
Supporting Ad-Hoc Ranking Aggregates

Chengkai Li (UIUC)

joint work with

Kevin Chang (UIUC) Ihab Ilyas (Waterloo)

2

Ranking (Top-k) Queries

Find the top k answers with respect to a ranking function,
which often is the aggregation of multiple criteria.

Ranking is important in many database applications:

◼ E-Commerce

Find the best hotel deals by price, distance, etc.

◼ Multimedia Databases

Find the most similar images by color, shape, texture, etc.

◼ Search Engine

Find the most relevant records/documents/pages.

◼ OLAP, Decision Support

Find the top profitable customers to send ads.

3

RankSQL: a RDBMS with Efficient Support of
Ranking Queries
◼ Rank-Aware Query Operators [SIGMOD02, VLDB03]

◼ Algebraic Foundation and Optimization Framework

[SIGMOD04, SIGMOD05]

SPJ queries (SELECT … FROM … WHERE … ORDER BY …)

◼ Ad-Hoc Ranking Aggregate Queries [SIGMOD06]

top k groups instead of tuples.

(SELECT … FROM … WHERE … GROUP BY … ORDER BY …)

4

Example 1: Advertising an insurance product

◼ What are the top 5 areas to advertise a new

insurance product?

SELECT zipcode,

AVG(income*w1+age*w2+credit*w3) as score

FROM customer

WHERE occupation=‘student’

GROUP BY zipcode

ORDER BY score

LIMIT 5

5

Example 2: Finding the most profitable
combinations

◼ What are the 5 most profitable pairs of (product
category, sales area)?

SELECT P.cateogy, S.zipcode,

MID_SUM(S.price - P.manufact_price)

as score

FROM products P, sales S

WHERE P.p_key=S.p_key

GROUP BY P.category, S.zipcode

ORDER BY score

LIMIT 5

6

Ad-Hoc Ranking

Ranking Condition : F=G(T)

e.g. AVG (income*w1+age*w2+credit*w3)

MID_SUM (S.price - P.manufact_price)

◼ G: group-aggregate function

❑ Standard (e.g., sum, avg)

❑ User-defined (e.g., mid_sum)

◼ T: tuple-aggregate function

❑ arbitrary expression

❑ e.g., AVG (income*w1+age*w2+credit*w3),

w1, w2, w3 can be any values.

7

Why “Ad-Hoc”?

DSS applications are exploratory and interactive:

◼ Decision makers try out various ranking criteria

◼ Results of a query as the basis for further

queries

◼ It requires efficient techniques for fast response

8

Existing Techniques

◼ Data Cube / Materialized Views:

pre-computation

❑ The views may not be built for the G:

e.g., mid_sum cannot be derived from sum, avg, etc.

❑ The views may not be built for the T:

e.g., a+b does not help in doing a*b, and vice versa.

◼ Materialize-Group-Sort:

from the scratch

9

Materialize-Group-Sort Approach

Select zipcode, AVG(income

*w1+age*w2+credit*w3)

as score

From Customer

Where

occupation=‘student’

Group By zipcode

Order By score

Limit 5

B

5 results

sorting

R

grouping

G

Boolean

10

Problems of Materialize-Group-Sort

group

sort

(a) Traditional query plan.

all tuples

(materialized)

all groups

(materialized)

◼ Overkill:

Total order of all groups,

although only top 5 are

requested.

◼ Inefficient:

Full materialization (scan, join,

grouping, sorting).

Boolean operators

11

Can We Do Better?

group

sort

(a) Traditional query plan.

all tuples

(materialized)

all groups

(materialized)

Without any further info, full
materialization is all that we
can do.

◼ Can we do better:

❑ What info do we need?

❑ How to use the info?

Boolean operators

12

RankAgg vs. Materialize-Group-Sort

agg

tuple x1
tuple x2

(b) New query plan.

group g1

group g2
(incremental)

(incremental)

rank- & group-aware

operators

Goal: minimize the number of tuples processed.

(Partial vs. full materialization)

group

sort

(a) Traditional query plan.

all tuples

(materialized)

all groups

(materialized)

Boolean operators

13

Orders of Magnitude Performance Improvement

14

The Principles of RankAgg
◼ Can we do better? Upper-Bound Principle: best-possible goal

There is a certain minimal number of tuples to retrieve before we can stop.

◼ What info do we need? Upper-Bound Principle: must-have info

A non-trivial upper-bound is a must. (e.g., +infinity will not save anything.)

Upper-bound of a group indicates the best a group can achieve, thus tells

us if it is going to make top-k or not.

◼ How to use the info?

❑ Group-Ranking Principle: Process the most promising group first.

❑ Tuple-Ranking Principle: Retrieve tuples in a group in the order of T.

◼ Together: Optimal Aggregate Processing
minimal number of tuples processed.

15

Running Example

Select g, SUM(v)

From R

Group By g

Order By SUM(v)

Limit 1

TID R.g R.v

r1 1 .7

r2 2 .3

r3 3 .9

r4 2 .4

r5 1 .9

r6 3 .7

r7 1 .6

r8 2 .25

16

Must-Have Information

Assumptions for getting a non-trivial upper-bound:

◼ We focus on a (large) class of max-bounded function:

F[g] can be obtained by applying G over the maximal T of

g’s members.

◼ We have the size of each group. (Will get back to this.)

◼ We can obtain the maximal value of T. (In the example,

v <= 1.)

17

Example: Group-Ranking Principle

TID R.g R.v

r1 1 .7

r5 1 .9

r7 1 .6

TID R.g R.v

r3 3 .9

r6 3 .7

agg

group-aware
scan

R

TID R.g R.v

r2 2 .3

r4 2 .4

r8 2 .25

Process the most promising group first.

18

Example: Group-Ranking Principle

group-aware
scan

action

initial 3.0 3.0 2.0

 1gF 2gF 3gF

R

TID R.g R.v

r1 1 .7

r5 1 .9

r7 1 .6

TID R.g R.v

r3 3 .9

r6 3 .7

TID R.g R.v

r2 2 .3

r4 2 .4

r8 2 .25

Process the most promising group first.

agg

19

Example: Group-Ranking Principle

group-aware
scan

action

initial 3.0 3.0 2.0

(r1, 1, .7) 2.7 3.0 2.0

 1gF 2gF 3gF

R

TID R.g R.v

r5 1 .9

r7 1 .6

TID R.g R.v

r3 3 .9

r6 3 .7

TID R.g R.v

r2 2 .3

r4 2 .4

r8 2 .25

Process the most promising group first.

agg

20

Example: Group-Ranking Principle

group-aware
scan

action

initial 3.0 3.0 2.0

(r1, 1, .7) 2.7 3.0 2.0

(r2, 2, .3) 2.7 2.3 2.0

 1gF 2gF 3gF

R

TID R.g R.v

r5 1 .9

r7 1 .6

TID R.g R.v

r3 3 .9

r6 3 .7

TID R.g R.v

r4 2 .4

r8 2 .25

Process the most promising group first.

agg

21

Example: Group-Ranking Principle

group-aware
scan

action

initial 3.0 3.0 2.0

(r1, 1, .7) 2.7 3.0 2.0

(r2, 2, .3) 2.7 2.3 2.0

(r5, 1, .9) 2.6 2.3 2.0

 1gF 2gF 3gF

R

TID R.g R.v

r7 1 .6

TID R.g R.v

r3 3 .9

r6 3 .7

TID R.g R.v

r4 2 .4

r8 2 .25

Process the most promising group first.

agg

22

Example: Group-Ranking Principle

group-aware
scan

action

initial 3.0 3.0 2.0

(r1, 1, .7) 2.7 3.0 2.0

(r2, 2, .3) 2.7 2.3 2.0

(r5, 1, .9) 2.6 2.3 2.0

(r7, 1, .6) 2.2 2.3 2.0

 1gF 2gF 3gF

R

TID R.g R.v TID R.g R.v

r3 3 .9

r6 3 .7

TID R.g R.v

r4 2 .4

r8 2 .25

Process the most promising group first.

agg

23

Example: Group-Ranking Principle

group-aware
scan

action

initial 3.0 3.0 2.0

(r1, 1, .7) 2.7 3.0 2.0

(r2, 2, .3) 2.7 2.3 2.0

(r5, 1, .9) 2.6 2.3 2.0

(r7, 1, .6) 2.2 2.3 2.0

(r4, 2, .4) 2.2 1.7 2.0

 1gF 2gF 3gF

R TID R.g R.v TID R.g R.v

r3 3 .9

r6 3 .7

TID R.g R.v

r8 2 .25

Process the most promising group first.

agg

24

Example: Tuple-Ranking Principle

TID R.g R.v

r2 2 .3

r4 2 .4

r8 2 .25

TID R.g R.v

r4 2 .4

r2 2 .3

r8 2 .25

group &

rank-aware
scan

R

in the order of R.vnot in the order of R.v

Retrieve tuples within a group in the order of

tuple-aggregate function T.

agg

25

Example: Tuple-Ranking Principle

TID R.g R.v

r2 2 .3

r4 2 .4

r8 2 .25

TID R.g R.v

r4 2 .4

r2 2 .3

r8 2 .25

group &

rank-aware
scan

R

in the order of R.vnot in the order of R.v

Retrieve tuples within a group in the order of

tuple-aggregate function T.

action

initial 3.0

 2gF action

initial 3.0

 2gF

agg

26

Example: Tuple-Ranking Principle

TID R.g R.v

r4 2 .4

r8 2 .25

TID R.g R.v

r2 2 .3

r8 2 .25

group &

rank-aware
scan

R

in the order of R.vnot in the order of R.v

Retrieve tuples within a group in the order of

tuple-aggregate function T.

action

initial 3.0

(r2, 2, .3) 2.3

 2gF action

initial 3.0

(r4, 2, .4) 1.2

 2gF

agg

27

Example: Tuple-Ranking Principle

TID R.g R.v

r8 2 .25

TID R.g R.v

r8 2 .25

group &

rank-aware
scan

R

in the order of R.vnot in the order of R.v

Retrieve tuples within a group in the order of

tuple-aggregate function T.

action

initial 3.0

(r2, 2, .3) 2.3

(r4, 2, .4) 1.7

 2gF action

initial 3.0

(r4, 2, .4) 1.2

(r2, 2, .3) 1.0

 2gF

agg

28

Implementing the Principles: Obtaining Group Size

◼ Sizes ready:

Though G(T) is ad-hoc, the Boolean conditions are
shared in sessions of decision making.

◼ Sizes from materialized information:

Similar queries computed.

◼ Sizes from scratch:

Pay as much as materialize-group-sort for the 1st

query; amortized by the future similar queries.

29

Implementing the Principles: Group-Aware Plans

◼ Current iterator

GetNext()

operator

◼ New iterator

GetNext(g)

operator
scan

scan

agg

GetNext(g)

GetNext(g’’)GetNext(g’)

GetNext(g’)

30

Conclusions

◼ Ranking Aggregate Queries

❑ Top-k groups

❑ Ad-Hoc ranking conditions

◼ RankAgg

❑ Principles

Upper-Bound, Group-Ranking, and Tuple-Ranking

❑ Optimal Aggregate Processing

Minimal number of tuples processed

❑ Significant performance gains, compared with
materialize-group-sort.

