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Too Many Previews. Which One to Choose?
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Key attributes Non-key attributes
FILM ACTOR Award Winners
Will Smith Saturn Award

FILM Director Genres
Men in Black Barry Sonnenfeld | {Action Film, Science Fiction}
Men in Black I | Barry Sonnenfeld | {Action Film, Science Fiction}
I, Robot _ Action Film

Optimal Preview Discovery

Find the preview with highest
score that satisfies

Size constraint
Number of key attributes K
Number of non-key attributes N

1

dist(Ti, Tj) < d

Distance between two preview

tablesd dist(Ti, Tj) > d
FILM |Performances| Genres | Directed By
FILM DIRECTOR | Films Directed
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Aggregate Scoring

Algorithms

Concise preview, dynamic programming algorithm

We assume all K key attributes are ordered arbitrarily.
optimal concise preview (k, n, X) is the best of:

—

attributes

" optimal concise preview (k, n, X-1)
optimal concise preview (k-1, n-1, X-1) U X-th Key-attribute with 1 non-key attribute
optimal concise preview (k-1, n-2, X-1) U X-th Key-attribute with 2 non-key attributes

optimal concise preview (k-1, k-1, X-1) U X-th Key-attribute with (n-k+1) non-key

Tight/Diverse preview, Apriori property algorithm

1. Construct 2-cliques by
enumerating all key attribute
pairs

2.fori=3tok

generate i-cliques from (i-1)-
cliques based on Apriori
property

NP-hard

Clique(G,k)

FILM | Actor | Genres
s | 6 5 AX (O+3) =44 4
FILM ACTOR | Actor | Award Winners — 60
2 6 2 2 X (6+2) =16

Schema graph of “Film” domain
in Freebase

Entity graph:
2M entities, 18 M edges
Schema graph:
63 entity types ,136 edges

Attribute Scoring

Coverage-basedmethod:
Coverage(FILM)=3

Random walk-based method:

Stationary distribution of a random wall
process defined over the schema grapt

Coverage-basedmethod:
Coverage(Genres)=5

Entropy-based method:

Entropy(Genres) = (2/3)

log(3/2)+(1/3) log(3/1)= 0.28
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User Study

Domain : Film

Key Attributes

Film crew gig
Crewmember(Film
crewmember)

Film crew role(Film job)
Film(Film)

Film distribution medium
Film distributor

Film editor

Film featured song

Film festival

Film festival event

Film festival focus

Film cut

Portrayed in films(Film
performance)

Portrayed in films (dubbed)
(Dubbing performance) x

Film(Film)

Key attr:5/6

Non-Key Attributes

%X Festival(Film festival)

festival)

x Festivals with this focus(Film Crewmember(Film

crewmember) x

1. Based on this schema

Agree

Disagree

summary, | know the dataset contains ent

Not sure

ities that are

"film producer".

Film View in a new Tab
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| [Runtimg

Film Films crewed

Domains:
film, books, music, TV, people

Schema graph
Concise preview
Tight preview
Diverse preview
Freebase ground
YPS09

Hand-crafted preview tables
10 PhD students in Database

research group
Individually and as a group
$20 gift card

truth

Hand-crafted preview tables

84 Master’s and PhD students in
database area
§15 gift card

Existence/experience questions
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Key attribute scoring (precision-at-k)

Domain YPS09 Coverage | Random Walk Coverage Entropy books 0.8 0.786
books 0.4 0.55 0.43 0.43 0.43 film 0.2 0.25
film -0.01 0.48 0.25 0.35 0.35 music 0.528 0.589
: TV 0.622 0.379
music 0.37 0.33 0.46 0.42 0.41
people 0.708 0.606
TV 0.37 0.69 0.65 0.47 0.47
people 0.36 0.31 0.29 0.43 0.43 Mean Reciprocal Rank (MRR) of Non-key attributes

Comparison between rankings by our approach and the crowd ,
Pearson Correlation Coefficient (PCC)

Questions most favorable —r——r —) Least favorable
How easywas itto read the Freebase Diverse Graph Experts YPS09 Concise Tight
schema summary?
How much understanding of . . .
T oy ey > Graph Freebase YPS09 Diverse | Concise Tight Experts
AT WIS 8 I il Graph Freebase YPS09 Diverse | Experts | Concise Tight
you to understand the data? P P g
!S 't m|55|.ng 'mportant YPS09 Concise Experts Graph Tight Freebase | Diverse
information?

Systems sorted by average user experience scores across five domains
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