
Detecting Rootkits With the
RAI Runtime Application Inventory

Shabnam Aboughadareh Christoph Csallner
University of Texas at Arlington University of Texas at Arlington
(now @ Qualcomm)

SSPREW-6
Los Angeles, California

Dec 6, 2016

This material is based upon work supported by the National Science Foundation under Grants No. 1117369 and 1527398. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

System Integrity Checking Approaches
● Black- / White-listing programs or payloads

➢ Behavior: System call sequences, memory accesses, ...
➢ Signatures

● Runtime monitoring: VMs, instrumentation, ..

● Advanced platform integrity approaches
➢ TPM for integrity measurement and remote attestation
➢ Application signing
➢ Secure boot
➢ ...

2

Goal: Scale Integrity Checking to Legacy Systems
● Restarting applications: Costly → Avoid

➢ Runtime memory attacks can be more dangerous on legacy systems
➢ Security tools that may change process’s address space (e.g., debuggers

attaching to the process and add interrupts) may terminate program
➢ Goal: Deploy integrity checker on running applications

● No modern security infrastructure
➢ No TPM module/HW
➢ No secure boot
➢ Everything on client machine in malware’s reach (signatures, etc.) :-(

3

● Application’s valid signature/state at runtime not clear
➢ Address space of applications at “runtime” changes constantly:

○ Loading libraries
○ Self modifying code, ...

➢ Not specific to legacy systems / applications
➢ Usage of TPM requires knowledge about trusted application state/signature
➢ Secure boot (and usually usage of TPM) is considered “load-time” integrity

4

Goal: Scale Integrity Checking to Legacy Systems

Goal: Scale Integrity Checking to Legacy Systems
● Most existing antivirus software (in charge of blacklisting/whitelisting) can be

infected/disabled by a run-time attack without any sign for user/administrator
to recognize the attack (not specific for legacy systems)
➢ Antivirus programs provide a huge attack surface for attackers

○ High chance of 0-day vulnerabilities
○ High use of OS-level APIs (interesting targets for rootkits) for system monitoring

5

Assumptions & Threat Model
● Monitored application may run in user or kernel-mode or both

➢ User system := OS + all applications running on OS
➢ OS may run on hardware, VM, container

● User system may be under malware attack
➢ Adversary has full access to the whole system: File system, all memory, …

● Adversary may continuously hack OS + applications
➢ Inject code: Malicious payloads, hide its trace
➢ Manipulate binaries on disk
➢ Infect loaded images in memory
➢ Obtain higher privilege level: Root, ..
➢ Hook sys call table, overwrite code & read-only data sections

6

Design Keys
C1: Restarting the applications is often costly and should be avoided

K1: No interception in program execution:

→ No recompile, no restart

→ No modification within the application’s address space: Risks corruption / crash

C: Challenge

K: Design Key
7

Design Keys
C2: Lack of modern security infrastructure

C3: Lack of known valid signature/state for applications at runtime

K2: No root-of-trust

➢ Idea: Run multiple application instances (in different execution states) to
create a dynamic whitelist of program states

○ Number of infected machines/applications is initially likely less than the
number of non-infected machines

○ Many homogeneous instances already exist
■ Cloud
■ Local networks
■ End-users

8

Design Keys
C4: Attacks on Antivirus programs

K3: Tiny code with tiny trace on the systems (e.g., no/little usage of common OS-level
APIs targeted by rootkits)

➢ Take the snapshot of memory frequently & calculate the hash of executable codes
within address space of applications

○ Does not require usage of the APIs which are common targets of rootkits
➢ Process the hash outside the user’s machine (Client-Server scheme)

○ A kernel-mode driver as the client application
■ Full access to OS memory
■ Installed as a hidden driver, with random name and hidden network

activity, small code and easy to apply obfuscation techniques
9

Design Keys
C5: Monitored binaries may change frequently in main memory at runtime

→ e.g., by an ongoing malware attack

K4: Verifying binaries at startup is not sufficient

10

RAI: Runtime Application Inventory

11

....

OS kernel

Kernel module k

RAI kernel module

App 1

Machine 1
Hashes

App n

....
RAI

Back-end

Hashes

....

....

OS kernel

Kernel module k

RAI kernel module

App 1

Machine m

App p

....

....

● Minimal client can be deployed at application runtime & tries to hide itself
● At each client: Periodically monitor (hash) physical memory
● Server requests hashes in random intervals, compares hashes: Infers dynamic white-list
● Detect common rootkit attacks in user- & kernel-mode (current implementation on Linux)

➢ Code injection & binary patching (on memory and disk) → monitor executable sections
➢ Sensitive data manipulated → monitoring binaries’ .readonly section in memory: sys call table, ..

Server Component
● Keep track of participating machines

○ Maintain current / previous hashes

● Manage client-server communication: Initiate, retries, ..

12

Monitoring Different Program States
Dynamic monitoring challenge: Different hashes for different program states

➢ Approach :
○ Send hash of each executable segment separately (e.g., VMA

in Linux)
○ Backend application(s) is/are in charge of matching the states

(identifying/comparing similar segments)

Client: De-Relocate Addresses
● Position Dependent Code: Relative addresses to the “load” address of

application cause different hashes
➢ Identifying and de-relocating requires access to the file (e.g., .reloc

section in ELF files)
○ Trusting the files on disk is in contrast with “No root of trust” design key

○ After loading into the memory, there is no trace for identifying which file belongs to
which kernel module (Linux)

➢ Heuristic Approach: Disassemble the memory contents, find position
dependent addresses and de-relocate them

○ Use Distorm disassembler: Provides convenient access to opcodes and operands
via its “decomposer” feature

14

Two-level Hash of Physical Memory
● Observation 1: Unassigned virtual address for unused memory pages (Linux)

➢ Get hash of physical memory pages
● Observation 2: Swapped-out pages can result in inaccurate hash

➢ Obtain two-level hash. When needed: Compare level-1 hashes

Prototype Implementation
● Implementation took several shortcuts

○ Fixing these: Future work

● Client component: Kernel module
○ Listens directly on the network for server commands → Obvious security problems
○ Advanced features missing
○ Failure recovery, security / authentication, availability, scalability, performance management

● DoS attacks on server component possible
● ...

16

Research Questions (RQ) & Hypotheses (H)
● Overall: Promising for online rootkit detection?

○ True / false negatives less interesting: Combine with other detection approaches anyway

● RQ1: Does runtime overhead preclude RAI from detecting rootkits online?
○ [-] Compensating for code load order / address space layout randomization expensive
○ H1: RAI can be useful if client machines have significant resources available

● RQ2: Do false positives preclude RAI from being used in production?
○ [-] x86 disassembly undecidable → Zero false positives impossible in general
○ H2: RAI's average false positive rate can remain below 10%

● RQ3: Can RAI detect common types of kernel / user level rootkit attacks?
○ H3: RAI can detect common rootkit attack types online.

● RQ4: Does RAI scale to geographically widely distributed deployments?
○ H4: RAI can detect rootkit attacks within a few minutes, even if the RAI-monitored applications

are running on geographically widely distributed machines
17

Evaluation: Own & Third-party Subjects
Subject Mode Location

1. Exchanging libraries via LD_PRELOAD User Memory
2. Exchanging libraries via ld.so.preload (Jynxkit) User Memory
3. Patching the user-mode program loader User Disk
4. Diverting process execution (InjectSO) User Memory
5. Hooking the system call table Kernel Memory
6. In-line function patching (Suterusu) Kernel Memory

18

Evaluation: Two Setups
1. RQ1 to RQ3: “Local” setup

a. All clients on same physical machine
i. 40 VMware Ubuntu Linux

ii. Two groups with the same kernel versions (2.6 and 3), 512 MB RAM, 32 and 64 bits
processors

iii. 100 user-mode applications and 41 kernel modules

b. One VM is dedicated to the server: Ubuntu 12.04 LTS, 64 bits

2. RQ4: AWS
a. Sets from 6 to 60 clients equally distributed over 10 AWS regions

i. Similar setups to local experiment
b. 90 user-mode applications
c. Ubuntu 12.04 LTS, 30 GB RAM as the server running in Oregon

19

RQ1: Moderate Runtime Overhead
Activity Target Location Slowdown(%)

Hash User-mode app Client 8

Hash Kernel code/data Client 3

Hash + De-relocation Kernel module Client 20

Compare hashes 20 VMs Server 15

Logging received data 20 VMs Server 20

20

Kernel Module Number of Pages False Hash False Positive (%)

E1000 22 3 13.6
Vmwgfx 18 2 11.1
Ttm 11 1 9.0
Drm 33 1 3.0
Bluetooth 55 3 5.4
Rfcomm 9 1 11.1
Psmouse 16 2 12.5

All 41 modules 314 13 4.1

RQ2: False Positives in De-Relocation

21

RQ3: Rootkit Detection Rate
● 100% rootkit detection
● Identified the injected code
● Identified the manipulated pages

22

RQ4: Scaling to Larger Deployments

Total Clients 6 12 18 24 30 36 42 48 54 60

Delay (s) 0.4 1.0 1.1 1.6 1.9 2.1 2.9 3.3 3.9 4.4

Limitations / Future Work

● Return-oriented programming attacks
● Quantitative comparison (comparison with similar approaches)
● Experiment on legacy systems

24

Related Work (1/2)
● Cloud-based antivirus: CloudAV, ..

○ Reduce attack surface on client
○ But rely on manually curated blacklists (slow)

● Rootkit detector built on Pioneer
○ But needs prior knowledge of applications & makes strong machine / connection assumptions

● File integrity checking: Tripwire, SVV, ..
○ Compare in-memory with on-disk
○ But cannot deploy during malware attack: Malware may have changed files on disk

● Traditional malware detection: Nickle, Poker, ..
○ E.g.: Static symbolic execution
○ But kernel-only, large attack surface, cannot apply in an ongoing malware attack

25

Related Work (2/2)
● Static instrumentation

○ But requires recompile & restart

26

Acknowledgments
● Matthew Elder
● Nathan Evans
● Azzedine Benameur
● Anonymous SSPREW reviewers

27

Questions

28

Attacks Started by Zero-Day Exploits
● May inject malicious behavior into a trusted application

○ White-listing the app does not help

● May be persistent, manipulate infected system to hide itself
● Recent code-injection rootkit examples: Stuxnet, Duqu, Flame, ..

● Traditional anti-virus not effective
○ May take weeks for tool to receive signature to catch malware
○ Since most antivirus tools rely on blacklist of known malware signatures
○ Antivirus vendor needs time to distill malware into signatures & deploy the signatures

29

Many Homogeneous Instances
● Assume: Many application instances running at the same time
● Common in large distributed applications

○ Data centers, cloud

○ Popular stand-alone client-side end-user applications

● Our scheme works best if relatively few app variants in use
○ App version, how they have been compiled
○ Common: Developers use same compiler for long time, few app versions in wide use

30

Pinpointing Possible Attacks
● Server receives hashes from all clients
● Cluster the clients: Within each cluster:

○ Each member has same architecture & OS version

○ Detect outliers

● [+] Does not need prior knowledge
○ About original binaries / signatures / blacklists / whitelist

● [+] Detects potential malware attacks immediately
○ Don’t have to wait until third party releases corresponding malware signatures

31

● Consult Linux kernel's symbol table (system.map)?
○ Maps between name and address
○ But does not work if the kernel uses run-time address randomization

● Traverse the I/O memory resources & kernel code's physical address range?
○ RAM's child resources: Kernel code, data, and uninitialized data sections (bss)
○ But does not work for the kernel's read-only data

● Call Linux kallsyms function
○ Extracts all symbols (e.g., functions and variables) from the kernel
○ Commonly used by Linux debuggers
○ Extract address of symbols that mark start / end of kernel code & read-only data segments

■ _stext, _etext, __start_rodata, __end_rodata

● Outside kernel: Traverse kernel heap structures: task_struct, module_struct

Obtain Virtual Address Ranges

32

Hashing Physical Memory
● Linux kernel code & read-only data: Straightforward

○ In contiguous physical addresses
○ Never swapped out

● Special case: Legacy machines w/ more physical than virtual memory
○ Access main memory > 4GB on 32-bit x86 (4GB virtual address space)
○ Linux kernel dynamically maps a set of virtual addresses to a larger set of physical addresses
○ kmap HIGH MEMORY

● Linux may recycle virtual address
○ Even if the pointed-to page is still valid

● Reads pages directly from Linux page cache
○ Page may still be valid but only be reachable via page cache

33

Conclusions
● First approach

○ To determine which code is running on which machines

○ That is designed to work even when deployed on legacy systems under malware attacks

● Designed to be more effective at detecting rootkits in legacy applications
○ Than state of the art

34

