× (

1
min
s∈SdU1

D (s, v )+1
+

1
min
s∈SdU2

D (s, v )+1
)

/ ∑
(v,v ′)∈≻dU1

∪≻dU2

1
2
× (

1
min
s∈SdU1

D (s, v )+1
+

1
min
s∈SdU2

D (s, v )+1
)

= simd
wi (U1, U2)

/ [
simd

wi (U1, U2) +
∑

(v,v ′)∈≻dU1
−≻dU2

1
min
s∈SdU1

D (s, v ) + 1

+
∑

(v,v ′)∈≻dU2
−≻dU1

1
min
s∈SdU2

D (s, v ) + 1

]
(5)

Example 5.5. Continue Example 5.4. Now simbrand
wj (U1,U3)=

3
2

(1+1)+(1+1)+ 3
2

= 3
11 , since ≻dU1

−≻dU3
={(Apple, Lenovo), (Toshiba,

Samsung)} and ≻dU3
− ≻dU1

={(Lenovo, Apple), (Lenovo, Toshiba)}.

Similarly, simbrand
wj (U2,U3)=

3
2

(1+1+1)+(1+ 1
2 )+

3
2

= 3
12 , as ≻dU2

− ≻dU3

={(Samsung, Lenovo), (Samsung, Apple), (Samsung, Toshiba)}
and ≻dU3

−≻dU2
={(Lenovo, Samsung), (Apple, Samsung)}. Note that

simbrand
wj (U1,U3) > simbrand

wj (U2,U3) although simbrand
wi (U1,U3)

=simbrand
wi (U2,U3). △

6 APPROXIMATE USER PREFERENCES
Two conflicting factors have crucial impacts on the effectiveness
of FilterThenVerify. One is the size of the common preference
relations. The other is the size of the clusters. Specifically, the
more preference tuples a cluster’s users share, the more objects can
be filtered out and thus the less verifications need to be done for
individual users. On the contrary, the more users a cluster contains,
the more repeated comparisons are avoided for these individual
users. There is a clear tradeoff between these two factors, since
larger clusters (i.e., more users in each cluster) naturally leads to
smaller common preference relations.

Our approach to this challenge is approximation. As discussed
in Sec. 1, it suffices for many applications to approximately
identify target users. In this section, we show that we can find such
approximation through a relaxed notion of common preference
tuple, namely approximate common preference tuple. For a set of
users, it allows a preference tuple to be absent from a tolerably
small subset. If a sizable subset of the users agree with the prefer-
ence tuple, it is considered an approximate common preference
tuple. This relaxation addresses the aforementioned concern, since
more approximate common preferences lead to larger clusters.

6.1 Approximate Common Preference Tuples
and Relations

Based on the aforementioned objective, we procedurally construct
approximate common preference relations. Before we provide its
formal definition, we explain the intuition, as follows. Given a clus-
ter of users, the resulting approximate common preference relation
always includes the common preference tuples. The remaining
possible preference tuples are considered in descending order of
their frequencies, since preference tuples with higher frequencies
are shared by more users. A preference tuple is included into
the approximate common preference relation only if its reverse
tuple is not included. This guarantees asymmetry. Furthermore,
when a preference tuple is included, the transitive closure of the
updated approximate common preference relation is also included.

This guarantees transitivity. Irreflexivity is guaranteed too since
this procedure never considers preference tuples in the form of
(x ,x ). These altogether assure the constructed preference relation
is a strict partial order. Given an append-only database of objects,
a strict partial order ensures that preference query results are
independent of the order by which objects are appended to the
database. We denote the approximate common preference relation
by ≻̂dU . It can be viewed as the preference of a virtual user (denoted
Û ) on attribute d. Moreover, we denote the Pareto frontier of O
for Û as P̂U .

Definition 6.1 (Approximate Common Preference Tuple and
Relation). Given a set of users U⊆C, an attribute d∈D of which
|dom(d ) |=m, considerA1...Pm2 which is an ordered permutation of
all possible preference tuples {(x ,y) ∈ dom(d ) × dom(d ) | x , y}
such that f req(Ai )≥ f req(Ai+1) for i ∈ [1, Pm2 − 1], in which
f req(Ai ) denotes the percentage of users in U whose prefer-
ence relations contain preference tuple Ai . The approximate com-
mon preference relation ≻̂dU is defined as Rj in which j is the
largest index i ∈ [1, Pm2 ] that satisfies the condition ( |Ri | < θ1 ∧
f req(Ai ) > θ2) ∨ f req(Ai ) = 1 where Ri is defined as

Ri =




{A1 } if i = 1
(Ri−1 ∪ {Ai })+ if Ri−1 ∪ {Ai } is a strict partial order
Ri−1 otherwise

and θ1 and θ2 are two given thresholds. θ1 limits the size of the
resulting ≻̂dU while θ2 excludes infrequent preference tuples from
≻̂
d
U . △

θ1 and θ2 regulate the size of ≻̂dU . A pair of large θ1 and small θ2
allows ≻̂dU to include infrequent preference tuples. In such a case
the approximate common preference relation becomes ineffective,
since Procedure updateParetoFrontierU in Alg.2 may retain a large
number of candidates that must be verified for each c ∈ U . On
the other hand, a pair of small θ1 and large θ2 may limit ≻̂dU
to contain only ≻dU , in which case the concern regarding small
common preference relation remains.

As Def. 6.1 itself is procedural, it naturally corresponds to a
greedy algorithm for constructing approximate preference relation
≻̂
d
U . The pseudo code GetApproxPreferenceTuples is in Alg. 3.

First, all the common preference tuples are included (Lines 2-
3). After that, preference tuples are considered in the order of
frequency, as long as the two thresholds are satisfied (Line 4).
For each preference tuple in consideration, if it together with all
chosen tuples hitherto do not violate the properties of a strict par-
tial order, their transitive closure is included into the approximate
preference relation (Lines 6-7).

Example 6.2. We use Figure 1 to explain the execution of
GetApproxPreferenceTuples. Figure 1a depicts three users’ prefer-
ence relations on brand. Suppose together these three users form
a cluster. Assume θ1 = 7 and θ2 = 60%.

Table 4 shows the frequencies of all possible preference tuples
after sorting. For instance, since all users prefer Apple to Toshiba,
the corresponding frequency is 3/3; the frequency of (Apple,
Samsung) is 2/3 as two of these three users prefer Apple to
Samsung. At first GetApproxPreferenceTuples includes the com-
mon preference tuple (Apple, Toshiba) into ≻̂dU . It then includes
(Apple, Samsung), (Lenovo, Toshiba), and (Toshiba, Samsung)
as approximate preference tuples too. Furthermore, upon the
addition of (Toshiba, Samsung), GetApproxPreferenceTuples in-
cludes (Lenovo, Samsung) as well since (Lenovo, Toshiba) and



Algorithm 3: GetApproxPreferenceTuples
Input: Ai : ordered permutation of all possible preference tuples,

defined on dom (d ), in descending order of their frequencies
among users U , θ1 and θ2: thresholds

Output: ≻̂dU : approximate common preference relation of U on
attribute d

1 for i = 1 to P |dom (d ) |
2 do

2 if freq(Ai ) = 1 then
3 ≻̂

d
U ← ≻̂

d
U ∪ {Ai }; continue;

4 if | ≻̂dU | ≥ θ1 or freq(Ai ) ≤ θ2 then
5 break;

6 if ( ≻̂dU ∪ {Ai }) is a strict partial order then
7 ≻̂

d
U ← ( ≻̂

d
U ∪ {Ai })

+;

8 return ≻̂dU ;

Apple Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

Samsung

(a)
Apple Lenovo

Toshiba

Samsung

1

2

3

4
4

(b)

Apple Lenovo

Toshiba

Samsung

(c)

Figure 1: Execution of GetApproxPreferenceTuples. a) Input:
the preferences of 3 users w.r.t. brand. b) The sequence of included
approximate preference tuples. c) Output: the final Hasse diagram
representation of the partial order.

(A, T) (A, S) (L, T) (T, S) (S, L) (A, L) (L, S) (T, L) (S, T) (L, A) (T, A) (S, A)
3/3 2/3 2/3 2/3 2/3 1/3 1/3 1/3 1/3 0/3 0/3 0/3

Table 4: All possible preference tuples in order of frequency. (A, L,
S and T stand for Apple, Lenovo, Samsung and Toshiba.)

(Toshiba, Samsung) transitively induce it. The algorithm then con-
siders (Samsung, Lenovo), which is disqualified since its reverse
tuple (Lenovo, Samsung) is already included. Otherwise the tuples
will not form a strict partial order. The algorithm stops at (Apple,
Lenovo) because its frequency is below the threshold 60%. Fig.1b
illustrates the sequence of the included tuples and Fig.1c depicts
the output approximate preference relation in the form of a Hasse
diagram. △

6.2 False Positives and False Negatives due to
Approximation

FilterThenVerify (Alg.2) is extended to use approximate preference
tuples and thus we rename it FilterThenVerifyApprox. The algo-
rithm itself remains the same. Procedure updateParetoFrontierU
maintains P̂U as the candidate Pareto frontier. The algorithm
eventually returns P̂c for each user c ∈ U , in which P̂c = {o ∈
P̂U |∄o′ ∈ P̂U s.t. o′ ≻c o}, i.e., P̂U ⊇ P̂c . Thus, Ĉo = {c ∈
C|o ∈ P̂c }. We use the example below to explain its execution
over approximate preference relations.

III IV

V

VI

I
II

Figure 2: Venn diagram depict-
ing O, PU , P̂U , Pc and P̂c .

Set Area Covered

O I,II,III,IV,V,VI
PU II,III,IV,V,VI
P̂U IV,V,VI
Pc III,IV
P̂c IV,V

Table 5: Areas covered by O,
PU , P̂U , Pc and P̂c in Fig.2.

Exact

Approx.
Pareto frontier Non Pareto frontier

Pareto frontier IV V
Non Pareto frontier III I,II,VI

Table 6: Confusion matrix w.r.t. c .

Example 6.3. Reconsider Example 4.8, but use the approximate
preference relations associated with virtual user Û in Table 2.
Upon the arrival of o15, it is compared with the elements in
P̂U = {o2, o7}. P̂U becomes {o2, o15} since o15 dominates o7.
o7 is then also removed from P̂c2 . o15 is further compared with
P̂c1 = {o2} and P̂c2 = {o2}, which does not lead to any further
change. Overall, Ĉo15 = {c2}. The target users using approximate
preference relations remain identical to the exact ones, i.e., no loss
of accuracy in this case. △

The rest of this section focuses on the accuracy of FilterThen-
VerifyApprox. It produces false positives if there exists such an o

that o ∈ P̂c but o < Pc . It produces false negatives if there exists
such an o that o < P̂c but o ∈ Pc . Below we present Theorems 6.5
and 6.7 to analyze how P̂U and P̂c relate to PU and Pc .

LEMMA 6.4. Given a set of users U and an attribute d, the
common preference relation ≻dU and an approximate common

preference relation ≻̂dU satisfy the following properties:
1) The approximate preference tuples are a superset of the

common preference tuples, i.e., ≻̂dU ⊇≻
d
U .

2) If any preference tuple along with its reverse tuple do not
belong to the approximate common preference relation, neither
of them belongs to the common preference relation either, i.e.,
(x ,y)< ≻̂

d
U ∧ (y,x )< ≻̂

d
U ⇒ (x ,y) < ≻dU ∧ (y,x ) < ≻dU . △

THEOREM 6.5. Given objects O and users U , the Pareto
frontier with regard to approximate common preference relations
is a subset of the Pareto frontier with regard to common preference
relations, i.e., P̂U ⊆ PU . △

Proof: We prove by contradiction. Suppose P̂U ⊈ PU , which
would mean there exists o ∈ O such that o ∈ P̂U and o < PU .
That leads to the existence of an o′ such that o′ ≻U o and o′ ⊁Û o.

However, o′ ≻U o implies o′ ≻Û o because ≻̂dU ⊇≻
d
U for every d

(Lemma 6.4). Therefore, the existence of o′ is impossible. This
contradiction proves that P̂U ⊆ PU .

LEMMA 6.6. Given any set of users U , for all user c ∈ U ,
P̂U ⊇ P̂c . △

THEOREM 6.7. Given any set of users U , for all user c ∈ U ,
P̂U ∩ Pc ⊆ P̂c . △

Proof: We prove by contradiction. Suppose P̂U ∩ Pc ⊈ P̂c ,
which would mean there exists o ∈ O such that o ∈ P̂U ∩ Pc
and o < P̂c . o < P̂c implies the existence of an o′ ∈ O such that
o′ ∈ P̂c and o′ ≻c o (since o ∈ P̂U ∩ Pc and thus o ∈ P̂U which



means o′ ⊁Û o). Since o′ ≻c o, o < Pc (Def. 3.3) and thus o <

P̂U ∩ Pc . In other words, the existence of o′ is impossible. This
contradiction proves that P̂U ∩ Pc ⊆ P̂c .

Consider a cluster U and a user c ∈ U . The Venn diagram in
Fig. 2 shows the effect of approximation through depicting O
(rectangle), PU (outer blue circle), P̂U (outer red ellipse), Pc
(inner blue circle), and P̂c (inner red ellipse). Besides, Table 5
elaborates the area covered by these sets while Table 6 shows
the confusion matrix for c. Note that using approximate common
preference relations results in false negatives (III). Mistakenly
declaring III as not Pareto-optimal further allows false positives
(V) to sneak in.

With these notations in place, we are ready to quantify the
accuracy of FilterThenVerifyApprox using standard evaluation mea-
sures in information retrieval. Specifically, precision is the fraction
of objects found by FilterThenVerifyApprox that are truly Pareto-

optimal, i.e.,
∑
c∈C P̂c∩Pc∑

c∈C P̂c
. Recall is the fraction of Pareto-optimal

objects that are correctly found by FilterThenVerifyApprox, i.e.,∑
c∈C P̂c∩Pc∑

c∈C Pc
. With regard to a specific user c, the algorithm’s

precision, recall and accuracy can be represented using the areas
in Fig. 2, as follows.

precision =
| IV |
| IV ∪ V |

(6)

r ecall =
| IV |

| III ∪ IV |
(7)

accuracy =
| I ∪ II ∪ IV ∪ VI |

| I ∪ II ∪ III ∪ IV ∪ V ∪ VI |
(8)

6.3 Similarity Functions
To make the clustering solution in Sec. 5 compatible with ap-
proximate preference relations, we extend the similarity measures,
using ideas inspired by the Jaccard similarity for non-negative
multidimensional real vectors [4].

1) Jaccard Similarity Consider an attributed with |dom(d ) | =
m. For each cluster U , construct a vector U = (U(1), U(2), . . .,
U(Pm2 )). For i ∈ [1, Pm2 ], U(i ) represents the frequency of Ai
(Definition 6.1) in U . Given two clusters U and V , their Jaccard
similarity on attribute d is

simd
j (U ,V ) =

∑
i min(U(i ),V(i ))∑
i max(U(i ),V(i ))

(9)

Example 6.8. Consider U1 and U3 in Table 3. Suppose A(i )
for i ∈ [1, Pm2 ] are ((Apple, Lenovo), (Apple, Samsumg), (Apple,
Toshiba), (Lenovo, Apple), (Lenovo, Samsung), (Lenovo, Toshiba),
(Toshiba, Apple), (Toshiba, Lenovo), (Toshiba, Samsung), (Sam-
sung, Apple), (Samsung, Lenovo), (Samsung, Toshiba)). The two
vectors are U1 = (2/2, 2/2, 0/2, 0/2, 2/2, 0/2, 0/2, 1/2, 2/2, 0/2,
0/2, 0/2) and U3 = (0/2, 2/2, 1/2, 2/2, 2/2, 2/2, 0/2, 0/2, 1/2, 0/2,
0/2, 0/2). For instance, U1 has 1/2 on the 8th -dimension since
only one of the two users’ preference relations contains (Toshiba,
Lenovo). Hence, simbrand

j (U1,U3) = 0.36. △

2) Weighted Jaccard Similarity This measure, denoted as
simd

w j , extends the namesake measure in Sec. 5 with the idea
above. Its definition is the same as Eq. 9 except that a value U(i )
in a vector represents the frequency of Ai in U that takes into
consideration the weights explained in Sec. 5. Consider Ai as the
preference tuple (Ai (x ),Ai (y)). This similarity measure is defined
as follows.

simd
w j (U , V ) =

∑
i
(min(

1
|U |
×
∑
c∈U

1
min
s∈Sdc

D (s, Ai (x ))+1
,

1
|V |
×
∑
c∈V

1
min
s∈Sdc

D (s, Ai (x ))+1
))

/ ∑
i
(max(

1
|U |
×
∑
c∈U

1
min
s∈Sdc

D (s, Ai (x ))+1
,

1
|V |
×
∑
c∈V

1
min
s∈Sdc

D (s, Ai (x ))+1
)) (10)

Example 6.9. In Table 3, in the partial order depicting ≻brand
c6 ,

the distance to Apple from the maximal value Lenovo is 1, i.e.,
the weight of Apple is 1/2. Since only one of the two users in U3

has (Apple, Toshiba) in their preference relation, U3 has
1
2+0
2 =

1
4 on the 3rd -dimension. In this way, we get U1 = (2/2, 2/2,
0/2, 0/2, 1/2, 0/2, 0/2, 1/2, 2/2, 0/2, 0/2, 0/2) and U3 = (0/2,
1/2, 1/4, 2/2, 2/2, 2/2, 0/2, 0/2, 1/4, 0/2, 0/2, 0/2). Therefore,
simbrand

wj (U1,U3) = 0.19. △

7 ALIVE OBJECT DISSEMINATION
In Sec. 1, we discussed motivating applications such as social
network content dissemination, news delivery and product recom-
mendation. The significance of a particular social network content
(e.g. a post in Facebook) or a piece of news diminishes eventually.
Similarly, in any inventory, products are consumed and perishable
products expire over time. In other words, objects can have limited
lifetime. Thus, upon the arrival of a new object, it needs to compete
only with the alive objects. To meet this requirement, we extend
our problem as continuous monitoring of Pareto frontiers over
alive objects for many users and formalize it as finding Pareto
frontiers over sliding window.

Suppose O = {o1, o2, . . ., oN } is a stream of objects, in which
the subscript of each object is its timestamp. We consider a
sliding window as a sequence of W recent objects. Upon the
arrival of an incoming object oin , an object oout expires if in −
out =W . Specifically, the sliding window contains objects whose
timestamps are in (out , in], i.e., an object oi ∈ O is alive during
(out , in] if i ∈ (out , in]. Given the concept of sliding window, we
extend the definition of Pareto frontier in Def. 3.3 and the problem
statement in Sec. 3.

Definition 7.1 (Pareto Frontier). An alive object o is Pareto-
optimal with respect to c, if no other alive object dominates it. Pc
= {oi ∈ O|∄oj ∈ O s.t. oj ≻c oi ∧ i, j ∈ (out , in]}. The target users
of oin is Coin = {c ∈ C|oin ∈ Pc } (Def. 3.4). △

Problem Statement The problem of continuous monitoring
of Pareto frontiers over sliding window is, given a set of users C,
their preference relations on attributes D, and a stream of objects
O with the incoming object oin as well as the outgoing object
oout , find Coin—the target users of oin .

Algorithms BaselineSW and FilterThenVerifySW We ex-
tend Baseline and FilterThenVerify to BaselineSW and FilterThen-
VerifySW, respectively, to accommodate sliding window. We note
that no prior work studied Pareto frontier maintenance with regard
to strict partial orders over sliding window. [15, 16, 21] studied
skyline maintenance over sliding window, assuming numeric
attributes. [18] considered total orders (with ties) on categorical



attributes instead of general partial orders. There is no clear way
to extend these works for partially ordered attributes.

Due to space limitations, we leave the detailed pseudo codes
and descriptions of BaselineSW and FilterThenVerifySW to the
extended version of this paper [20]. Below we highlight the key
concepts that dictate the design of these algorithms.

Under the constraint of having a sliding window, an object can
be excluded from Pareto frontier forever if it is dominated by any
succeeding object. This observation is formalized as Theorem 7.2.

THEOREM 7.2. Consider a user c ∈ C and two objects oi ,oj ∈
O such that oi ≺c oj and i < j. After the arrival of oj , oi can
never be part of Pc in its remaining lifetime. △

Proof: Since i < j, oi expires before oj and the sliding window
always includes oj if it includes o . Since oj dominates oi , oi will
never get into Pc after the arrival of oj .

By Theorem 7.2, we extend our algorithms to maintain a Pareto
frontier buffer which stores at mostW recent objects that are not
dominated by any succeeding object. Clearly, oin is part of the
Pareto frontier buffer.

Definition 7.3 (Pareto Frontier Buffer). With regard to user c
and the sliding window (out , in], an alive object o belongs to the
Pareto frontier buffer if it is not dominated by any succeeding
object. The Pareto frontier buffer is PBc = {oi ∈ O|∄oj ∈
O s.t. oj ≻c oi ∧ i, j ∈ (out , in]∧ i < j}. By definition, PBc ⊇ Pc
(Def. 7.1). △

THEOREM 7.4. Given a set of users U , for all c ∈ U , i)
PBU ⊇ PU and ii) PBU ⊇ PBc . △

Proof: i) Together Def. 7.1 and 7.3 imply that PBU ⊇ PU .
ii) We prove by contradiction. Suppose that there exists c ∈ U

such that PBU ⊉ PBc , which would mean there exists o ∈ O
such that o ∈ PBc and o < PBU . That implies the existence of an
o′ ∈ O such that o′ ≻U o and o′ ⊁c o. However, by Def. 4.1, o′

≻U o implies o′ ≻c o. Therefore, the existence of o′ is impossible.
In conclusion, PBU ⊇ PBc .

Note that, BaselineSW needs to maintain an exclusive Pareto
frontier buffer for each user (PBc ) while a Pareto frontier buffer
per cluster (PBU ) is sufficient for FilterThenVerifySW.

8 EXPERIMENTS
8.1 Experiment Setup
The algorithms were implemented in Java. The maximal heap size
of Java Virtual Machine (JVM) was set to 16 GB. The experiments
were conducted on a computer with 2.0 GHz Quad Core 2 Duo
Xeon CPU running Ubontu 8.10.

Datasets Currently there exists no publicly available dataset
that captures real users’ preferences in partial orders. We thus
simulated such partial orders using two real datasets of users’
preferences.

Movie Dataset We joined the Netflix dataset (netflixprize.com)
with data from IMDB (imdb.com). The Netflix dataset contains
the ratings (ranging from 0 to 5) given by users to movies. From
IMDB we fetched the movies’ attribute values, including actors,
directors, genres, and writers. In this way, we found the attributes
of 12, 749 Netflix movies. The goal is to, for each particular movie,
identify users who may like it according to their preferences on
those attributes. The mapping from our problem formulation to
this dataset is the following: (i) O is the set of 12, 749 movies.
(ii) C is the set of users. It includes the 1, 000 most active users
based on how many movies they have rated. (iii) D = {actor,

director, genre, writer}. (iv) Given the lack of user preference
data, for each attribute, the partial order corresponding to a user’s
preferences is simulated as follows. For two attribute values, the
user’s preference is based on the average rating and the count
of movies satisfying these attribute values. More specifically,
consider a user c who has rated m movies featuring actor a.
Suppose the ratings of these movies are r1, r2, . . ., rm . Given
c and a, the average rating is Ra =

∑
i ri
m and the count is Ma =m.

Consider another actor b. If (Ra > Rb ∧ Ma ≥ Mb ) ∨ (Ra ≥ Rb
∧ Ma > Mb ), then (a,b) ∈≻actor

c . Intuitively, if user c watches
more movies featuring a than b and gives them higher ratings, our
simulation assumes the user prefers a to b.

Publication Dataset We collected from the ACM Digital
Library (dl.acm.org) 17, 598 publications and their attributes, in-
cluding affiliations, authors, conferences and topic keywords. The
users are the authors themselves. The goal is to notify them about
newly published articles. The recommendations are based on
the users’ preference relations on the attributes. The mapping
from our problem formulation to this dataset is the following:
(i) O is the set of papers. (ii) C is the set of authors. It includes
the 1, 000 most prolific authors based on how many publications
they have, similar to the 1, 000 most active users in the movie
dataset. (iii) D = {affiliation, author, conference, keyword}. The
domain of attribute author is the same 1, 000 authors in C. (iv)
Given a user, the partial order on each attribute is simulated
based on their preferences on the attribute values. The prefer-
ence between two values on affiliation (and similarly author) is
based on the number of collaborations between the user and the
affiliation/author and the number of citations. For conference and
keyword, the preference between two values is based on number of
publications and number of citations. More specifically, consider
a user c and an affiliation (or similarly another author) a. Suppose
c has pa collaborations with a and has cited articles from a qa
times. If (pa > pb ∧ qa ≥ qb ) ∨ (pa ≥ pb ∧ qa > qb ), then
(a,b) ∈≻affiliation

c (or (a,b) ∈≻author
c ). With regard to a conference

(keyword) x , suppose c has rx publications associated with x and
has cited publications associated with x sx times. If (rx > ry ∧

sx ≥ sy ) ∨ (rx ≥ ry ∧ sx > sy ), then (x ,y) ∈≻conference
c (or

(x ,y) ∈≻
keyword
c ).

8.2 Baseline, FilterThenVerify, and
FilterThenVerifyApprox

We conducted experiments to compare the performance of Base-
line, FilterThenVerify and FilterThenVerifyApprox. For FilterThen-
Verify (resp. FilterThenVerifyApprox), users are clustered by the
conventional hierarchical agglomerative clustering algorithm [9]
using the similarity functions in Sec. 5 (resp. Sec. 6.3) and, for
each cluster, it extracts the common preference relation (resp.
approximate common preference relation). The experiments use
three parameters which are number of objects (|O|), number of
attributes (d), and branch cut (h). In hierarchical clustering, the
branch cut h is a threshold that controls the number of clusters
by governing the minimum pairwise similarity that two clusters
must satisfy in order to be merged into one cluster. The sequential
order of merging clusters is depicted as a tree called dendrogram.
The branch cut thus controls where to cut the dendrogram. In
Example 5.5, the set of clusters are {{c1, c2, c5, c6}, {c3, c4}} for
h ∈ (0, 311 ]. This is because sim(U4,U2)=0 where U2={c3,c4} and
U4 is the cluster composed of c1, c2, c5, and c6.

netflixprize.com
imdb.com
dl.acm.org
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(b) Object comparisons

Figure 3: Comparison of Baseline, FilterThenVerify and
FilterThenVerifyApprox on the movie dataset. Varying |O |, h = 0.55,
d = 4.
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(b) Object comparisons

Figure 4: Comparison of Baseline, FilterThenVerify and
FilterThenVerifyApprox on the publication dataset. Varying |O |, h
= 0.55, d = 4.
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(b) Object comparisons

Figure 5: Comparison of Baseline, FilterThenVerify and
FilterThenVerifyApprox on the movie dataset. Varying d , |O | =
12, 749, h = 0.55.
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Figure 6: Comparison of Baseline, FilterThenVerify and
FilterThenVerifyApprox on the publication dataset. Varying d , |O |
= 17, 598, h = 0.55.

Dataset |O |
h = 0.70 h = 0.65 h = 0.60 h = 0.55

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Movie 12, 749 100 95.43 97.67 100 93.93 96.87 99.99 93.28 96.52 99.99 90.46 94.99
Publication 17, 598 100 96.59 98.27 100 95.85 97.88 100 95.54 97.72 100 95.13 97.51

Table 7: The precision, recall and F-measure (in percentage) of FilterThenVerifyApprox. Varying h, d=4.

Fig.3a shows, for each of the three methods on the movie
dataset, how its cumulative execution time (by milliseconds, in
logarithmic scale) increases while the objects (i.e., movies) are
sequentially processed. Fig.4a depicts similar behaviours of these
methods on the publication dataset. Fig.3b and Fig.4b, for the two
datasets separately, further present the amount of work done by
these methods, in terms of number of pairwise object comparisons
(in logarithmic scale) for maintaining Pareto frontiers. The fig-
ures show that FilterThenVerify and FilterThenVerifyApprox beat
Baseline by 1 to 2 orders of magnitude. The reason is as follows.
With regard to a user c, Baseline considers all objects as candidate
Pareto-optimal objects and compares all pairs. On the contrary,
FilterThenVerify eliminates an object o if the corresponding com-
mon preference tuples disqualify o. FilterThenVerifyApprox incurs
even less comparisons by benefiting from shared computations
for clusters of users.

Fig.5a (Fig.6a) shows that the execution time of all these meth-
ods increased super-linearly by number of attributes (d). Fig.5b
(Fig.6b) further reveals that the number of object comparisons also
increases similarly. This is not surprising because more attributes
result in larger Pareto frontiers, which makes it necessary for
objects to be compared with more existing Pareto-optimal objects.

Table 7 reports the precision, recall and F-measure of Fil-
terThenVerifyApprox on varying h. We can observe that, when
h got smaller, the recall slowly decreased. This is expected be-
cause smaller h results in larger clusters and potentially more
approximate common preference tuples for each cluster. Those
approximate common preference tuples cause false negatives—
the domination and elimination of objects that are instead in the
Pareto frontier under the true common preference tuples, which
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Figure 7: Effect of window size. VaryingW , |O | = 1M, h = 0.55, d =
4.

are a subset of the approximate common preference tuples. What
can be more surprising is the almost perfect precision under the
various h values in Table 7, i.e., almost no false positives were
introduced into the results. For a user c, an object o becomes a
false positive if every single Pareto optimal object that dominates o
becomes a false negative. As long as one of its dominating objects
is not mistakenly filtered out, o will not be mistakenly introduced
into the Pareto frontier. Therefore, an object is much less likely to
become a false positive than a false negative. Overall, under the h
values in Table 7, both precision and recall remain high. This may
suggest that the thresholds θ1 and θ2 (Sec. 6.1) effectively ensure
that the approximate common preference relation only includes
frequent preference tuples and does not overgrow in size.

8.3 BaselineSW, FilterThenVerifySW, and
FilterThenVerifyApproxSW

We further compare the performance of FilterThenVerifySW and
FilterThenVerifyApproxSW with BaselineSW. In this regard, we
simulated two data streams—movie and publication where O is



Data stream W h = 0.70 h = 0.65 h = 0.60 h = 0.55
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Movie

400 100 89.36 94.38 100 87.33 93.24 100 85.94 92.44 100 81.95 90.08
800 100 87.87 93.54 100 85.78 92.34 100 84.04 91.33 100 80.10 88.95
1600 100 88.65 93.98 100 86.58 92.81 100 85.01 91.90 100 81.10 89.56
3200 99.99 94.80 97.33 100 93.08 96.41 100 92.29 95.99 100 88.99 94.17

Publication

400 100 94.58 97.21 100 93.57 96.68 100 92.98 96.36 100 92.06 95.87
800 100 94.79 97.32 100 93.60 96.70 100 93.01 96.38 100 91.98 95.82
1600 100 94.62 97.24 100 93.44 96.61 100 92.85 96.29 100 91.81 95.73
3200 100 96.71 98.33 100 95.98 97.95 100 95.67 97.79 100 95.27 97.58

Table 8: The precision, recall and F-measure (in percentage) of FilterThenVerifyApproxSW. VaryingW and h, |O |=1M, d=4.

composed of duplicated sequence of the corresponding dataset
such that |O|=1 million. Following [21], we experimented with
windows of size 400, 800, 1,600, and 3,200. Fig.7a shows the cumu-
lative execution times (by milliseconds, in logarithmic scale) of the
aforementioned methods on the movie stream. Fig.7a reveals that
the cumulative execution times increase super-linearly byW as
wider window broadens the size of Pareo frontiers. These figures
illustrate that both FilterThenVerifySW and FilterThenVerifyAp-
proxSW outperformed BaselineSW by 1 to 2 orders of magnitude,
which concurs with the comparative behaviours of FilterThen-
Verify, FilterThenVerifyApprox and Baseline. This concurrence is
also applicable for the publication stream (Fig.7b). The reason
behind the comparative behaviour of Baseline, FilterThenVerify and
FilterThenVerifyApprox is also applicable in this case. Moreover,
BaselineSW maintains exclusive Pareto buffer for each user (PBc )
while FilterThenVerifySW shares a Pareto buffer across users in a
cluster (PBU ). Therefore, in sliding window protocol, the filter-
then-verify approach attains the benefit of clustering in a greater
extent.

Table 8 demonstrates the precision, recall and F-measure of
FilterThenVerifyApproxSW on varyingW and h. We can observe
that the recall declines slowly by h. Yet h does not have significant
impact on the efficacy of FilterThenVerifyApproxSW. Besides,
the loss of accuracy is due to false negatives rather than false
positives. These behaviors concur with FilterThenVerifyApprox
and the reasons behind are same as before. In addition, Table 8
reveals that W does not have noticeable impact on efficacy and
FilterThenVerifyApprox remains effective on varyingW .

9 CONCLUSION
We studied the problem of continuous object dissemination, which
is formalized as finding the users who approve a new object in
Pareto-optimality. We designed algorithm for efficient finding of
target users based on sharing computation across similar prefer-
ences. To recognize users of similar preferences, we studied the
novel problem of clustering users where each user’s preferences
are described as strict partial orders. We also presented an ap-
proximate solution of the problem of finding target users, further
improving efficiency with tolerable loss of accuracy. Experimen-
tal evaluation validated the efficiency and effectiveness of our
proposed solutions.
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