On "One-of-the-few" Objects

You Wu, Pankaj K. Agarwal, Jun Yang Duke University
Chengkai Li University of Texas, Arlington
Cong Yu Google, Inc.

"One of the Few" Claims

Sports: Karl Malone is ONE OF THE ONLY TWO players in NBA history with 25,000 points, 12,000 rebounds, and 5,000 assists in one's career Politics: He is ONE OF THE ONLY THREE candidates who have raised more than 25% from PAC contributions and 25\% from self-financing

- Do these claims really hold water?
- How do we find truly interesting claims or individuals?

Applications

- Computational journalism: use computing to help
- Increase effectiveness and reduce cost
- Improve understanding and broaden participation
- Guard against "lies, damned lies, and statistics"
- Usability is key!
- We target "one of the few" claims in this paper
- Domains include
- Sports; election campaign finance; government, education, and business performance indexes
- Or in general, wherever objects are compared across

Key Challenges

- General claim: fewer than k objects dominate X in subspace of attributes $S \subseteq\left\{A_{1}, A_{2}, \ldots, A_{d}\right\}$

He is ONE OF THE ONLY TWO players with 25,000 points, 12,000 rebounds, and 5,000 assists

Point p dominates q if p is no worse than q in all attributes, and strictly better in at least one of them

Key Challenges

- General claim: fewer than k objects dominate X in subspace of attributes $S \subseteq\left\{A_{1}, A_{2}, \ldots, A_{d}\right\}$
- Is it interesting?
- Small $k \neq$ interesting
- Finding interesting claims/individuals
- Where to look for? - All subspaces
- Who determines k ? - Not the users!
- How to find interesting claims? - Brute force is too slow

Roadmap

- Introduction
- Identifying Interesting Claims
- "Uniqueness" of Claims
- Top- τ Skyband Problem
- Algorithms
- Ranking Objects
- Conclusion and Future Work

Data Model and Preliminaries

- Objects are points in d-dimensional space
- k-skyband [Papadias et al. 2005] in S is the set of points each dominated by fewer than k other points in S

- 1-skyband is also known as "skyline"
- Different from skyline layer by layer
- X is one of \boldsymbol{k} in S means $X \in \boldsymbol{k}$ skyband in S
- Recall general form: fewer than k objects dominate X in subspace S

Small $k \neq$ Interesting

- E.g., X is dominated in S by no others
- 3 on the right, or as many as you'd like

- An interesting claim should be sufficiently unique -it cannot be made for many other objects
- Size of the k-skyband measures uniqueness of one-of- k claims; k itself does not

Finding Unique Claims: Challenges

- Existing skyband algorithms require user to pick k
- But to ensure uniqueness, choice of k depends on subspace dimensionality
- E.g. 2-skyand in \{rebounds\} vs. in \{rebounds, assists\}

Finding Unique Claims: Challenges

- To ensure uniqueness, choice of k also depends on data distribution
- Anti-correlated attribute values make skybands bigger

Finding Unique Claims: Solution

- Using same k for all subspaces doesn't work
- Making user pick k for each subspace is infeasible
- Our solution: top- τ skyband
- User specifies a single parameter $\boldsymbol{\tau}$ to cap \# skyband objects
- For each subspace S, find its top- τ skyband, i.e., the largest k-skyband containing no more than τ objects
- E.g., in \{points, rebounds\}:
- $\tau=2 \rightarrow$ 1-skyband (size 2)

- $\tau=6 \rightarrow 2$-skyband (size 5; 3-skyband would be too big)

Advantages of Top- τ Formulation

- Easy to use and interpret
- A single τ to pick $\rightarrow k$ automatically adapts based on subspace dimensionality and data distribution
- E.g., 10 2-d points; let $\tau=3$

- Automatically detects subspaces with no "unique" claims
- Each claim found comes with the guarantee that the same cannot be said for more than τ objects

Computing Top- τ Skybands

- Computing top- τ skyband in an individual subspace
- Progressive: grow the skyband tier by tier until it is too big; the next tier is always contained in the skyline of non-skyband objects
- OnePass: bound the size of "working set" by τ by processing objects in a particular order to avoid full exploration of a tier that is too large
- Computing top- τ skybands in all subspaces
- Bottom-up (subspace) lattice traversal [Pei et al. 2006]
- sharing computation, new pruning techniques

Performance on NBA career total data

Roadmap

- Introduction
- Identifying Interesting Claims
- Ranking Objects
- Existing Solutions
- Adjustable Positional Score with Ties
- Conclusion and Future Work

Ranking Objects

- Sometimes we are more interested in investigating objects that show up in claims than individual claims per se
- Need to rank objects by their "interestingness"
- Grouping claims by the objects they mention also helps user navigate through numerous claims

Existing Methods: Valued-Based

Weighted Sum

- User specifies a weight vector (one weight for each attribute)
- I.e., a direction in the d-dim space
- Objects are ranked based on the weighted sum of their attribute values

- I.e., their projections onto the weight vector
- Difficult to use: too many knobs $(d-1)$ to set and tune

Existing Methods: Rank-Based

Kemeny Optimal Aggregation [Dwork et al. 2001]

- Given a number of input rankings of all objects, find a ranking that minimizes the total number of pairwise disagreements with the input rankings
- Natural to use d input rankings, one for each attribute
- NP-hard to compute
- Inflexible to use: no knob at all
- Some tuning is often needed; e.g., which of the following players would you prefer?
- John Stockton (specialized):
$404^{\text {th }} / 1622^{\text {nd }} / 2^{\text {nd }}$ in points/rebounds/assists
- Larry Bird (well-rounded):
$17^{\text {th }} / 60^{\text {th }} / 44^{\text {th }}$ in points/rebounds/assists

Our Approach

- Extend the uniqueness-based interestingness measure of claims to objects
- Score an object in each subspace S by the uniqueness of the one-of-few claim involving this object in S
- Sum up object scores across all subspaces
- Rank objects by their aggregate scores
- Provide one (and only one) knob to tune preference towards specialized vs. well-rounded objects
- This knob is a parameter (α) in the per-subspace object scoring function

APST- α

All-Subspace Positional Score with Ties

- In each subspace, order \& score objects by skyband tiers
- Score drops exponentially: position i gets $\alpha^{i-1}(0<\alpha<1)$
- Objects in the same skyband tier (i.e., ties) divide up the total score for the tier equally
- For each object, ${ }^{\star}$ sum up its scores across all subspaces

Scoring Example

- In subspace \{points, rebounds\}
- Chamberlain and Jordan each scores $\left(2^{0}+2^{-1}\right) / 2$
- Baylor, James, and Pettit each scores $\left(2^{-2}+2^{-3}+2^{-4}\right) / 3$

Rank	Score	Object
1	2^{0}	Chamberlain
2	2^{-1}	Jordan
3	2^{-2}	Baylor
4	2^{-3}	James
5	2^{-4}	Pettit
6	2^{-5}	Abdul-Jabbar
7	2^{-6}	Robertson
8	2^{-7}	Bird
9	2^{-8}	Johnson
10	2^{-9}	Stockton

* Scores for Chamberlain
$+2^{-1}$ in \{points\},
$+2^{0}$ in \{rebounds\},
$+\left(2^{0}+2^{-1}\right) / 2$ in \{points, rebounds\},
$+.5+1+1.5 / 2=2.25$ in total.

Rank of NBA players by APST- α

Quality of Ranking

\triangle APST-. 5 *weighted-sum \forall Kemeny-d

Roadmap

- Introduction
- Identifying Interesting Claims
- Ranking Objects
- Conclusions and Future Work

Main Contributions

- An intuitive, uniqueness-based measure of interestingness for one-of-the-few claims
- Finding interesting one-of-the-few claims from high-dimensional data
- User-friendly problem formulation with one parameter (τ) that works for all subspaces and data distributions
- Efficient algorithms
- A method for ranking high-dimensional objects
- Natural: builds on the notion of claim uniqueness
- User-friendly: a single knob (α) for effectively tuning preferences

Future Work

- Other criteria of interestingness
- How many objects are begin considered?
- E.g., all NBA players vs. point guards since 2000
- How sensitive is the claim to perturbation in its parameters?
- Other types of statements
- Computational journalism project aimed at automating fact-checking and fact-finding

Thank You!

Questions?

Mining Interesting Statements

- Subgroup discovery
- A person who smokes and has family history has a high chance of having coronary heart disease. [Atzmueller, 2005]
- Redescription mining
- Russia and China are the only two countries which "have land area $>3,000,000$ square miles outside of the America" or "are Permanent members of the UN security council who have a history of communism" [Parida et al., 2005]
- Prominent streak discovery
- "LeBron James scored 35 points in nine consecutive games and joined Michael Jordan and Kobe Bryant as the only players since 1970 to accomplish the feat" [Jiang et al., 2011]

Computing top- τ skyband

- Flow charts for the two algorithms
- Progressive
- OnePass

Skyline Layers vs. Skyband

 tiers

Color by skyband tiers

Color by skyline layers

APST- α Scoring Example

- $\alpha=0.5$
- E.g. score for p_{1}

- $s_{p_{1},\{A\}}=\left(0.5^{2}+0.5^{3}\right) / 2$
- $s_{p_{1},\{B\}}=1$
- $s_{p_{1},\{A, B\}}=\left(1+0.5+0.5^{2}\right) / 3$
- Total score Score $p_{p_{1}}=\sum_{S \subseteq\{A, B\}, S \neq \emptyset} S_{p_{1}, S}$

Subspace	1	0.5	0.5^{2}	0.5^{3}	0.5^{4}
$\{A\}$	p_{5}	p_{3}	$\star p_{1}, p_{4}$		
$\{B\}$	$\star p_{1}$	p_{2}, p_{3}		p_{4}	p_{5}
$\{A, B\}$	$\star p_{1}, p_{3}, p_{5}$			p_{2}, p_{4}	

Algorithms (for one subspace)

- Progressive
- In each iteration
- Compute the skyline of non-top- τ skyband
- Select objects from the skyline and add to top- τ skyband
- Worse case running time $O\left(n^{2}\right)$
- OnePass
- Examine objects in a "safe order"
- Test dominance with current top- τ skyband
- Worse case running time $O(n \tau)$

Progressive example ($\tau=8$)

- Iteration 0:
- Top- τ skyband = \varnothing
- Iteration 1:
- Skyline of the rest = \{Johnson, Robertson, Bird, Chamberlain\}
- Top- τ skyband = \{Johnson, Robertson, Bird, Chamberlain\} (4 players)
- Iteration 2:
- Skyline of the rest = \{Stockton, James, Baylor, Pettit $\}$
- Top- τ skyband = \{Johnson, Robertson, Bird, Chamberlain; Stockton, Baylor, Pettit\} (7 players)
- Iteration 3:
- Skyline of the rest = \{James, Abdul-Jabbar\}
- Top- τ skyband = \{Johnson, Robertson, Bird, Chamberlain; Stockton, Baylor, Pettit; James, AbdulJabbar\} (9 players)
- Excessing $\tau=8$, return Top- τ skyband at the end of previous iteration (iter. 2)

OnePass example ($\tau=8$)

- Examine points in order: Johnson, Stockton, Robertson, James, Bird, Jordan, Chamberlain, Baylor, Abdul-Jabbar, Pettit

Player	\# dom.	Player	\# dom.
		Johnson	0
Johnson	0		
		Stockton	1
Player	\# dom.	Robertson	0
Johnson	0	James	2
Stockton	1		\# dom.
		Player	
Player	\# dom.	Johnson	0
Johnson	0	Stockton	1
Stockton	1	Robertson	0
Robertson	0	James	2
		Bird	0

Lattice Traversal

- Going from low dimension to high dimension...
- Skyline points of $\{A\}$ also go in to skyline of $\{A, B\}$ (with distinct value condition)
- If skyline of $\{A\}$ has more than τ distinct points, any subspace containing A must have empty top- τ skyband
- If the union of skylines from subspaces $\{A\}$ and $\{B\}$ contains more than τ distinct points, top- τ skyband of subspace $\{A, B\}$ is empty

Special case for kemeny

- Sort on A
- rBBBBBpqqRRRRR
- Sort on B
- qRRRRRprBBBBB
- Kemeny cannot rank p properly

A

Computing APST scores

- Computing exact scores take $O\left(n^{2}\right)$ time for each subspace
- Given any error $\epsilon>0$, computes the score of each object such that $\hat{\Gamma}(o) \in(\Gamma(o)-\epsilon, \Gamma(\mathrm{o})]$.
- Approximated using Progressive or OnePass
- Intuition: in a subspace, if the score of each object in the next tier of skyband is small enough, there's no need to compute any successive layers

Performance (NBA)

Performance (Independent)

