
Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Dynamic Symbolic
Database Application Testing

Chengkai Li, Christoph Csallner

University of Texas at Arlington

June 7, 2010

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 1/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Motivation

Maximizing code coverage is an important goal in testing.

Database applications: input can be user-supplied queries.

Query results will be used as program values in program logic.

Different queries thus result in different execution paths.

To maximize code coverage: we need to enumerate queries in
an effective way.

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 2/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Our Method

Generate queries dynamically by inverting branching conditions in
existing program execution paths.

1 Monitor the program’s execution paths by dynamic symbolic
execution (e.g., Dart, Pex).

2 Invert a branching condition on some covered path→ a new test
query.

3 Execute the query, bring in new tuples.
4 The new tuples will cover new paths.
5 Do 1-4 iteratively.

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 3/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Illustration of the Idea
After the initial query
q1=c1 ∧ c2

Execution tree (maintained by dynamic symbolic engine):
each path to a leaf node represents an execution path, encountered
for tuples satisfying the branching conditions on the path.

true

c1

c2

c3

c4

c5 !c5

!c4

(q1)

if (z > 0) { // c1
if (z < 100) // c2

// ..
}

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 4/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Illustration of the Idea

After the initial query, the candidate queries

Each dashed edge represents an inversed branching condition, thus
a candidate query.

true

c1

c2

c3

c4

c5 !c5

!c4

!c3

!c2

!c1

(q1)

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 5/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Illustration of the Idea

The second test query

q2=!c1

true

c1

c2

c3

c4

c5 !c5

!c4

!c3

!c2

!c1

(q1)

(q2)

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 6/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Illustration of the Idea

After the second test query

q2=!c1

candidate queries are again dashed.

true

c1

c2

c3

c4

c5 !c5

!c4

!c3

!c2

!c1

c6

c7 !c7

c11 !c11

c12 !c12

!c6(q1)

(q2)

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 7/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Illustration of the Idea

The third test query

q3=!c1 ∧ c6 ∧ c7

true

c1

c2

c3

c4

c5 !c5

!c4

!c3

!c2

!c1

c6

c7 !c7

c11 !c11

c12 !c12

!c6(q1)

(q2)

(q3)

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 8/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Illustration of the Idea

After the third test query

q3=!c1 ∧ c6 ∧ c7

true

c1

c2

c3

c4

c5 !c5

!c4

!c3

!c2

!c1

c6

c7

c8

c9 !c9

!c8

c10 !c10

!c7

c11 !c11

c12 !c12

!c6(q1)

(q2)

(q3)

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 9/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Illustration of the Idea

The fourth test query

q4=!c1 ∧ c6∧!c7∧!c11∧!c12

true

c1

c2

c3

c4

c5 !c5

!c4

!c3

!c2

!c1

c6

c7

c8

c9 !c9

!c8

c10 !c10

!c7

c11 !c11

c12 !c12

!c6(q1)

(q2)

(q3)

(q4)

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 10/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Illustration of the Idea

After the fourth test query

q4=!c1 ∧ c6∧!c7∧!c11∧!c12

true

c1

c2

c3

c4

c5 !c5

!c4

!c3

!c2

!c1

c6

c7

c8

c9 !c9

!c8

c10 !c10

!c7

c11 !c11

c12 !c12

!c6(q1)

(q2)

(q3)

(q4)

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 11/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Advantages of the Proposed Method

Real data, no mock database (which can be hard to generate).

No need to worry about if the mock database is representative.

Given large space of possible program paths, we only test those
that can be encountered for real data.

This is especially useful for applications that only read existing
data.

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 12/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Alternative Method 1: Brute force

Test for every tuple in database.

Too costly
Limited resources in testing.
Many tuples result in the same execution path. Thus efforts wasted.

May not be possible to get all the tuples
Security constraint.
Query capability constraint. (e.g., deep-Web databases)

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 13/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Alternative Method 2: Sample the existing database

Do sampling first, then test for every tuple in the sample.

A presentative database sample may not trigger a set of program
execution paths that is representative of the paths encountered
in production use.

E.g., a column with 1 million distinct values; several particular
values will trigger some paths.

Ours can be viewed as a sampling technique that is aware of the
program structure.

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 14/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Alternative Method 3: Generate custom mock
databases

Generate a mock database such that its data will expose a bug in the
program

Will expose potential program bugs.

But users may not care about them.

Because many “bugs” will never occur in practice.

Because the mock database generator typically cannot generate
fully realistic databases.

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 15/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Alternative Method 4: Static Analysis

Static program analysis is typically:

(+) Fast
(-) Imprecise: misses bugs and gives false alarms

Our approach: Test = execute the program (dynamic analysis)

(+) Fully precise: no false alarms
(-) Resource-hungry, will still miss bugs

Our (dynamic) analysis reasons about program + existing database
contents. We are not aware of any static analysis that does that.

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 16/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Assumptions/Limitations

Queries

single-relation conjunctive selection query.

Each conjunct is a⊙ v , where a is an attribute, v is a constant
value, and ⊙ can be <, ≤, >, ≥, =, or ∕=.

no grouping, aggregation, join, insertion, deletion, updates.

Programs

follow tuple-wise semantics.

if a branching condition depends on a database tuple, the
condition can be rewritten to the same form of the query
conjuncts: a⊙ v .

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 17/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Iterative Testing Method

1: q ← define an initial test query; Q ← {q}
2: repeat
3: T ← run q and get the first nq result tuples
4: for each tuple t in T do
5: run the program over t and update the execution tree treeQ

with encountered new execution paths
6: treeQ ← the complement tree of treeQ

7: Qc ← get the candidate queries based on treeQ

8: q ← select a query from Qc

9: Q ← Q ∪ {q}
10: until stopping criteria satisfied

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 18/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Challenges

How to

decide how many tuples to retrieve for a query?

choose the next test query?

design stopping condition for testing?

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 19/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Optimization Goals

Given program P and a set of test queries Q={qi}

maximize coverage

Path(P ,ℛ,Q) = {Patht ∣t ∈
∪

Ti
}, where Ti is the first ni tuples for query

qi .

minimize cost

cost(Q) =
∑

i cost(qi)
cost(qi) = q_cost(qi) + t_cost(qi ) = w + c × ni + t × ni

t_cost: t is test cost per tuple.

q_cost: w is query cost to get first result tuple, c is query cost to
get each additional tuple.

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 20/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Why only ni tuples for a query qi?

Multiple tuples will result in the same program execution path. After a
certain number of initial tuples, most or all distinct paths may have
been encountered.

Less retrieved/tested tuples means both less testing cost and less
query execution cost.

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 21/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

How to choose next q and n

Greedy Approach

Given candidate query q,
score(q) = cost′(q)

∣Path′(P,ℛ,ℳ,Q∪{q})∣−∣Path(P,ℛ,ℳ,Q)∣

∣Path′(P ,ℛ,ℳ,Q∪ {q})∣: estimate of ∣Path(P ,ℛ,ℳ,Q ∪ {q})∣
cost ′(q): estimate of cost(q)
(both are functions of n)

find q that minimizes score(q)

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 22/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Estimating the Coverage and Cost

Estimating the Coverage

Estimate the query result size of leaf node (query).

The result sizes for intermediate nodes are accumulated.
c1

c2

c3 !c3

!c2

c4

c5 !c5

!c4

(100)

(20) (80)

(10) (10) (40) (40)

(30) (10)

Estimating the Cost

both initial tuple cost and total cost.

EXPLAIN (supported by major DBMSs)

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 23/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Stopping Condition for Testing

testing resource limit reached

no more candidate queries

no candidate query can return non-empty result

total number of encountered tuples (associated with distinct
paths) equals the table size

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 24/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Implementation

Overview

Fully automated tool

Analyze Java bytecode programs (any Java program, no need for
source code)

Rewrite application bytecode at load-time: after each application
bytecode instruction, insert a call to our dynamic symbolic engine

Use inserted calls to maintain an accurate symbolic
representation of program state

Treat calls to database (e.g., Jdbc) differently: Represent
returned values as symbolic variables and track how the program
uses them, i.e., in path conditions

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 25/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Implementation

Details

Use Java 5 instrumentation facilities

Use third-party open source bytecode instrumentation framework
ASM

Implement on top of new dynamic symbolic engine Dsc:

Allows handling of regular (non-query) program inputs

Solve constraints on regular program inputs with powerful
third-party satisfiability modulo theories (SMT) constraint solver
Z3

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 26/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Ongoing and Future Work

Several directions

Finish prototype implementation

Evaluate on realistic applications

Compare with mock-database generation techniques + compare
with traditional database sampling techniques:

Can we achieve higher coverage of the application code that is
reachable with the existing database contents?

How to deal with database insert, update, delete?

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 27/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

Thank you!

Contact

cli@uta.edu, csallner@uta.edu

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 28/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

References

Dynamic Symbolic Execution Systems

Dart: C programs, by Godefroid et al. [PLDI’05]

jCute: Java programs, by Sen et al. [CAV’06]

Klee: C programs, by Cadar et al. [OSDI’08]

Pex: .Net programs (C#, etc.), by Tillmann et al. [TAP’08]

Database application testing via mock database generation

jCute extension: Java programs, by Emmi et al. [ISSTA’07]

Qex (Pex extension): .Net programs (C#, etc.), by Veanes et al.
[ICFEM’09]

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 29/30



Overview
Alternative Methods

Details of the Method
Implementation

Ongoing and Future Work

References

Main tools used by our prototype implementation

ASM: http://asm.ow2.org/

Z3:
http://research.microsoft.com/en-us/um/redmond/projects/z3/

DBTest 2010 Chengkai Li, Christoph Csallner Dynamic Symbolic Database Application Testing: 30/30


	Overview
	Example
	Details of the Method
	Implementation
	Ongoing and Future Work
	

